-
1
-
-
84992735645
-
Modulating antibody functionality in infectious disease and vaccination
-
1 Gunn, B.M., Alter, G., Modulating antibody functionality in infectious disease and vaccination. Trends Mol. Med. 22 (2016), 969–982.
-
(2016)
Trends Mol. Med.
, vol.22
, pp. 969-982
-
-
Gunn, B.M.1
Alter, G.2
-
2
-
-
84969857239
-
Exploiting mucosal immunity for antiviral vaccines
-
2 Iwasaki, A., Exploiting mucosal immunity for antiviral vaccines. Annu. Rev. Immunol. 34 (2016), 575–608.
-
(2016)
Annu. Rev. Immunol.
, vol.34
, pp. 575-608
-
-
Iwasaki, A.1
-
3
-
-
34548229364
-
FcRn: the neonatal Fc receptor comes of age
-
3 Roopenian, D.C., Akilesh, S., FcRn: the neonatal Fc receptor comes of age. Nat. Rev. Immunol. 7 (2007), 715–725.
-
(2007)
Nat. Rev. Immunol.
, vol.7
, pp. 715-725
-
-
Roopenian, D.C.1
Akilesh, S.2
-
4
-
-
0028061347
-
A major histocompatibility complex class I-like Fc receptor cloned from human placenta: possible role in transfer of immunoglobulin G from mother to fetus
-
4 Story, C.M., et al. A major histocompatibility complex class I-like Fc receptor cloned from human placenta: possible role in transfer of immunoglobulin G from mother to fetus. J. Exp. Med. 180 (1994), 2377–2381.
-
(1994)
J. Exp. Med.
, vol.180
, pp. 2377-2381
-
-
Story, C.M.1
-
5
-
-
84947901598
-
Establishment and dysfunction of the blood–brain barrier
-
5 Zhao, Z., et al. Establishment and dysfunction of the blood–brain barrier. Cell 163 (2015), 1064–1078.
-
(2015)
Cell
, vol.163
, pp. 1064-1078
-
-
Zhao, Z.1
-
6
-
-
84959020187
-
Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid
-
6 Schlager, C., et al. Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature 530 (2016), 349–353.
-
(2016)
Nature
, vol.530
, pp. 349-353
-
-
Schlager, C.1
-
7
-
-
84863012054
-
Regional neural activation defines a gateway for autoreactive T cells to cross the blood–brain barrier
-
7 Arima, Y., et al. Regional neural activation defines a gateway for autoreactive T cells to cross the blood–brain barrier. Cell 148 (2012), 447–457.
-
(2012)
Cell
, vol.148
, pp. 447-457
-
-
Arima, Y.1
-
8
-
-
84938929121
-
A pain-mediated neural signal induces relapse in murine autoimmune encephalomyelitis, a multiple sclerosis model
-
8 Arima, Y., et al. A pain-mediated neural signal induces relapse in murine autoimmune encephalomyelitis, a multiple sclerosis model. Elife, 4, 2015, 08733.
-
(2015)
Elife
, vol.4
, pp. 08733
-
-
Arima, Y.1
-
9
-
-
65249175159
-
C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE
-
9 Reboldi, A., et al. C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat. Immunol. 10 (2009), 514–523.
-
(2009)
Nat. Immunol.
, vol.10
, pp. 514-523
-
-
Reboldi, A.1
-
11
-
-
84985896386
-
The antibody aducanumab reduces Abeta plaques in Alzheimer's disease
-
11 Sevigny, J., et al. The antibody aducanumab reduces Abeta plaques in Alzheimer's disease. Nature 537 (2016), 50–56.
-
(2016)
Nature
, vol.537
, pp. 50-56
-
-
Sevigny, J.1
-
12
-
-
84869885852
-
Capture, crawl, cross: the T cell code to breach the blood–brain barriers
-
12 Engelhardt, B., Ransohoff, R.M., Capture, crawl, cross: the T cell code to breach the blood–brain barriers. Trends Immunol. 33 (2012), 579–589.
-
(2012)
Trends Immunol.
, vol.33
, pp. 579-589
-
-
Engelhardt, B.1
Ransohoff, R.M.2
-
13
-
-
79957764148
-
The blood–nerve barrier: structure and functional significance
-
13 Weerasuriya, A., Mizisin, A.P., The blood–nerve barrier: structure and functional significance. Methods Mol. Biol. 686 (2011), 149–173.
-
(2011)
Methods Mol. Biol.
, vol.686
, pp. 149-173
-
-
Weerasuriya, A.1
Mizisin, A.P.2
-
14
-
-
7044272358
-
Mechanisms and roles of axon–Schwann cell interactions
-
14 Corfas, G., et al. Mechanisms and roles of axon–Schwann cell interactions. J. Neurosci. 24 (2004), 9250–9260.
-
(2004)
J. Neurosci.
, vol.24
, pp. 9250-9260
-
-
Corfas, G.1
-
15
-
-
84889872057
-
Development, maintenance and disruption of the blood–brain barrier
-
15 Obermeier, B., et al. Development, maintenance and disruption of the blood–brain barrier. Nat. Med. 19 (2013), 1584–1596.
-
(2013)
Nat. Med.
, vol.19
, pp. 1584-1596
-
-
Obermeier, B.1
-
16
-
-
78649487239
-
Pericytes are required for blood–brain barrier integrity during embryogenesis
-
16 Daneman, R., et al. Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature 468 (2010), 562–566.
-
(2010)
Nature
, vol.468
, pp. 562-566
-
-
Daneman, R.1
-
17
-
-
84901269974
-
Mfsd2a is critical for the formation and function of the blood–brain barrier
-
17 Ben-Zvi, A., et al. Mfsd2a is critical for the formation and function of the blood–brain barrier. Nature 509 (2014), 507–511.
-
(2014)
Nature
, vol.509
, pp. 507-511
-
-
Ben-Zvi, A.1
-
18
-
-
84865958935
-
Barrier mechanisms in the developing brain
-
18 Saunders, N.R., et al. Barrier mechanisms in the developing brain. Front. Pharmacol., 3, 2012, 46.
-
(2012)
Front. Pharmacol.
, vol.3
, pp. 46
-
-
Saunders, N.R.1
-
19
-
-
84911884131
-
The gut microbiota influences blood–brain barrier permeability in mice
-
19 Braniste, V., et al. The gut microbiota influences blood–brain barrier permeability in mice. Sci. Transl. Med., 6, 2014, 263ra158.
-
(2014)
Sci. Transl. Med.
, vol.6
, pp. 263ra158
-
-
Braniste, V.1
-
20
-
-
84938819728
-
The blood–brain barrier endothelium: a target for pro-inflammatory cytokines
-
20 Rochfort, K.D., Cummins, P.M., The blood–brain barrier endothelium: a target for pro-inflammatory cytokines. Biochem. Soc. Trans. 43 (2015), 702–706.
-
(2015)
Biochem. Soc. Trans.
, vol.43
, pp. 702-706
-
-
Rochfort, K.D.1
Cummins, P.M.2
-
21
-
-
84908428514
-
Viral pathogen-associated molecular patterns regulate blood–brain barrier integrity via competing innate cytokine signals
-
21 Daniels, B.P., et al. Viral pathogen-associated molecular patterns regulate blood–brain barrier integrity via competing innate cytokine signals. MBio 5 (2014), 14–e01476.
-
(2014)
MBio
, vol.5
, pp. 14-e01476
-
-
Daniels, B.P.1
-
22
-
-
84928659307
-
Interferon-lambda restricts West Nile virus neuroinvasion by tightening the blood–brain barrier
-
22 Lazear, H.M., et al. Interferon-lambda restricts West Nile virus neuroinvasion by tightening the blood–brain barrier. Sci. Transl. Med., 7, 2015, 284ra59.
-
(2015)
Sci. Transl. Med.
, vol.7
, pp. 284ra59
-
-
Lazear, H.M.1
-
23
-
-
84946956225
-
The TAM receptor Mertk protects against neuroinvasive viral infection by maintaining blood–brain barrier integrity
-
23 Miner, J.J., et al. The TAM receptor Mertk protects against neuroinvasive viral infection by maintaining blood–brain barrier integrity. Nat. Med. 21 (2015), 1464–1472.
-
(2015)
Nat. Med.
, vol.21
, pp. 1464-1472
-
-
Miner, J.J.1
-
24
-
-
77954747250
-
Protein S controls hypoxic/ischemic blood–brain barrier disruption through the TAM receptor Tyro3 and sphingosine 1-phosphate receptor
-
24 Zhu, D., et al. Protein S controls hypoxic/ischemic blood–brain barrier disruption through the TAM receptor Tyro3 and sphingosine 1-phosphate receptor. Blood 115 (2010), 4963–4972.
-
(2010)
Blood
, vol.115
, pp. 4963-4972
-
-
Zhu, D.1
-
25
-
-
84859717206
-
Innate immunity in the central nervous system
-
25 Ransohoff, R.M., Brown, M.A., Innate immunity in the central nervous system. J. Clin. Invest. 122 (2012), 1164–1171.
-
(2012)
J. Clin. Invest.
, vol.122
, pp. 1164-1171
-
-
Ransohoff, R.M.1
Brown, M.A.2
-
26
-
-
82955187705
-
Interferon-stimulated genes and their antiviral effector functions
-
26 Schoggins, J.W., Rice, C.M., Interferon-stimulated genes and their antiviral effector functions. Curr. Opin. Virol. 1 (2011), 519–525.
-
(2011)
Curr. Opin. Virol.
, vol.1
, pp. 519-525
-
-
Schoggins, J.W.1
Rice, C.M.2
-
27
-
-
0042838032
-
Interferon-beta prevents cytokine-induced neutrophil infiltration and attenuates blood–brain barrier disruption
-
1060-1-69
-
27 Veldhuis, W.B., et al. Interferon-beta prevents cytokine-induced neutrophil infiltration and attenuates blood–brain barrier disruption. J. Cereb. Blood Flow Metab., 23, 2003 1060-1-69.
-
(2003)
J. Cereb. Blood Flow Metab.
, vol.23
-
-
Veldhuis, W.B.1
-
28
-
-
42649140235
-
Immunobiology of the TAM receptors
-
28 Lemke, G., Rothlin, C.V., Immunobiology of the TAM receptors. Nat. Rev. Immunol. 8 (2008), 327–336.
-
(2008)
Nat. Rev. Immunol.
, vol.8
, pp. 327-336
-
-
Lemke, G.1
Rothlin, C.V.2
-
29
-
-
84992570470
-
Differential TAM receptor–ligand–phospholipid interactions delimit differential TAM bioactivities
-
29 Lew, E.D., et al. Differential TAM receptor–ligand–phospholipid interactions delimit differential TAM bioactivities. Elife, 3, 2014, 03385.
-
(2014)
Elife
, vol.3
, pp. 03385
-
-
Lew, E.D.1
-
30
-
-
36849033963
-
TAM receptors are pleiotropic inhibitors of the innate immune response
-
30 Rothlin, C.V., et al. TAM receptors are pleiotropic inhibitors of the innate immune response. Cell 131 (2007), 1124–1136.
-
(2007)
Cell
, vol.131
, pp. 1124-1136
-
-
Rothlin, C.V.1
-
31
-
-
79951563979
-
Polymorphisms in the receptor tyrosine kinase MERTK gene are associated with multiple sclerosis susceptibility
-
31 Ma, G.Z., et al. Polymorphisms in the receptor tyrosine kinase MERTK gene are associated with multiple sclerosis susceptibility. PLoS One, 6, 2011, e16964.
-
(2011)
PLoS One
, vol.6
, pp. e16964
-
-
Ma, G.Z.1
-
32
-
-
80051684615
-
Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis
-
32 Sawcer, S., et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476 (2011), 214–219.
-
(2011)
Nature
, vol.476
, pp. 214-219
-
-
Sawcer, S.1
-
33
-
-
67649881102
-
Australia and New Zealand Multiple Sclerosis Genetics Consortium (ANZgene), Genome-wide association study identifies new multiple sclerosis susceptibility loci on chromosomes 12 and 20
-
33 Australia and New Zealand Multiple Sclerosis Genetics Consortium (ANZgene), Genome-wide association study identifies new multiple sclerosis susceptibility loci on chromosomes 12 and 20. Nat. Genet. 41 (2009), 824–828.
-
(2009)
Nat. Genet.
, vol.41
, pp. 824-828
-
-
-
34
-
-
20444481707
-
Interferon-gamma induces internalization of epithelial tight junction proteins via a macropinocytosis-like process
-
34 Bruewer, M., et al. Interferon-gamma induces internalization of epithelial tight junction proteins via a macropinocytosis-like process. FASEB J. 19 (2005), 923–933.
-
(2005)
FASEB J.
, vol.19
, pp. 923-933
-
-
Bruewer, M.1
-
35
-
-
26244442836
-
Mechanism of IFN-gamma-induced endocytosis of tight junction proteins: myosin II-dependent vacuolarization of the apical plasma membrane
-
35 Utech, M., et al. Mechanism of IFN-gamma-induced endocytosis of tight junction proteins: myosin II-dependent vacuolarization of the apical plasma membrane. Mol. Biol. Cell 16 (2005), 5040–5052.
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 5040-5052
-
-
Utech, M.1
-
36
-
-
34948909646
-
Human TH17 lymphocytes promote blood–brain barrier disruption and central nervous system inflammation
-
36 Kebir, H., et al. Human TH17 lymphocytes promote blood–brain barrier disruption and central nervous system inflammation. Nat. Med. 13 (2007), 1173–1175.
-
(2007)
Nat. Med.
, vol.13
, pp. 1173-1175
-
-
Kebir, H.1
-
37
-
-
0034123924
-
Differential adhesion molecule requirements for immune surveillance and inflammatory recruitment
-
37 Carrithers, M.D., et al. Differential adhesion molecule requirements for immune surveillance and inflammatory recruitment. Brain 123 (2000), 1092–1101.
-
(2000)
Brain
, vol.123
, pp. 1092-1101
-
-
Carrithers, M.D.1
-
38
-
-
0027982876
-
Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm
-
38 Springer, T.A., Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76 (1994), 301–314.
-
(1994)
Cell
, vol.76
, pp. 301-314
-
-
Springer, T.A.1
-
39
-
-
34748914299
-
Evolving functions of endothelial cells in inflammation
-
39 Pober, J.S., Sessa, W.C., Evolving functions of endothelial cells in inflammation. Nat. Rev. Immunol. 7 (2007), 803–815.
-
(2007)
Nat. Rev. Immunol.
, vol.7
, pp. 803-815
-
-
Pober, J.S.1
Sessa, W.C.2
-
40
-
-
84897879852
-
How endothelial cells regulate transmigration of leukocytes in the inflammatory response
-
40 Muller, W.A., How endothelial cells regulate transmigration of leukocytes in the inflammatory response. Am. J. Pathol. 184 (2014), 886–896.
-
(2014)
Am. J. Pathol.
, vol.184
, pp. 886-896
-
-
Muller, W.A.1
-
41
-
-
0142259710
-
Three or more routes for leukocyte migration into the central nervous system
-
41 Ransohoff, R.M., et al. Three or more routes for leukocyte migration into the central nervous system. Nat. Rev. Immunol. 3 (2003), 569–581.
-
(2003)
Nat. Rev. Immunol.
, vol.3
, pp. 569-581
-
-
Ransohoff, R.M.1
-
42
-
-
0037816192
-
+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin
-
+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc. Natl. Acad. Sci. U. S. A. 100 (2003), 8389–8394.
-
(2003)
Proc. Natl. Acad. Sci. U. S. A.
, vol.100
, pp. 8389-8394
-
-
Kivisakk, P.1
-
43
-
-
0027529932
-
+ T cells is required for their entry into brain parenchyma
-
+ T cells is required for their entry into brain parenchyma. J. Exp. Med. 177 (1993), 57–68.
-
(1993)
J. Exp. Med.
, vol.177
, pp. 57-68
-
-
Baron, J.L.1
-
44
-
-
0028220264
-
The pathogenesis of adoptive murine autoimmune diabetes requires an interaction between alpha 4-integrins and vascular cell adhesion molecule-1
-
44 Baron, J.L., et al. The pathogenesis of adoptive murine autoimmune diabetes requires an interaction between alpha 4-integrins and vascular cell adhesion molecule-1. J. Clin. Invest. 93 (1994), 1700–1708.
-
(1994)
J. Clin. Invest.
, vol.93
, pp. 1700-1708
-
-
Baron, J.L.1
-
45
-
-
0032981648
-
Adhesion molecule expression and regulation on cells of the central nervous system
-
45 Lee, S.J., Benveniste, E.N., Adhesion molecule expression and regulation on cells of the central nervous system. J. Neuroimmunol. 98 (1999), 77–88.
-
(1999)
J. Neuroimmunol.
, vol.98
, pp. 77-88
-
-
Lee, S.J.1
Benveniste, E.N.2
-
46
-
-
0023931606
-
Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein
-
46 Linington, C., et al. Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein. Am. J. Pathol. 130 (1988), 443–454.
-
(1988)
Am. J. Pathol.
, vol.130
, pp. 443-454
-
-
Linington, C.1
-
47
-
-
0027990803
-
Experimental autoimmune panencephalitis and uveoretinitis transferred to the Lewis rat by T lymphocytes specific for the S100 beta molecule, a calcium binding protein of astroglia
-
47 Kojima, K., et al. Experimental autoimmune panencephalitis and uveoretinitis transferred to the Lewis rat by T lymphocytes specific for the S100 beta molecule, a calcium binding protein of astroglia. J. Exp. Med. 180 (1994), 817–829.
-
(1994)
J. Exp. Med.
, vol.180
, pp. 817-829
-
-
Kojima, K.1
-
48
-
-
0032764920
-
Activated non-neural specific T cells open the blood–brain barrier to circulating antibodies
-
48 Westland, K.W., et al. Activated non-neural specific T cells open the blood–brain barrier to circulating antibodies. Brain 122 (1999), 1283–1291.
-
(1999)
Brain
, vol.122
, pp. 1283-1291
-
-
Westland, K.W.1
-
49
-
-
84946949853
-
Mechanisms of restriction of viral neuroinvasion at the blood–brain barrier
-
49 Miner, J.J., Diamond, M.S., Mechanisms of restriction of viral neuroinvasion at the blood–brain barrier. Curr. Opin. Immunol. 38 (2016), 18–23.
-
(2016)
Curr. Opin. Immunol.
, vol.38
, pp. 18-23
-
-
Miner, J.J.1
Diamond, M.S.2
-
50
-
-
84876373181
-
Virus infections in the nervous system
-
50 Koyuncu, O.O., et al. Virus infections in the nervous system. Cell Host Microbe 13 (2013), 379–393.
-
(2013)
Cell Host Microbe
, vol.13
, pp. 379-393
-
-
Koyuncu, O.O.1
-
51
-
-
55549129268
-
Measles virus-induced block of transendothelial migration of T lymphocytes and infection-mediated virus spread across endothelial cell barriers
-
51 Dittmar, S., et al. Measles virus-induced block of transendothelial migration of T lymphocytes and infection-mediated virus spread across endothelial cell barriers. J. Virol. 82 (2008), 11273–11282.
-
(2008)
J. Virol.
, vol.82
, pp. 11273-11282
-
-
Dittmar, S.1
-
52
-
-
0029060949
-
The earliest events in vesicular stomatitis virus infection of the murine olfactory neuroepithelium and entry of the central nervous system
-
52 Plakhov, I.V., et al. The earliest events in vesicular stomatitis virus infection of the murine olfactory neuroepithelium and entry of the central nervous system. Virology 209 (1995), 257–262.
-
(1995)
Virology
, vol.209
, pp. 257-262
-
-
Plakhov, I.V.1
-
53
-
-
60949114530
-
West Nile virus infection modulates human brain microvascular endothelial cells tight junction proteins and cell adhesion molecules: transmigration across the in vitro blood–brain barrier
-
53 Verma, S., et al. West Nile virus infection modulates human brain microvascular endothelial cells tight junction proteins and cell adhesion molecules: transmigration across the in vitro blood–brain barrier. Virology 385 (2009), 425–433.
-
(2009)
Virology
, vol.385
, pp. 425-433
-
-
Verma, S.1
-
54
-
-
49649102390
-
Drak2 contributes to West Nile virus entry into the brain and lethal encephalitis
-
54 Wang, S., et al. Drak2 contributes to West Nile virus entry into the brain and lethal encephalitis. J. Immunol. 181 (2008), 2084–2091.
-
(2008)
J. Immunol.
, vol.181
, pp. 2084-2091
-
-
Wang, S.1
-
55
-
-
84928547715
-
Viral infection of the central nervous system and neuroinflammation precede blood–brain barrier disruption during Japanese encephalitis virus Infection
-
55 Li, F., et al. Viral infection of the central nervous system and neuroinflammation precede blood–brain barrier disruption during Japanese encephalitis virus Infection. J. Virol. 89 (2015), 5602–5614.
-
(2015)
J. Virol.
, vol.89
, pp. 5602-5614
-
-
Li, F.1
-
56
-
-
0015581906
-
Pathogenesis of herpetic neuritis and ganglionitis in mice: evidence for intra-axonal transport of infection
-
56 Cook, M.L., Stevens, J.G., Pathogenesis of herpetic neuritis and ganglionitis in mice: evidence for intra-axonal transport of infection. Infect. Immun. 7 (1973), 272–288.
-
(1973)
Infect. Immun.
, vol.7
, pp. 272-288
-
-
Cook, M.L.1
Stevens, J.G.2
-
57
-
-
29144442900
-
One hundred years of poliovirus pathogenesis
-
57 Racaniello, V.R., One hundred years of poliovirus pathogenesis. Virology 344 (2006), 9–16.
-
(2006)
Virology
, vol.344
, pp. 9-16
-
-
Racaniello, V.R.1
-
58
-
-
39649109256
-
Herpes simplex: insights on pathogenesis and possible vaccines
-
58 Koelle, D.M., Corey, L., Herpes simplex: insights on pathogenesis and possible vaccines. Annu. Rev. Med. 59 (2008), 381–395.
-
(2008)
Annu. Rev. Med.
, vol.59
, pp. 381-395
-
-
Koelle, D.M.1
Corey, L.2
-
59
-
-
0028107309
-
Passive immunization of the vagina protects mice against vaginal transmission of genital herpes infections
-
59 Whaley, K.J., et al. Passive immunization of the vagina protects mice against vaginal transmission of genital herpes infections. J. Infect. Dis. 169 (1994), 647–649.
-
(1994)
J. Infect. Dis.
, vol.169
, pp. 647-649
-
-
Whaley, K.J.1
-
60
-
-
0029670578
-
Controlled release of antibodies for long-term topical passive immunoprotection of female mice against genital herpes
-
60 Sherwood, J.K., et al. Controlled release of antibodies for long-term topical passive immunoprotection of female mice against genital herpes. Nat. Biotechnol. 14 (1996), 468–471.
-
(1996)
Nat. Biotechnol.
, vol.14
, pp. 468-471
-
-
Sherwood, J.K.1
-
61
-
-
0025203093
-
Comparative evaluation of immunization with live attenuated and enhanced-potency inactivated trivalent poliovirus vaccines in childhood: systemic and local immune responses
-
61 Faden, H., et al. Comparative evaluation of immunization with live attenuated and enhanced-potency inactivated trivalent poliovirus vaccines in childhood: systemic and local immune responses. J. Infect. Dis. 162 (1990), 1291–1297.
-
(1990)
J. Infect. Dis.
, vol.162
, pp. 1291-1297
-
-
Faden, H.1
-
62
-
-
0035155851
-
Vaccine-induced serum immunoglobin contributes to protection from herpes simplex virus type 2 genital infection in the presence of immune T cells
-
62 Morrison, L.A., et al. Vaccine-induced serum immunoglobin contributes to protection from herpes simplex virus type 2 genital infection in the presence of immune T cells. J. Virol. 75 (2001), 1195–1204.
-
(2001)
J. Virol.
, vol.75
, pp. 1195-1204
-
-
Morrison, L.A.1
-
63
-
-
84911426229
-
Vaginal memory T cells induced by intranasal vaccination are critical for protective T cell recruitment and prevention of genital HSV-2 disease
-
63 Sato, A., et al. Vaginal memory T cells induced by intranasal vaccination are critical for protective T cell recruitment and prevention of genital HSV-2 disease. J. Virol. 88 (2014), 13699–13708.
-
(2014)
J. Virol.
, vol.88
, pp. 13699-13708
-
-
Sato, A.1
-
64
-
-
0034036778
-
Interferon-gamma up-regulates intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 and recruits lymphocytes into the vagina of immune mice challenged with herpes simplex virus-2
-
64 Parr, M.B., Parr, E.L., Interferon-gamma up-regulates intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 and recruits lymphocytes into the vagina of immune mice challenged with herpes simplex virus-2. Immunology 99 (2000), 540–545.
-
(2000)
Immunology
, vol.99
, pp. 540-545
-
-
Parr, M.B.1
Parr, E.L.2
-
65
-
-
0031957754
-
Collaboration of antibody and inflammation in clearance of rabies virus from the central nervous system
-
65 Hooper, D.C., et al. Collaboration of antibody and inflammation in clearance of rabies virus from the central nervous system. J. Virol. 72 (1998), 3711–3719.
-
(1998)
J. Virol.
, vol.72
, pp. 3711-3719
-
-
Hooper, D.C.1
-
66
-
-
84897537829
-
Enhancement of blood–brain barrier permeability and reduction of tight junction protein expression are modulated by chemokines/cytokines induced by rabies virus infection
-
66 Chai, Q., et al. Enhancement of blood–brain barrier permeability and reduction of tight junction protein expression are modulated by chemokines/cytokines induced by rabies virus infection. J. Virol. 88 (2014), 4698–4710.
-
(2014)
J. Virol.
, vol.88
, pp. 4698-4710
-
-
Chai, Q.1
-
67
-
-
84924813906
-
Role of the blood–brain barrier in multiple sclerosis
-
67 Ortiz, G.G., et al. Role of the blood–brain barrier in multiple sclerosis. Arch. Med. Res. 45 (2014), 687–697.
-
(2014)
Arch. Med. Res.
, vol.45
, pp. 687-697
-
-
Ortiz, G.G.1
-
68
-
-
0025351441
-
Mechanisms of autoimmune neuropathies
-
68 Brosnan, C.F., et al. Mechanisms of autoimmune neuropathies. Ann. Neurol. 27:Suppl (1990), S75–79.
-
(1990)
Ann. Neurol.
, vol.27
, pp. S75-79
-
-
Brosnan, C.F.1
-
69
-
-
84905717047
-
Guillain–Barré syndrome: pathogenesis, diagnosis, treatment and prognosis
-
69 van den Berg, B., et al. Guillain–Barré syndrome: pathogenesis, diagnosis, treatment and prognosis. Nat. Rev. Neurol. 10 (2014), 469–482.
-
(2014)
Nat. Rev. Neurol.
, vol.10
, pp. 469-482
-
-
van den Berg, B.1
-
70
-
-
13944253325
-
Infectious causes of multiple sclerosis
-
70 Gilden, D.H., Infectious causes of multiple sclerosis. Lancet Neurol. 4 (2005), 195–202.
-
(2005)
Lancet Neurol.
, vol.4
, pp. 195-202
-
-
Gilden, D.H.1
-
71
-
-
84949252174
-
Single-cell genomics unveils critical regulators of Th17 cell pathogenicity
-
71 Gaublomme, J.T., et al. Single-cell genomics unveils critical regulators of Th17 cell pathogenicity. Cell 163 (2015), 1400–1412.
-
(2015)
Cell
, vol.163
, pp. 1400-1412
-
-
Gaublomme, J.T.1
-
72
-
-
33644584352
-
A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis
-
72 Polman, C.H., et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med. 354 (2006), 899–910.
-
(2006)
N. Engl. J. Med.
, vol.354
, pp. 899-910
-
-
Polman, C.H.1
-
73
-
-
84861022041
-
Risk of natalizumab-associated progressive multifocal leukoencephalopathy
-
73 Bloomgren, G., et al. Risk of natalizumab-associated progressive multifocal leukoencephalopathy. N. Engl. J. Med. 366 (2012), 1870–1880.
-
(2012)
N. Engl. J. Med.
, vol.366
, pp. 1870-1880
-
-
Bloomgren, G.1
-
74
-
-
85002675978
-
B cells and antibodies in progressive multiple sclerosis: contribution to neurodegeneration and progression
-
74 Fraussen, J., et al. B cells and antibodies in progressive multiple sclerosis: contribution to neurodegeneration and progression. Autoimmun. Rev. 15 (2016), 896–899.
-
(2016)
Autoimmun. Rev.
, vol.15
, pp. 896-899
-
-
Fraussen, J.1
-
75
-
-
84905681937
-
Diagnosis and treatment of chronic acquired demyelinating polyneuropathies
-
75 Latov, N., Diagnosis and treatment of chronic acquired demyelinating polyneuropathies. Nat. Rev. Neurol. 10 (2014), 435–446.
-
(2014)
Nat. Rev. Neurol.
, vol.10
, pp. 435-446
-
-
Latov, N.1
-
76
-
-
0037438494
-
Rituximab therapy for CNS lymphomas: targeting the leptomeningeal compartment
-
76 Rubenstein, J.L., et al. Rituximab therapy for CNS lymphomas: targeting the leptomeningeal compartment. Blood 101 (2003), 466–468.
-
(2003)
Blood
, vol.101
, pp. 466-468
-
-
Rubenstein, J.L.1
-
77
-
-
84899019792
-
Amyloid-beta and tau: the trigger and bullet in Alzheimer disease pathogenesis
-
77 Bloom, G.S., Amyloid-beta and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 71 (2014), 505–508.
-
(2014)
JAMA Neurol.
, vol.71
, pp. 505-508
-
-
Bloom, G.S.1
-
78
-
-
84945465570
-
A fresh perspective from immunologists and vaccine researchers: active vaccination strategies to prevent and reverse Alzheimer's disease
-
78 Agadjanyan, M.G., et al. A fresh perspective from immunologists and vaccine researchers: active vaccination strategies to prevent and reverse Alzheimer's disease. Alzheimers Dement. 11 (2015), 1246–1259.
-
(2015)
Alzheimers Dement.
, vol.11
, pp. 1246-1259
-
-
Agadjanyan, M.G.1
-
79
-
-
0036780877
-
Amyloid-beta immunotherapy for Alzheimer's disease: the end of the beginning
-
79 Schenk, D., Amyloid-beta immunotherapy for Alzheimer's disease: the end of the beginning. Nat. Rev. Neurosci. 3 (2002), 824–828.
-
(2002)
Nat. Rev. Neurosci.
, vol.3
, pp. 824-828
-
-
Schenk, D.1
-
80
-
-
0037393454
-
Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report
-
80 Nicoll, J.A., et al. Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat. Med. 9 (2003), 448–452.
-
(2003)
Nat. Med.
, vol.9
, pp. 448-452
-
-
Nicoll, J.A.1
-
81
-
-
10744230547
-
Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization
-
81 Orgogozo, J.M., et al. Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology 61 (2003), 46–54.
-
(2003)
Neurology
, vol.61
, pp. 46-54
-
-
Orgogozo, J.M.1
-
82
-
-
1042265187
-
Neuropathology and pathogenesis of encephalitis following amyloid-beta immunization in Alzheimer's disease
-
82 Ferrer, I., et al. Neuropathology and pathogenesis of encephalitis following amyloid-beta immunization in Alzheimer's disease. Brain Pathol. 14 (2004), 11–20.
-
(2004)
Brain Pathol.
, vol.14
, pp. 11-20
-
-
Ferrer, I.1
-
83
-
-
84991744531
-
Active vaccines for Alzheimer disease treatment
-
83 Sterner, R.M., et al. Active vaccines for Alzheimer disease treatment. J. Am. Med. Dir. Assoc. 17 (2016), 862.e11–862.e15.
-
(2016)
J. Am. Med. Dir. Assoc.
, vol.17
, pp. 862.e11-862.e15
-
-
Sterner, R.M.1
-
84
-
-
85007565787
-
Bapineuzumab for mild to moderate Alzheimer's disease in two global, randomized, phase 3 trials
-
84 Vandenberghe, R., et al. Bapineuzumab for mild to moderate Alzheimer's disease in two global, randomized, phase 3 trials. Alzheimers Res. Ther., 8, 2016, 18.
-
(2016)
Alzheimers Res. Ther.
, vol.8
, pp. 18
-
-
Vandenberghe, R.1
-
85
-
-
84892695519
-
Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer's disease
-
85 Salloway, S., et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer's disease. N. Engl. J. Med. 370 (2014), 322–333.
-
(2014)
N. Engl. J. Med.
, vol.370
, pp. 322-333
-
-
Salloway, S.1
-
86
-
-
84957838627
-
Phase 3 solanezumab trials: secondary outcomes in mild Alzheimer's disease patients
-
86 Siemers, E.R., et al. Phase 3 solanezumab trials: secondary outcomes in mild Alzheimer's disease patients. Alzheimers Dement. 12 (2016), 110–120.
-
(2016)
Alzheimers Dement.
, vol.12
, pp. 110-120
-
-
Siemers, E.R.1
-
87
-
-
84863661393
-
Molecular biology, epidemiology, and pathogenesis of progressive multifocal leukoencephalopathy, the JC virus-induced demyelinating disease of the human brain
-
87 Ferenczy, M.W., et al. Molecular biology, epidemiology, and pathogenesis of progressive multifocal leukoencephalopathy, the JC virus-induced demyelinating disease of the human brain. Clin. Microbiol. Rev. 25 (2012), 471–506.
-
(2012)
Clin. Microbiol. Rev.
, vol.25
, pp. 471-506
-
-
Ferenczy, M.W.1
-
88
-
-
67849099661
-
Testing the neurovascular hypothesis of Alzheimer's disease: LRP-1 antisense reduces blood–brain barrier clearance, increases brain levels of amyloid-beta protein, and impairs cognition
-
88 Jaeger, L.B., et al. Testing the neurovascular hypothesis of Alzheimer's disease: LRP-1 antisense reduces blood–brain barrier clearance, increases brain levels of amyloid-beta protein, and impairs cognition. J. Alzheimers Dis. 17 (2009), 553–570.
-
(2009)
J. Alzheimers Dis.
, vol.17
, pp. 553-570
-
-
Jaeger, L.B.1
-
89
-
-
42549141204
-
Roles of neural stem progenitor cells in cytomegalovirus infection of the brain in mouse models
-
89 Tsutsui, Y., et al. Roles of neural stem progenitor cells in cytomegalovirus infection of the brain in mouse models. Pathol. Int. 58 (2008), 257–267.
-
(2008)
Pathol. Int.
, vol.58
, pp. 257-267
-
-
Tsutsui, Y.1
-
90
-
-
0025877134
-
Breakdown of the blood–brain barrier during dengue virus infection of mice
-
90 Chaturvedi, U.C., et al. Breakdown of the blood–brain barrier during dengue virus infection of mice. J. Gen. Virol. 72 (1991), 859–866.
-
(1991)
J. Gen. Virol.
, vol.72
, pp. 859-866
-
-
Chaturvedi, U.C.1
-
91
-
-
0038459051
-
The pathogenesis of spinal cord involvement in dengue virus infection
-
91 An, J., et al. The pathogenesis of spinal cord involvement in dengue virus infection. Virchows Arch. 442 (2003), 472–481.
-
(2003)
Virchows Arch.
, vol.442
, pp. 472-481
-
-
An, J.1
-
92
-
-
84894039546
-
Molecular mechanisms of varicella zoster virus pathogenesis
-
92 Zerboni, L., et al. Molecular mechanisms of varicella zoster virus pathogenesis. Nat. Rev. Microbiol. 12 (2014), 197–210.
-
(2014)
Nat. Rev. Microbiol.
, vol.12
, pp. 197-210
-
-
Zerboni, L.1
-
93
-
-
84861126381
-
West Nile virus-induced disruption of the blood–brain barrier in mice is characterized by the degradation of the junctional complex proteins and increase in multiple matrix metalloproteinases
-
93 Roe, K., et al. West Nile virus-induced disruption of the blood–brain barrier in mice is characterized by the degradation of the junctional complex proteins and increase in multiple matrix metalloproteinases. J. Gen.Virol. 93 (2012), 1193–1203.
-
(2012)
J. Gen.Virol.
, vol.93
, pp. 1193-1203
-
-
Roe, K.1
-
94
-
-
84969960228
-
Zika virus infection during pregnancy in mice causes placental damage and fetal demise
-
94 Miner, J.J., et al. Zika virus infection during pregnancy in mice causes placental damage and fetal demise. Cell 165 (2016), 1081–1091.
-
(2016)
Cell
, vol.165
, pp. 1081-1091
-
-
Miner, J.J.1
-
95
-
-
84970023750
-
Zika virus disrupts neural progenitor development and leads to microcephaly in mice
-
95 Li, C., et al. Zika virus disrupts neural progenitor development and leads to microcephaly in mice. Cell Stem Cell 19 (2016), 120–126.
-
(2016)
Cell Stem Cell
, vol.19
, pp. 120-126
-
-
Li, C.1
-
96
-
-
84971557656
-
Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3
-
96 Dang, J., et al. Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3. Cell Stem Cell 19 (2016), 258–265.
-
(2016)
Cell Stem Cell
, vol.19
, pp. 258-265
-
-
Dang, J.1
-
97
-
-
84967328422
-
Zika virus infects human cortical neural progenitors and attenuates their growth
-
97 Tang, H., et al. Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell 18 (2016), 587–590.
-
(2016)
Cell Stem Cell
, vol.18
, pp. 587-590
-
-
Tang, H.1
-
98
-
-
84962798328
-
Zika virus impairs growth in human neurospheres and brain organoids
-
98 Garcez, P.P., et al. Zika virus impairs growth in human neurospheres and brain organoids. Science 352 (2016), 816–818.
-
(2016)
Science
, vol.352
, pp. 816-818
-
-
Garcez, P.P.1
-
99
-
-
84964619895
-
Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure
-
99 Qian, X., et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165 (2016), 1238–1254.
-
(2016)
Cell
, vol.165
, pp. 1238-1254
-
-
Qian, X.1
-
100
-
-
84983748570
-
Vaginal exposure to Zika virus during pregnancy leads to fetal brain infection
-
100 Yockey, L.J., et al. Vaginal exposure to Zika virus during pregnancy leads to fetal brain infection. Cell 166 (2016), 1247–1256.
-
(2016)
Cell
, vol.166
, pp. 1247-1256
-
-
Yockey, L.J.1
-
101
-
-
84995609058
-
Zika virus infects neural progenitors in the adult mouse brain and alters proliferation
-
101 Li, H., et al. Zika virus infects neural progenitors in the adult mouse brain and alters proliferation. Cell Stem Cell 19 (2016), 593–598.
-
(2016)
Cell Stem Cell
, vol.19
, pp. 593-598
-
-
Li, H.1
-
102
-
-
84994098465
-
Zika virus disrupts phospho-TBK1 localization and mitosis in human neuroepithelial stem cells and radial glia
-
102 Onorati, M., et al. Zika virus disrupts phospho-TBK1 localization and mitosis in human neuroepithelial stem cells and radial glia. Cell Rep. 16 (2016), 2576–2592.
-
(2016)
Cell Rep.
, vol.16
, pp. 2576-2592
-
-
Onorati, M.1
|