메뉴 건너뛰기




Volumn 23, Issue 3, 2017, Pages 227-245

Immune Regulation of Antibody Access to Neuronal Tissues

Author keywords

[No Author keywords available]

Indexed keywords

ANTIBODY; IMMUNOMODULATING AGENT; INTERFERON; PROTEIN TYROSINE KINASE;

EID: 85011588269     PISSN: 14714914     EISSN: 1471499X     Source Type: Journal    
DOI: 10.1016/j.molmed.2017.01.004     Document Type: Review
Times cited : (47)

References (102)
  • 1
    • 84992735645 scopus 로고    scopus 로고
    • Modulating antibody functionality in infectious disease and vaccination
    • 1 Gunn, B.M., Alter, G., Modulating antibody functionality in infectious disease and vaccination. Trends Mol. Med. 22 (2016), 969–982.
    • (2016) Trends Mol. Med. , vol.22 , pp. 969-982
    • Gunn, B.M.1    Alter, G.2
  • 2
    • 84969857239 scopus 로고    scopus 로고
    • Exploiting mucosal immunity for antiviral vaccines
    • 2 Iwasaki, A., Exploiting mucosal immunity for antiviral vaccines. Annu. Rev. Immunol. 34 (2016), 575–608.
    • (2016) Annu. Rev. Immunol. , vol.34 , pp. 575-608
    • Iwasaki, A.1
  • 3
    • 34548229364 scopus 로고    scopus 로고
    • FcRn: the neonatal Fc receptor comes of age
    • 3 Roopenian, D.C., Akilesh, S., FcRn: the neonatal Fc receptor comes of age. Nat. Rev. Immunol. 7 (2007), 715–725.
    • (2007) Nat. Rev. Immunol. , vol.7 , pp. 715-725
    • Roopenian, D.C.1    Akilesh, S.2
  • 4
    • 0028061347 scopus 로고
    • A major histocompatibility complex class I-like Fc receptor cloned from human placenta: possible role in transfer of immunoglobulin G from mother to fetus
    • 4 Story, C.M., et al. A major histocompatibility complex class I-like Fc receptor cloned from human placenta: possible role in transfer of immunoglobulin G from mother to fetus. J. Exp. Med. 180 (1994), 2377–2381.
    • (1994) J. Exp. Med. , vol.180 , pp. 2377-2381
    • Story, C.M.1
  • 5
    • 84947901598 scopus 로고    scopus 로고
    • Establishment and dysfunction of the blood–brain barrier
    • 5 Zhao, Z., et al. Establishment and dysfunction of the blood–brain barrier. Cell 163 (2015), 1064–1078.
    • (2015) Cell , vol.163 , pp. 1064-1078
    • Zhao, Z.1
  • 6
    • 84959020187 scopus 로고    scopus 로고
    • Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid
    • 6 Schlager, C., et al. Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature 530 (2016), 349–353.
    • (2016) Nature , vol.530 , pp. 349-353
    • Schlager, C.1
  • 7
    • 84863012054 scopus 로고    scopus 로고
    • Regional neural activation defines a gateway for autoreactive T cells to cross the blood–brain barrier
    • 7 Arima, Y., et al. Regional neural activation defines a gateway for autoreactive T cells to cross the blood–brain barrier. Cell 148 (2012), 447–457.
    • (2012) Cell , vol.148 , pp. 447-457
    • Arima, Y.1
  • 8
    • 84938929121 scopus 로고    scopus 로고
    • A pain-mediated neural signal induces relapse in murine autoimmune encephalomyelitis, a multiple sclerosis model
    • 8 Arima, Y., et al. A pain-mediated neural signal induces relapse in murine autoimmune encephalomyelitis, a multiple sclerosis model. Elife, 4, 2015, 08733.
    • (2015) Elife , vol.4 , pp. 08733
    • Arima, Y.1
  • 9
    • 65249175159 scopus 로고    scopus 로고
    • C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE
    • 9 Reboldi, A., et al. C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat. Immunol. 10 (2009), 514–523.
    • (2009) Nat. Immunol. , vol.10 , pp. 514-523
    • Reboldi, A.1
  • 11
    • 84985896386 scopus 로고    scopus 로고
    • The antibody aducanumab reduces Abeta plaques in Alzheimer's disease
    • 11 Sevigny, J., et al. The antibody aducanumab reduces Abeta plaques in Alzheimer's disease. Nature 537 (2016), 50–56.
    • (2016) Nature , vol.537 , pp. 50-56
    • Sevigny, J.1
  • 12
    • 84869885852 scopus 로고    scopus 로고
    • Capture, crawl, cross: the T cell code to breach the blood–brain barriers
    • 12 Engelhardt, B., Ransohoff, R.M., Capture, crawl, cross: the T cell code to breach the blood–brain barriers. Trends Immunol. 33 (2012), 579–589.
    • (2012) Trends Immunol. , vol.33 , pp. 579-589
    • Engelhardt, B.1    Ransohoff, R.M.2
  • 13
    • 79957764148 scopus 로고    scopus 로고
    • The blood–nerve barrier: structure and functional significance
    • 13 Weerasuriya, A., Mizisin, A.P., The blood–nerve barrier: structure and functional significance. Methods Mol. Biol. 686 (2011), 149–173.
    • (2011) Methods Mol. Biol. , vol.686 , pp. 149-173
    • Weerasuriya, A.1    Mizisin, A.P.2
  • 14
    • 7044272358 scopus 로고    scopus 로고
    • Mechanisms and roles of axon–Schwann cell interactions
    • 14 Corfas, G., et al. Mechanisms and roles of axon–Schwann cell interactions. J. Neurosci. 24 (2004), 9250–9260.
    • (2004) J. Neurosci. , vol.24 , pp. 9250-9260
    • Corfas, G.1
  • 15
    • 84889872057 scopus 로고    scopus 로고
    • Development, maintenance and disruption of the blood–brain barrier
    • 15 Obermeier, B., et al. Development, maintenance and disruption of the blood–brain barrier. Nat. Med. 19 (2013), 1584–1596.
    • (2013) Nat. Med. , vol.19 , pp. 1584-1596
    • Obermeier, B.1
  • 16
    • 78649487239 scopus 로고    scopus 로고
    • Pericytes are required for blood–brain barrier integrity during embryogenesis
    • 16 Daneman, R., et al. Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature 468 (2010), 562–566.
    • (2010) Nature , vol.468 , pp. 562-566
    • Daneman, R.1
  • 17
    • 84901269974 scopus 로고    scopus 로고
    • Mfsd2a is critical for the formation and function of the blood–brain barrier
    • 17 Ben-Zvi, A., et al. Mfsd2a is critical for the formation and function of the blood–brain barrier. Nature 509 (2014), 507–511.
    • (2014) Nature , vol.509 , pp. 507-511
    • Ben-Zvi, A.1
  • 18
    • 84865958935 scopus 로고    scopus 로고
    • Barrier mechanisms in the developing brain
    • 18 Saunders, N.R., et al. Barrier mechanisms in the developing brain. Front. Pharmacol., 3, 2012, 46.
    • (2012) Front. Pharmacol. , vol.3 , pp. 46
    • Saunders, N.R.1
  • 19
    • 84911884131 scopus 로고    scopus 로고
    • The gut microbiota influences blood–brain barrier permeability in mice
    • 19 Braniste, V., et al. The gut microbiota influences blood–brain barrier permeability in mice. Sci. Transl. Med., 6, 2014, 263ra158.
    • (2014) Sci. Transl. Med. , vol.6 , pp. 263ra158
    • Braniste, V.1
  • 20
    • 84938819728 scopus 로고    scopus 로고
    • The blood–brain barrier endothelium: a target for pro-inflammatory cytokines
    • 20 Rochfort, K.D., Cummins, P.M., The blood–brain barrier endothelium: a target for pro-inflammatory cytokines. Biochem. Soc. Trans. 43 (2015), 702–706.
    • (2015) Biochem. Soc. Trans. , vol.43 , pp. 702-706
    • Rochfort, K.D.1    Cummins, P.M.2
  • 21
    • 84908428514 scopus 로고    scopus 로고
    • Viral pathogen-associated molecular patterns regulate blood–brain barrier integrity via competing innate cytokine signals
    • 21 Daniels, B.P., et al. Viral pathogen-associated molecular patterns regulate blood–brain barrier integrity via competing innate cytokine signals. MBio 5 (2014), 14–e01476.
    • (2014) MBio , vol.5 , pp. 14-e01476
    • Daniels, B.P.1
  • 22
    • 84928659307 scopus 로고    scopus 로고
    • Interferon-lambda restricts West Nile virus neuroinvasion by tightening the blood–brain barrier
    • 22 Lazear, H.M., et al. Interferon-lambda restricts West Nile virus neuroinvasion by tightening the blood–brain barrier. Sci. Transl. Med., 7, 2015, 284ra59.
    • (2015) Sci. Transl. Med. , vol.7 , pp. 284ra59
    • Lazear, H.M.1
  • 23
    • 84946956225 scopus 로고    scopus 로고
    • The TAM receptor Mertk protects against neuroinvasive viral infection by maintaining blood–brain barrier integrity
    • 23 Miner, J.J., et al. The TAM receptor Mertk protects against neuroinvasive viral infection by maintaining blood–brain barrier integrity. Nat. Med. 21 (2015), 1464–1472.
    • (2015) Nat. Med. , vol.21 , pp. 1464-1472
    • Miner, J.J.1
  • 24
    • 77954747250 scopus 로고    scopus 로고
    • Protein S controls hypoxic/ischemic blood–brain barrier disruption through the TAM receptor Tyro3 and sphingosine 1-phosphate receptor
    • 24 Zhu, D., et al. Protein S controls hypoxic/ischemic blood–brain barrier disruption through the TAM receptor Tyro3 and sphingosine 1-phosphate receptor. Blood 115 (2010), 4963–4972.
    • (2010) Blood , vol.115 , pp. 4963-4972
    • Zhu, D.1
  • 25
    • 84859717206 scopus 로고    scopus 로고
    • Innate immunity in the central nervous system
    • 25 Ransohoff, R.M., Brown, M.A., Innate immunity in the central nervous system. J. Clin. Invest. 122 (2012), 1164–1171.
    • (2012) J. Clin. Invest. , vol.122 , pp. 1164-1171
    • Ransohoff, R.M.1    Brown, M.A.2
  • 26
    • 82955187705 scopus 로고    scopus 로고
    • Interferon-stimulated genes and their antiviral effector functions
    • 26 Schoggins, J.W., Rice, C.M., Interferon-stimulated genes and their antiviral effector functions. Curr. Opin. Virol. 1 (2011), 519–525.
    • (2011) Curr. Opin. Virol. , vol.1 , pp. 519-525
    • Schoggins, J.W.1    Rice, C.M.2
  • 27
    • 0042838032 scopus 로고    scopus 로고
    • Interferon-beta prevents cytokine-induced neutrophil infiltration and attenuates blood–brain barrier disruption
    • 1060-1-69
    • 27 Veldhuis, W.B., et al. Interferon-beta prevents cytokine-induced neutrophil infiltration and attenuates blood–brain barrier disruption. J. Cereb. Blood Flow Metab., 23, 2003 1060-1-69.
    • (2003) J. Cereb. Blood Flow Metab. , vol.23
    • Veldhuis, W.B.1
  • 28
    • 42649140235 scopus 로고    scopus 로고
    • Immunobiology of the TAM receptors
    • 28 Lemke, G., Rothlin, C.V., Immunobiology of the TAM receptors. Nat. Rev. Immunol. 8 (2008), 327–336.
    • (2008) Nat. Rev. Immunol. , vol.8 , pp. 327-336
    • Lemke, G.1    Rothlin, C.V.2
  • 29
    • 84992570470 scopus 로고    scopus 로고
    • Differential TAM receptor–ligand–phospholipid interactions delimit differential TAM bioactivities
    • 29 Lew, E.D., et al. Differential TAM receptor–ligand–phospholipid interactions delimit differential TAM bioactivities. Elife, 3, 2014, 03385.
    • (2014) Elife , vol.3 , pp. 03385
    • Lew, E.D.1
  • 30
    • 36849033963 scopus 로고    scopus 로고
    • TAM receptors are pleiotropic inhibitors of the innate immune response
    • 30 Rothlin, C.V., et al. TAM receptors are pleiotropic inhibitors of the innate immune response. Cell 131 (2007), 1124–1136.
    • (2007) Cell , vol.131 , pp. 1124-1136
    • Rothlin, C.V.1
  • 31
    • 79951563979 scopus 로고    scopus 로고
    • Polymorphisms in the receptor tyrosine kinase MERTK gene are associated with multiple sclerosis susceptibility
    • 31 Ma, G.Z., et al. Polymorphisms in the receptor tyrosine kinase MERTK gene are associated with multiple sclerosis susceptibility. PLoS One, 6, 2011, e16964.
    • (2011) PLoS One , vol.6 , pp. e16964
    • Ma, G.Z.1
  • 32
    • 80051684615 scopus 로고    scopus 로고
    • Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis
    • 32 Sawcer, S., et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476 (2011), 214–219.
    • (2011) Nature , vol.476 , pp. 214-219
    • Sawcer, S.1
  • 33
    • 67649881102 scopus 로고    scopus 로고
    • Australia and New Zealand Multiple Sclerosis Genetics Consortium (ANZgene), Genome-wide association study identifies new multiple sclerosis susceptibility loci on chromosomes 12 and 20
    • 33 Australia and New Zealand Multiple Sclerosis Genetics Consortium (ANZgene), Genome-wide association study identifies new multiple sclerosis susceptibility loci on chromosomes 12 and 20. Nat. Genet. 41 (2009), 824–828.
    • (2009) Nat. Genet. , vol.41 , pp. 824-828
  • 34
    • 20444481707 scopus 로고    scopus 로고
    • Interferon-gamma induces internalization of epithelial tight junction proteins via a macropinocytosis-like process
    • 34 Bruewer, M., et al. Interferon-gamma induces internalization of epithelial tight junction proteins via a macropinocytosis-like process. FASEB J. 19 (2005), 923–933.
    • (2005) FASEB J. , vol.19 , pp. 923-933
    • Bruewer, M.1
  • 35
    • 26244442836 scopus 로고    scopus 로고
    • Mechanism of IFN-gamma-induced endocytosis of tight junction proteins: myosin II-dependent vacuolarization of the apical plasma membrane
    • 35 Utech, M., et al. Mechanism of IFN-gamma-induced endocytosis of tight junction proteins: myosin II-dependent vacuolarization of the apical plasma membrane. Mol. Biol. Cell 16 (2005), 5040–5052.
    • (2005) Mol. Biol. Cell , vol.16 , pp. 5040-5052
    • Utech, M.1
  • 36
    • 34948909646 scopus 로고    scopus 로고
    • Human TH17 lymphocytes promote blood–brain barrier disruption and central nervous system inflammation
    • 36 Kebir, H., et al. Human TH17 lymphocytes promote blood–brain barrier disruption and central nervous system inflammation. Nat. Med. 13 (2007), 1173–1175.
    • (2007) Nat. Med. , vol.13 , pp. 1173-1175
    • Kebir, H.1
  • 37
    • 0034123924 scopus 로고    scopus 로고
    • Differential adhesion molecule requirements for immune surveillance and inflammatory recruitment
    • 37 Carrithers, M.D., et al. Differential adhesion molecule requirements for immune surveillance and inflammatory recruitment. Brain 123 (2000), 1092–1101.
    • (2000) Brain , vol.123 , pp. 1092-1101
    • Carrithers, M.D.1
  • 38
    • 0027982876 scopus 로고
    • Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm
    • 38 Springer, T.A., Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76 (1994), 301–314.
    • (1994) Cell , vol.76 , pp. 301-314
    • Springer, T.A.1
  • 39
    • 34748914299 scopus 로고    scopus 로고
    • Evolving functions of endothelial cells in inflammation
    • 39 Pober, J.S., Sessa, W.C., Evolving functions of endothelial cells in inflammation. Nat. Rev. Immunol. 7 (2007), 803–815.
    • (2007) Nat. Rev. Immunol. , vol.7 , pp. 803-815
    • Pober, J.S.1    Sessa, W.C.2
  • 40
    • 84897879852 scopus 로고    scopus 로고
    • How endothelial cells regulate transmigration of leukocytes in the inflammatory response
    • 40 Muller, W.A., How endothelial cells regulate transmigration of leukocytes in the inflammatory response. Am. J. Pathol. 184 (2014), 886–896.
    • (2014) Am. J. Pathol. , vol.184 , pp. 886-896
    • Muller, W.A.1
  • 41
    • 0142259710 scopus 로고    scopus 로고
    • Three or more routes for leukocyte migration into the central nervous system
    • 41 Ransohoff, R.M., et al. Three or more routes for leukocyte migration into the central nervous system. Nat. Rev. Immunol. 3 (2003), 569–581.
    • (2003) Nat. Rev. Immunol. , vol.3 , pp. 569-581
    • Ransohoff, R.M.1
  • 42
    • 0037816192 scopus 로고    scopus 로고
    • + T cells: evidence for trafficking through choroid plexus and meninges via P-selectin
    • + T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc. Natl. Acad. Sci. U. S. A. 100 (2003), 8389–8394.
    • (2003) Proc. Natl. Acad. Sci. U. S. A. , vol.100 , pp. 8389-8394
    • Kivisakk, P.1
  • 43
    • 0027529932 scopus 로고
    • + T cells is required for their entry into brain parenchyma
    • + T cells is required for their entry into brain parenchyma. J. Exp. Med. 177 (1993), 57–68.
    • (1993) J. Exp. Med. , vol.177 , pp. 57-68
    • Baron, J.L.1
  • 44
    • 0028220264 scopus 로고
    • The pathogenesis of adoptive murine autoimmune diabetes requires an interaction between alpha 4-integrins and vascular cell adhesion molecule-1
    • 44 Baron, J.L., et al. The pathogenesis of adoptive murine autoimmune diabetes requires an interaction between alpha 4-integrins and vascular cell adhesion molecule-1. J. Clin. Invest. 93 (1994), 1700–1708.
    • (1994) J. Clin. Invest. , vol.93 , pp. 1700-1708
    • Baron, J.L.1
  • 45
    • 0032981648 scopus 로고    scopus 로고
    • Adhesion molecule expression and regulation on cells of the central nervous system
    • 45 Lee, S.J., Benveniste, E.N., Adhesion molecule expression and regulation on cells of the central nervous system. J. Neuroimmunol. 98 (1999), 77–88.
    • (1999) J. Neuroimmunol. , vol.98 , pp. 77-88
    • Lee, S.J.1    Benveniste, E.N.2
  • 46
    • 0023931606 scopus 로고
    • Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein
    • 46 Linington, C., et al. Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein. Am. J. Pathol. 130 (1988), 443–454.
    • (1988) Am. J. Pathol. , vol.130 , pp. 443-454
    • Linington, C.1
  • 47
    • 0027990803 scopus 로고
    • Experimental autoimmune panencephalitis and uveoretinitis transferred to the Lewis rat by T lymphocytes specific for the S100 beta molecule, a calcium binding protein of astroglia
    • 47 Kojima, K., et al. Experimental autoimmune panencephalitis and uveoretinitis transferred to the Lewis rat by T lymphocytes specific for the S100 beta molecule, a calcium binding protein of astroglia. J. Exp. Med. 180 (1994), 817–829.
    • (1994) J. Exp. Med. , vol.180 , pp. 817-829
    • Kojima, K.1
  • 48
    • 0032764920 scopus 로고    scopus 로고
    • Activated non-neural specific T cells open the blood–brain barrier to circulating antibodies
    • 48 Westland, K.W., et al. Activated non-neural specific T cells open the blood–brain barrier to circulating antibodies. Brain 122 (1999), 1283–1291.
    • (1999) Brain , vol.122 , pp. 1283-1291
    • Westland, K.W.1
  • 49
    • 84946949853 scopus 로고    scopus 로고
    • Mechanisms of restriction of viral neuroinvasion at the blood–brain barrier
    • 49 Miner, J.J., Diamond, M.S., Mechanisms of restriction of viral neuroinvasion at the blood–brain barrier. Curr. Opin. Immunol. 38 (2016), 18–23.
    • (2016) Curr. Opin. Immunol. , vol.38 , pp. 18-23
    • Miner, J.J.1    Diamond, M.S.2
  • 50
    • 84876373181 scopus 로고    scopus 로고
    • Virus infections in the nervous system
    • 50 Koyuncu, O.O., et al. Virus infections in the nervous system. Cell Host Microbe 13 (2013), 379–393.
    • (2013) Cell Host Microbe , vol.13 , pp. 379-393
    • Koyuncu, O.O.1
  • 51
    • 55549129268 scopus 로고    scopus 로고
    • Measles virus-induced block of transendothelial migration of T lymphocytes and infection-mediated virus spread across endothelial cell barriers
    • 51 Dittmar, S., et al. Measles virus-induced block of transendothelial migration of T lymphocytes and infection-mediated virus spread across endothelial cell barriers. J. Virol. 82 (2008), 11273–11282.
    • (2008) J. Virol. , vol.82 , pp. 11273-11282
    • Dittmar, S.1
  • 52
    • 0029060949 scopus 로고
    • The earliest events in vesicular stomatitis virus infection of the murine olfactory neuroepithelium and entry of the central nervous system
    • 52 Plakhov, I.V., et al. The earliest events in vesicular stomatitis virus infection of the murine olfactory neuroepithelium and entry of the central nervous system. Virology 209 (1995), 257–262.
    • (1995) Virology , vol.209 , pp. 257-262
    • Plakhov, I.V.1
  • 53
    • 60949114530 scopus 로고    scopus 로고
    • West Nile virus infection modulates human brain microvascular endothelial cells tight junction proteins and cell adhesion molecules: transmigration across the in vitro blood–brain barrier
    • 53 Verma, S., et al. West Nile virus infection modulates human brain microvascular endothelial cells tight junction proteins and cell adhesion molecules: transmigration across the in vitro blood–brain barrier. Virology 385 (2009), 425–433.
    • (2009) Virology , vol.385 , pp. 425-433
    • Verma, S.1
  • 54
    • 49649102390 scopus 로고    scopus 로고
    • Drak2 contributes to West Nile virus entry into the brain and lethal encephalitis
    • 54 Wang, S., et al. Drak2 contributes to West Nile virus entry into the brain and lethal encephalitis. J. Immunol. 181 (2008), 2084–2091.
    • (2008) J. Immunol. , vol.181 , pp. 2084-2091
    • Wang, S.1
  • 55
    • 84928547715 scopus 로고    scopus 로고
    • Viral infection of the central nervous system and neuroinflammation precede blood–brain barrier disruption during Japanese encephalitis virus Infection
    • 55 Li, F., et al. Viral infection of the central nervous system and neuroinflammation precede blood–brain barrier disruption during Japanese encephalitis virus Infection. J. Virol. 89 (2015), 5602–5614.
    • (2015) J. Virol. , vol.89 , pp. 5602-5614
    • Li, F.1
  • 56
    • 0015581906 scopus 로고
    • Pathogenesis of herpetic neuritis and ganglionitis in mice: evidence for intra-axonal transport of infection
    • 56 Cook, M.L., Stevens, J.G., Pathogenesis of herpetic neuritis and ganglionitis in mice: evidence for intra-axonal transport of infection. Infect. Immun. 7 (1973), 272–288.
    • (1973) Infect. Immun. , vol.7 , pp. 272-288
    • Cook, M.L.1    Stevens, J.G.2
  • 57
    • 29144442900 scopus 로고    scopus 로고
    • One hundred years of poliovirus pathogenesis
    • 57 Racaniello, V.R., One hundred years of poliovirus pathogenesis. Virology 344 (2006), 9–16.
    • (2006) Virology , vol.344 , pp. 9-16
    • Racaniello, V.R.1
  • 58
    • 39649109256 scopus 로고    scopus 로고
    • Herpes simplex: insights on pathogenesis and possible vaccines
    • 58 Koelle, D.M., Corey, L., Herpes simplex: insights on pathogenesis and possible vaccines. Annu. Rev. Med. 59 (2008), 381–395.
    • (2008) Annu. Rev. Med. , vol.59 , pp. 381-395
    • Koelle, D.M.1    Corey, L.2
  • 59
    • 0028107309 scopus 로고
    • Passive immunization of the vagina protects mice against vaginal transmission of genital herpes infections
    • 59 Whaley, K.J., et al. Passive immunization of the vagina protects mice against vaginal transmission of genital herpes infections. J. Infect. Dis. 169 (1994), 647–649.
    • (1994) J. Infect. Dis. , vol.169 , pp. 647-649
    • Whaley, K.J.1
  • 60
    • 0029670578 scopus 로고    scopus 로고
    • Controlled release of antibodies for long-term topical passive immunoprotection of female mice against genital herpes
    • 60 Sherwood, J.K., et al. Controlled release of antibodies for long-term topical passive immunoprotection of female mice against genital herpes. Nat. Biotechnol. 14 (1996), 468–471.
    • (1996) Nat. Biotechnol. , vol.14 , pp. 468-471
    • Sherwood, J.K.1
  • 61
    • 0025203093 scopus 로고
    • Comparative evaluation of immunization with live attenuated and enhanced-potency inactivated trivalent poliovirus vaccines in childhood: systemic and local immune responses
    • 61 Faden, H., et al. Comparative evaluation of immunization with live attenuated and enhanced-potency inactivated trivalent poliovirus vaccines in childhood: systemic and local immune responses. J. Infect. Dis. 162 (1990), 1291–1297.
    • (1990) J. Infect. Dis. , vol.162 , pp. 1291-1297
    • Faden, H.1
  • 62
    • 0035155851 scopus 로고    scopus 로고
    • Vaccine-induced serum immunoglobin contributes to protection from herpes simplex virus type 2 genital infection in the presence of immune T cells
    • 62 Morrison, L.A., et al. Vaccine-induced serum immunoglobin contributes to protection from herpes simplex virus type 2 genital infection in the presence of immune T cells. J. Virol. 75 (2001), 1195–1204.
    • (2001) J. Virol. , vol.75 , pp. 1195-1204
    • Morrison, L.A.1
  • 63
    • 84911426229 scopus 로고    scopus 로고
    • Vaginal memory T cells induced by intranasal vaccination are critical for protective T cell recruitment and prevention of genital HSV-2 disease
    • 63 Sato, A., et al. Vaginal memory T cells induced by intranasal vaccination are critical for protective T cell recruitment and prevention of genital HSV-2 disease. J. Virol. 88 (2014), 13699–13708.
    • (2014) J. Virol. , vol.88 , pp. 13699-13708
    • Sato, A.1
  • 64
    • 0034036778 scopus 로고    scopus 로고
    • Interferon-gamma up-regulates intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 and recruits lymphocytes into the vagina of immune mice challenged with herpes simplex virus-2
    • 64 Parr, M.B., Parr, E.L., Interferon-gamma up-regulates intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 and recruits lymphocytes into the vagina of immune mice challenged with herpes simplex virus-2. Immunology 99 (2000), 540–545.
    • (2000) Immunology , vol.99 , pp. 540-545
    • Parr, M.B.1    Parr, E.L.2
  • 65
    • 0031957754 scopus 로고    scopus 로고
    • Collaboration of antibody and inflammation in clearance of rabies virus from the central nervous system
    • 65 Hooper, D.C., et al. Collaboration of antibody and inflammation in clearance of rabies virus from the central nervous system. J. Virol. 72 (1998), 3711–3719.
    • (1998) J. Virol. , vol.72 , pp. 3711-3719
    • Hooper, D.C.1
  • 66
    • 84897537829 scopus 로고    scopus 로고
    • Enhancement of blood–brain barrier permeability and reduction of tight junction protein expression are modulated by chemokines/cytokines induced by rabies virus infection
    • 66 Chai, Q., et al. Enhancement of blood–brain barrier permeability and reduction of tight junction protein expression are modulated by chemokines/cytokines induced by rabies virus infection. J. Virol. 88 (2014), 4698–4710.
    • (2014) J. Virol. , vol.88 , pp. 4698-4710
    • Chai, Q.1
  • 67
    • 84924813906 scopus 로고    scopus 로고
    • Role of the blood–brain barrier in multiple sclerosis
    • 67 Ortiz, G.G., et al. Role of the blood–brain barrier in multiple sclerosis. Arch. Med. Res. 45 (2014), 687–697.
    • (2014) Arch. Med. Res. , vol.45 , pp. 687-697
    • Ortiz, G.G.1
  • 68
    • 0025351441 scopus 로고
    • Mechanisms of autoimmune neuropathies
    • 68 Brosnan, C.F., et al. Mechanisms of autoimmune neuropathies. Ann. Neurol. 27:Suppl (1990), S75–79.
    • (1990) Ann. Neurol. , vol.27 , pp. S75-79
    • Brosnan, C.F.1
  • 69
    • 84905717047 scopus 로고    scopus 로고
    • Guillain–Barré syndrome: pathogenesis, diagnosis, treatment and prognosis
    • 69 van den Berg, B., et al. Guillain–Barré syndrome: pathogenesis, diagnosis, treatment and prognosis. Nat. Rev. Neurol. 10 (2014), 469–482.
    • (2014) Nat. Rev. Neurol. , vol.10 , pp. 469-482
    • van den Berg, B.1
  • 70
    • 13944253325 scopus 로고    scopus 로고
    • Infectious causes of multiple sclerosis
    • 70 Gilden, D.H., Infectious causes of multiple sclerosis. Lancet Neurol. 4 (2005), 195–202.
    • (2005) Lancet Neurol. , vol.4 , pp. 195-202
    • Gilden, D.H.1
  • 71
    • 84949252174 scopus 로고    scopus 로고
    • Single-cell genomics unveils critical regulators of Th17 cell pathogenicity
    • 71 Gaublomme, J.T., et al. Single-cell genomics unveils critical regulators of Th17 cell pathogenicity. Cell 163 (2015), 1400–1412.
    • (2015) Cell , vol.163 , pp. 1400-1412
    • Gaublomme, J.T.1
  • 72
    • 33644584352 scopus 로고    scopus 로고
    • A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis
    • 72 Polman, C.H., et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med. 354 (2006), 899–910.
    • (2006) N. Engl. J. Med. , vol.354 , pp. 899-910
    • Polman, C.H.1
  • 73
    • 84861022041 scopus 로고    scopus 로고
    • Risk of natalizumab-associated progressive multifocal leukoencephalopathy
    • 73 Bloomgren, G., et al. Risk of natalizumab-associated progressive multifocal leukoencephalopathy. N. Engl. J. Med. 366 (2012), 1870–1880.
    • (2012) N. Engl. J. Med. , vol.366 , pp. 1870-1880
    • Bloomgren, G.1
  • 74
    • 85002675978 scopus 로고    scopus 로고
    • B cells and antibodies in progressive multiple sclerosis: contribution to neurodegeneration and progression
    • 74 Fraussen, J., et al. B cells and antibodies in progressive multiple sclerosis: contribution to neurodegeneration and progression. Autoimmun. Rev. 15 (2016), 896–899.
    • (2016) Autoimmun. Rev. , vol.15 , pp. 896-899
    • Fraussen, J.1
  • 75
    • 84905681937 scopus 로고    scopus 로고
    • Diagnosis and treatment of chronic acquired demyelinating polyneuropathies
    • 75 Latov, N., Diagnosis and treatment of chronic acquired demyelinating polyneuropathies. Nat. Rev. Neurol. 10 (2014), 435–446.
    • (2014) Nat. Rev. Neurol. , vol.10 , pp. 435-446
    • Latov, N.1
  • 76
    • 0037438494 scopus 로고    scopus 로고
    • Rituximab therapy for CNS lymphomas: targeting the leptomeningeal compartment
    • 76 Rubenstein, J.L., et al. Rituximab therapy for CNS lymphomas: targeting the leptomeningeal compartment. Blood 101 (2003), 466–468.
    • (2003) Blood , vol.101 , pp. 466-468
    • Rubenstein, J.L.1
  • 77
    • 84899019792 scopus 로고    scopus 로고
    • Amyloid-beta and tau: the trigger and bullet in Alzheimer disease pathogenesis
    • 77 Bloom, G.S., Amyloid-beta and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 71 (2014), 505–508.
    • (2014) JAMA Neurol. , vol.71 , pp. 505-508
    • Bloom, G.S.1
  • 78
    • 84945465570 scopus 로고    scopus 로고
    • A fresh perspective from immunologists and vaccine researchers: active vaccination strategies to prevent and reverse Alzheimer's disease
    • 78 Agadjanyan, M.G., et al. A fresh perspective from immunologists and vaccine researchers: active vaccination strategies to prevent and reverse Alzheimer's disease. Alzheimers Dement. 11 (2015), 1246–1259.
    • (2015) Alzheimers Dement. , vol.11 , pp. 1246-1259
    • Agadjanyan, M.G.1
  • 79
    • 0036780877 scopus 로고    scopus 로고
    • Amyloid-beta immunotherapy for Alzheimer's disease: the end of the beginning
    • 79 Schenk, D., Amyloid-beta immunotherapy for Alzheimer's disease: the end of the beginning. Nat. Rev. Neurosci. 3 (2002), 824–828.
    • (2002) Nat. Rev. Neurosci. , vol.3 , pp. 824-828
    • Schenk, D.1
  • 80
    • 0037393454 scopus 로고    scopus 로고
    • Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report
    • 80 Nicoll, J.A., et al. Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat. Med. 9 (2003), 448–452.
    • (2003) Nat. Med. , vol.9 , pp. 448-452
    • Nicoll, J.A.1
  • 81
    • 10744230547 scopus 로고    scopus 로고
    • Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization
    • 81 Orgogozo, J.M., et al. Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology 61 (2003), 46–54.
    • (2003) Neurology , vol.61 , pp. 46-54
    • Orgogozo, J.M.1
  • 82
    • 1042265187 scopus 로고    scopus 로고
    • Neuropathology and pathogenesis of encephalitis following amyloid-beta immunization in Alzheimer's disease
    • 82 Ferrer, I., et al. Neuropathology and pathogenesis of encephalitis following amyloid-beta immunization in Alzheimer's disease. Brain Pathol. 14 (2004), 11–20.
    • (2004) Brain Pathol. , vol.14 , pp. 11-20
    • Ferrer, I.1
  • 83
    • 84991744531 scopus 로고    scopus 로고
    • Active vaccines for Alzheimer disease treatment
    • 83 Sterner, R.M., et al. Active vaccines for Alzheimer disease treatment. J. Am. Med. Dir. Assoc. 17 (2016), 862.e11–862.e15.
    • (2016) J. Am. Med. Dir. Assoc. , vol.17 , pp. 862.e11-862.e15
    • Sterner, R.M.1
  • 84
    • 85007565787 scopus 로고    scopus 로고
    • Bapineuzumab for mild to moderate Alzheimer's disease in two global, randomized, phase 3 trials
    • 84 Vandenberghe, R., et al. Bapineuzumab for mild to moderate Alzheimer's disease in two global, randomized, phase 3 trials. Alzheimers Res. Ther., 8, 2016, 18.
    • (2016) Alzheimers Res. Ther. , vol.8 , pp. 18
    • Vandenberghe, R.1
  • 85
    • 84892695519 scopus 로고    scopus 로고
    • Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer's disease
    • 85 Salloway, S., et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer's disease. N. Engl. J. Med. 370 (2014), 322–333.
    • (2014) N. Engl. J. Med. , vol.370 , pp. 322-333
    • Salloway, S.1
  • 86
    • 84957838627 scopus 로고    scopus 로고
    • Phase 3 solanezumab trials: secondary outcomes in mild Alzheimer's disease patients
    • 86 Siemers, E.R., et al. Phase 3 solanezumab trials: secondary outcomes in mild Alzheimer's disease patients. Alzheimers Dement. 12 (2016), 110–120.
    • (2016) Alzheimers Dement. , vol.12 , pp. 110-120
    • Siemers, E.R.1
  • 87
    • 84863661393 scopus 로고    scopus 로고
    • Molecular biology, epidemiology, and pathogenesis of progressive multifocal leukoencephalopathy, the JC virus-induced demyelinating disease of the human brain
    • 87 Ferenczy, M.W., et al. Molecular biology, epidemiology, and pathogenesis of progressive multifocal leukoencephalopathy, the JC virus-induced demyelinating disease of the human brain. Clin. Microbiol. Rev. 25 (2012), 471–506.
    • (2012) Clin. Microbiol. Rev. , vol.25 , pp. 471-506
    • Ferenczy, M.W.1
  • 88
    • 67849099661 scopus 로고    scopus 로고
    • Testing the neurovascular hypothesis of Alzheimer's disease: LRP-1 antisense reduces blood–brain barrier clearance, increases brain levels of amyloid-beta protein, and impairs cognition
    • 88 Jaeger, L.B., et al. Testing the neurovascular hypothesis of Alzheimer's disease: LRP-1 antisense reduces blood–brain barrier clearance, increases brain levels of amyloid-beta protein, and impairs cognition. J. Alzheimers Dis. 17 (2009), 553–570.
    • (2009) J. Alzheimers Dis. , vol.17 , pp. 553-570
    • Jaeger, L.B.1
  • 89
    • 42549141204 scopus 로고    scopus 로고
    • Roles of neural stem progenitor cells in cytomegalovirus infection of the brain in mouse models
    • 89 Tsutsui, Y., et al. Roles of neural stem progenitor cells in cytomegalovirus infection of the brain in mouse models. Pathol. Int. 58 (2008), 257–267.
    • (2008) Pathol. Int. , vol.58 , pp. 257-267
    • Tsutsui, Y.1
  • 90
    • 0025877134 scopus 로고
    • Breakdown of the blood–brain barrier during dengue virus infection of mice
    • 90 Chaturvedi, U.C., et al. Breakdown of the blood–brain barrier during dengue virus infection of mice. J. Gen. Virol. 72 (1991), 859–866.
    • (1991) J. Gen. Virol. , vol.72 , pp. 859-866
    • Chaturvedi, U.C.1
  • 91
    • 0038459051 scopus 로고    scopus 로고
    • The pathogenesis of spinal cord involvement in dengue virus infection
    • 91 An, J., et al. The pathogenesis of spinal cord involvement in dengue virus infection. Virchows Arch. 442 (2003), 472–481.
    • (2003) Virchows Arch. , vol.442 , pp. 472-481
    • An, J.1
  • 92
    • 84894039546 scopus 로고    scopus 로고
    • Molecular mechanisms of varicella zoster virus pathogenesis
    • 92 Zerboni, L., et al. Molecular mechanisms of varicella zoster virus pathogenesis. Nat. Rev. Microbiol. 12 (2014), 197–210.
    • (2014) Nat. Rev. Microbiol. , vol.12 , pp. 197-210
    • Zerboni, L.1
  • 93
    • 84861126381 scopus 로고    scopus 로고
    • West Nile virus-induced disruption of the blood–brain barrier in mice is characterized by the degradation of the junctional complex proteins and increase in multiple matrix metalloproteinases
    • 93 Roe, K., et al. West Nile virus-induced disruption of the blood–brain barrier in mice is characterized by the degradation of the junctional complex proteins and increase in multiple matrix metalloproteinases. J. Gen.Virol. 93 (2012), 1193–1203.
    • (2012) J. Gen.Virol. , vol.93 , pp. 1193-1203
    • Roe, K.1
  • 94
    • 84969960228 scopus 로고    scopus 로고
    • Zika virus infection during pregnancy in mice causes placental damage and fetal demise
    • 94 Miner, J.J., et al. Zika virus infection during pregnancy in mice causes placental damage and fetal demise. Cell 165 (2016), 1081–1091.
    • (2016) Cell , vol.165 , pp. 1081-1091
    • Miner, J.J.1
  • 95
    • 84970023750 scopus 로고    scopus 로고
    • Zika virus disrupts neural progenitor development and leads to microcephaly in mice
    • 95 Li, C., et al. Zika virus disrupts neural progenitor development and leads to microcephaly in mice. Cell Stem Cell 19 (2016), 120–126.
    • (2016) Cell Stem Cell , vol.19 , pp. 120-126
    • Li, C.1
  • 96
    • 84971557656 scopus 로고    scopus 로고
    • Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3
    • 96 Dang, J., et al. Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3. Cell Stem Cell 19 (2016), 258–265.
    • (2016) Cell Stem Cell , vol.19 , pp. 258-265
    • Dang, J.1
  • 97
    • 84967328422 scopus 로고    scopus 로고
    • Zika virus infects human cortical neural progenitors and attenuates their growth
    • 97 Tang, H., et al. Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell 18 (2016), 587–590.
    • (2016) Cell Stem Cell , vol.18 , pp. 587-590
    • Tang, H.1
  • 98
    • 84962798328 scopus 로고    scopus 로고
    • Zika virus impairs growth in human neurospheres and brain organoids
    • 98 Garcez, P.P., et al. Zika virus impairs growth in human neurospheres and brain organoids. Science 352 (2016), 816–818.
    • (2016) Science , vol.352 , pp. 816-818
    • Garcez, P.P.1
  • 99
    • 84964619895 scopus 로고    scopus 로고
    • Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure
    • 99 Qian, X., et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165 (2016), 1238–1254.
    • (2016) Cell , vol.165 , pp. 1238-1254
    • Qian, X.1
  • 100
    • 84983748570 scopus 로고    scopus 로고
    • Vaginal exposure to Zika virus during pregnancy leads to fetal brain infection
    • 100 Yockey, L.J., et al. Vaginal exposure to Zika virus during pregnancy leads to fetal brain infection. Cell 166 (2016), 1247–1256.
    • (2016) Cell , vol.166 , pp. 1247-1256
    • Yockey, L.J.1
  • 101
    • 84995609058 scopus 로고    scopus 로고
    • Zika virus infects neural progenitors in the adult mouse brain and alters proliferation
    • 101 Li, H., et al. Zika virus infects neural progenitors in the adult mouse brain and alters proliferation. Cell Stem Cell 19 (2016), 593–598.
    • (2016) Cell Stem Cell , vol.19 , pp. 593-598
    • Li, H.1
  • 102
    • 84994098465 scopus 로고    scopus 로고
    • Zika virus disrupts phospho-TBK1 localization and mitosis in human neuroepithelial stem cells and radial glia
    • 102 Onorati, M., et al. Zika virus disrupts phospho-TBK1 localization and mitosis in human neuroepithelial stem cells and radial glia. Cell Rep. 16 (2016), 2576–2592.
    • (2016) Cell Rep. , vol.16 , pp. 2576-2592
    • Onorati, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.