메뉴 건너뛰기




Volumn 16, Issue 1, 2017, Pages

Improvement of yeast tolerance to acetic acid through Haa1 transcription factor engineering: Towards the underlying mechanisms

Author keywords

Acetic acid tolerance; Haa1; Response and adaptation to acetic acid; Saccharomyces cerevisiae; Transcription factor engineering

Indexed keywords

ACETIC ACID; AMINO ACID; CYTOSINE; GENOMIC DNA; GUANINE; HAA1 TRANSCRIPTION FACTOR; MESSENGER RNA; MUTANT PROTEIN; PHENYLALANINE; PLASMID DNA; SERINE; THYMINE; TRANSCRIPTION FACTOR; UNCLASSIFIED DRUG; HAA1 PROTEIN, S CEREVISIAE; SACCHAROMYCES CEREVISIAE PROTEIN;

EID: 85011347801     PISSN: None     EISSN: 14752859     Source Type: Journal    
DOI: 10.1186/s12934-016-0621-5     Document Type: Article
Times cited : (63)

References (44)
  • 1
    • 84899976199 scopus 로고    scopus 로고
    • Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals
    • Borodina I, Nielsen J. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals. Biotechnol J. 2014;9:609-20.
    • (2014) Biotechnol J , vol.9 , pp. 609-620
    • Borodina, I.1    Nielsen, J.2
  • 3
    • 0343618697 scopus 로고    scopus 로고
    • Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition
    • Palmqvist E, Hahn-Hagerdal B. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol. 2000;74:25-33.
    • (2000) Bioresour Technol , vol.74 , pp. 25-33
    • Palmqvist, E.1    Hahn-Hagerdal, B.2
  • 4
    • 77958135565 scopus 로고    scopus 로고
    • Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid
    • Mira NP, Palma M, Guerreiro JF, Sa-Correia I. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microb Cell Fact. 2010;9:79.
    • (2010) Microb Cell Fact , vol.9 , pp. 79
    • Mira, N.P.1    Palma, M.2    Guerreiro, J.F.3    Sa-Correia, I.4
  • 5
    • 84902075335 scopus 로고    scopus 로고
    • The fraction of cells that resume growth after acetic acid addition is a strain-dependent parameter of acetic acid tolerance in Saccharomyces cerevisiae
    • Swinnen S, Fernandez-Nino M, Gonzalez-Ramos D, van Maris AJ, Nevoigt E. The fraction of cells that resume growth after acetic acid addition is a strain-dependent parameter of acetic acid tolerance in Saccharomyces cerevisiae. FEMS Yeast Res. 2014;14:642-53.
    • (2014) FEMS Yeast Res , vol.14 , pp. 642-653
    • Swinnen, S.1    Fernandez-Nino, M.2    Gonzalez-Ramos, D.3    Maris, A.J.4    Nevoigt, E.5
  • 7
    • 77958169154 scopus 로고    scopus 로고
    • Genomic expression program involving the Haa1p-regulon in Saccharomyces cerevisiae response to acetic acid
    • Mira NP, Becker JD, Sa-Correia I. Genomic expression program involving the Haa1p-regulon in Saccharomyces cerevisiae response to acetic acid. OMICS. 2010;14:587-601.
    • (2010) OMICS , vol.14 , pp. 587-601
    • Mira, N.P.1    Becker, J.D.2    Sa-Correia, I.3
  • 8
    • 33747337558 scopus 로고    scopus 로고
    • Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p
    • Kawahata M, Masaki K, Fujii T, Iefuji H. Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p. FEMS Yeast Res. 2006;6:924-36.
    • (2006) FEMS Yeast Res , vol.6 , pp. 924-936
    • Kawahata, M.1    Masaki, K.2    Fujii, T.3    Iefuji, H.4
  • 9
    • 77952876202 scopus 로고    scopus 로고
    • Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae
    • Li BZ, Yuan YJ. Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2010;86:1915-24.
    • (2010) Appl Microbiol Biotechnol , vol.86 , pp. 1915-1924
    • Li, B.Z.1    Yuan, Y.J.2
  • 10
    • 34547868108 scopus 로고    scopus 로고
    • Generic and specific transcriptional responses to different weak organic acids in anaerobic chemostat cultures of Saccharomyces cerevisiae
    • Abbott DA, Knijnenburg TA, de Poorter LM, Reinders MJ, Pronk JT, van Maris AJ. Generic and specific transcriptional responses to different weak organic acids in anaerobic chemostat cultures of Saccharomyces cerevisiae. FEMS Yeast Res. 2007;7:819-33.
    • (2007) FEMS Yeast Res , vol.7 , pp. 819-833
    • Abbott, D.A.1    Knijnenburg, T.A.2    Poorter, L.M.3    Reinders, M.J.4    Pronk, J.T.5    Maris, A.J.6
  • 11
    • 84878315786 scopus 로고    scopus 로고
    • Transcriptional profiling of Saccharomyces cerevisiae T2 cells upon exposure to hardwood spent sulphite liquor: comparison to acetic acid, furfural and hydroxymethylfurfural
    • Bajwa PK, Ho CY, Chan CK, Martin VJJ, Trevors JT, Lee H. Transcriptional profiling of Saccharomyces cerevisiae T2 cells upon exposure to hardwood spent sulphite liquor: comparison to acetic acid, furfural and hydroxymethylfurfural. Antonie Van Leeuwenhoek Int J General Mol Microbiol. 2013;103:1281-95.
    • (2013) Antonie Van Leeuwenhoek Int J General Mol Microbiol , vol.103 , pp. 1281-1295
    • Bajwa, P.K.1    Ho, C.Y.2    Chan, C.K.3    Martin, V.J.J.4    Trevors, J.T.5    Lee, H.6
  • 12
    • 84937637609 scopus 로고    scopus 로고
    • Transcriptome analysis of acetic-acid-treated yeast cells identifies a large set of genes whose overexpression or deletion enhances acetic acid tolerance
    • Lee Y, Nasution O, Choi E, Choi IG, Kim W, Choi W. Transcriptome analysis of acetic-acid-treated yeast cells identifies a large set of genes whose overexpression or deletion enhances acetic acid tolerance. Appl Microbiol Biotechnol. 2015;99:6391-403.
    • (2015) Appl Microbiol Biotechnol , vol.99 , pp. 6391-6403
    • Lee, Y.1    Nasution, O.2    Choi, E.3    Choi, I.G.4    Kim, W.5    Choi, W.6
  • 13
    • 84953636982 scopus 로고    scopus 로고
    • Inverse metabolic engineering based on transient acclimation of yeast improves acid-containing xylose fermentation and tolerance to formic and acetic acids
    • Hasunuma T, Sakamoto T, Kondo A. Inverse metabolic engineering based on transient acclimation of yeast improves acid-containing xylose fermentation and tolerance to formic and acetic acids. Appl Microbiol Biotechnol. 2016;100:1027-38.
    • (2016) Appl Microbiol Biotechnol , vol.100 , pp. 1027-1038
    • Hasunuma, T.1    Sakamoto, T.2    Kondo, A.3
  • 14
    • 85047689314 scopus 로고    scopus 로고
    • Nuclear localization of Haa1, which is linked to its phosphorylation status, mediates lactic acid tolerance in Saccharomyces cerevisiae
    • Sugiyama M, Akase SP, Nakanishi R, Horie H, Kaneko Y, Harashima S. Nuclear localization of Haa1, which is linked to its phosphorylation status, mediates lactic acid tolerance in Saccharomyces cerevisiae. Appl Environ Microbiol. 2014;80:3488-95.
    • (2014) Appl Environ Microbiol , vol.80 , pp. 3488-3495
    • Sugiyama, M.1    Akase, S.P.2    Nakanishi, R.3    Horie, H.4    Kaneko, Y.5    Harashima, S.6
  • 15
    • 84868611282 scopus 로고    scopus 로고
    • Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator
    • Tanaka K, Ishii Y, Ogawa J, Shima J. Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator. Appl Environ Microbiol. 2012;78:8161-3.
    • (2012) Appl Environ Microbiol , vol.78 , pp. 8161-8163
    • Tanaka, K.1    Ishii, Y.2    Ogawa, J.3    Shima, J.4
  • 16
    • 84892491936 scopus 로고    scopus 로고
    • An organic acid-tolerant HAA1-overexpression mutant of an industrial bioethanol strain of Saccharomyces cerevisiae and its application to the production of bioethanol from sugarcane molasses
    • Inaba T, Watanabe D, Yoshiyama Y, Tanaka K, Ogawa J, Takagi H, Shimoi H, Shima J. An organic acid-tolerant HAA1-overexpression mutant of an industrial bioethanol strain of Saccharomyces cerevisiae and its application to the production of bioethanol from sugarcane molasses. AMB Express. 2013;3:74.
    • (2013) AMB Express , vol.3 , pp. 74
    • Inaba, T.1    Watanabe, D.2    Yoshiyama, Y.3    Tanaka, K.4    Ogawa, J.5    Takagi, H.6    Shimoi, H.7    Shima, J.8
  • 17
    • 84922783974 scopus 로고    scopus 로고
    • Improved ethanol production from xylose in the presence of acetic acid by the overexpression of the HAA1 gene in Saccharomyces cerevisiae
    • Sakihama Y, Hasunuma T, Kondo A. Improved ethanol production from xylose in the presence of acetic acid by the overexpression of the HAA1 gene in Saccharomyces cerevisiae. J Biosci Bioeng. 2015;119:297-302.
    • (2015) J Biosci Bioeng , vol.119 , pp. 297-302
    • Sakihama, Y.1    Hasunuma, T.2    Kondo, A.3
  • 18
    • 25844432253 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes
    • Fernandes AR, Mira NP, Vargas RC, Canelhas I, Sa-Correia I. Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes. Biochem Biophys Res Commun. 2005;337:95-103.
    • (2005) Biochem Biophys Res Commun , vol.337 , pp. 95-103
    • Fernandes, A.R.1    Mira, N.P.2    Vargas, R.C.3    Canelhas, I.4    Sa-Correia, I.5
  • 19
    • 80052432738 scopus 로고    scopus 로고
    • Identification of a DNA-binding site for the transcription factor Haa1, required for Saccharomyces cerevisiae response to acetic acid stress
    • Mira NP, Henriques SF, Keller G, Teixeira MC, Matos RG, Arraiano CM, Winge DR, Sa-Correia I. Identification of a DNA-binding site for the transcription factor Haa1, required for Saccharomyces cerevisiae response to acetic acid stress. Nucleic Acids Res. 2011;39:6896-907.
    • (2011) Nucleic Acids Res , vol.39 , pp. 6896-6907
    • Mira, N.P.1    Henriques, S.F.2    Keller, G.3    Teixeira, M.C.4    Matos, R.G.5    Arraiano, C.M.6    Winge, D.R.7    Sa-Correia, I.8
  • 20
    • 84898991499 scopus 로고    scopus 로고
    • Conformational and mechanical changes of DNA upon transcription factor binding detected by a QCM and transmission line model
    • de-Carvalho J, Rodrigues RMM, Tome B, Henriques SF, Mira NP, Sa-Correia I, Ferreira GNM. Conformational and mechanical changes of DNA upon transcription factor binding detected by a QCM and transmission line model. Analyst. 2014;139:1847-55.
    • (2014) Analyst , vol.139 , pp. 1847-1855
    • de-Carvalho, J.1    Rodrigues, R.M.M.2    Tome, B.3    Henriques, S.F.4    Mira, N.P.5    Sa-Correia, I.6    Ferreira, G.N.M.7
  • 21
    • 84904335436 scopus 로고    scopus 로고
    • Transmission line model analysis of transcription factors binding to oligoduplexes-differentiation of the effect of single nucleotide modifications
    • Rodrigues RM, de-Carvalho J, Henriques SF, Mira NP, Sa-Correia I, Ferreira GN. Transmission line model analysis of transcription factors binding to oligoduplexes-differentiation of the effect of single nucleotide modifications. Analyst. 2014;139:3871-4.
    • (2014) Analyst , vol.139 , pp. 3871-3874
    • Rodrigues, R.M.1    de-Carvalho, J.2    Henriques, S.F.3    Mira, N.P.4    Sa-Correia, I.5    Ferreira, G.N.6
  • 23
    • 0028217073 scopus 로고
    • Identification and characterization of a novel yeast gene: the YGP1 gene product is a highly glycosylated secreted protein that is synthesized in response to nutrient limitation
    • Destruelle M, Holzer H, Klionsky DJ. Identification and characterization of a novel yeast gene: the YGP1 gene product is a highly glycosylated secreted protein that is synthesized in response to nutrient limitation. Mol Cell Biol. 1994;14:2740-54.
    • (1994) Mol Cell Biol , vol.14 , pp. 2740-2754
    • Destruelle, M.1    Holzer, H.2    Klionsky, D.J.3
  • 24
    • 84925461188 scopus 로고    scopus 로고
    • Plasma membrane proteins Yro2 and Mrh1 are required for acetic acid tolerance in Saccharomyces cerevisiae
    • Takabatake A, Kawazoe N, Izawa S. Plasma membrane proteins Yro2 and Mrh1 are required for acetic acid tolerance in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2015;99:2805-14.
    • (2015) Appl Microbiol Biotechnol , vol.99 , pp. 2805-2814
    • Takabatake, A.1    Kawazoe, N.2    Izawa, S.3
  • 26
    • 33845442201 scopus 로고    scopus 로고
    • Engineering yeast transcription machinery for improved ethanol tolerance and production
    • Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science. 2006;314:1565-8.
    • (2006) Science , vol.314 , pp. 1565-1568
    • Alper, H.1    Moxley, J.2    Nevoigt, E.3    Fink, G.R.4    Stephanopoulos, G.5
  • 27
    • 0026710123 scopus 로고
    • Effect of benzoic-acid on metabolic fluxes in yeasts-a continuous-culture study on the regulation of respiration and alcoholic fermentation
    • Verduyn C, Postma E, Scheffers WA, Vandijken JP. Effect of benzoic-acid on metabolic fluxes in yeasts-a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast. 1992;8:501-17.
    • (1992) Yeast , vol.8 , pp. 501-517
    • Verduyn, C.1    Postma, E.2    Scheffers, W.A.3    Vandijken, J.P.4
  • 28
    • 0028954118 scopus 로고
    • Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure
    • Gietz RD, Schiestl RH, Willems AR, Woods RA. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast. 1995;11:355-60.
    • (1995) Yeast , vol.11 , pp. 355-360
    • Gietz, R.D.1    Schiestl, R.H.2    Willems, A.R.3    Woods, R.A.4
  • 29
    • 0003903343 scopus 로고    scopus 로고
    • Molecular cloning: a laboratory manual
    • Cold Spring Harbor: Cold Spring Harbor Laboratory Press
    • Sambrook J, Russell DW. Molecular cloning: a laboratory manual, vol 1. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2001.
    • (2001) , vol.1
    • Sambrook, J.1    Russell, D.W.2
  • 30
    • 0023481280 scopus 로고
    • A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli
    • Hoffman CS, Winston F. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene. 1987;57:267-72.
    • (1987) Gene , vol.57 , pp. 267-272
    • Hoffman, C.S.1    Winston, F.2
  • 31
    • 0016800090 scopus 로고
    • A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase
    • Sanger F, Coulson AR. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol. 1975;94:441-8.
    • (1975) J Mol Biol , vol.94 , pp. 441-448
    • Sanger, F.1    Coulson, A.R.2
  • 32
    • 0024669291 scopus 로고
    • A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae
    • Sikorski RS, Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989;122:19-27.
    • (1989) Genetics , vol.122 , pp. 19-27
    • Sikorski, R.S.1    Hieter, P.2
  • 33
    • 0036677321 scopus 로고    scopus 로고
    • A method for plasmid purification directly from yeast
    • Singh MV, Weil PA. A method for plasmid purification directly from yeast. Anal Biochem. 2002;307:13-7.
    • (2002) Anal Biochem , vol.307 , pp. 13-17
    • Singh, M.V.1    Weil, P.A.2
  • 34
    • 0037196945 scopus 로고    scopus 로고
    • Sets of integrating plasmids and gene disruption cassettes containing improved counter-selection markers designed for repeated use in budding yeast
    • Akada R, Hirosawa I, Kawahata M, Hoshida H, Nishizawa Y. Sets of integrating plasmids and gene disruption cassettes containing improved counter-selection markers designed for repeated use in budding yeast. Yeast. 2002;19:393-402.
    • (2002) Yeast , vol.19 , pp. 393-402
    • Akada, R.1    Hirosawa, I.2    Kawahata, M.3    Hoshida, H.4    Nishizawa, Y.5
  • 35
    • 70449686525 scopus 로고    scopus 로고
    • Characterization of chromosomal integration sites for heterologous gene expression in Saccharomyces cerevisiae
    • Flagfeldt DB, Siewers V, Huang L, Nielsen J. Characterization of chromosomal integration sites for heterologous gene expression in Saccharomyces cerevisiae. Yeast. 2009;26:545-51.
    • (2009) Yeast , vol.26 , pp. 545-551
    • Flagfeldt, D.B.1    Siewers, V.2    Huang, L.3    Nielsen, J.4
  • 36
    • 0026087180 scopus 로고
    • Preparation of high molecular weight RNA
    • Kohrer K, Domdey H. Preparation of high molecular weight RNA. Methods Enzymol. 1991;194:398-405.
    • (1991) Methods Enzymol , vol.194 , pp. 398-405
    • Kohrer, K.1    Domdey, H.2
  • 37
    • 27744435957 scopus 로고    scopus 로고
    • Additional vectors for PCR-based gene tagging in Saccharomyces cerevisiae and Schizosaccharomyces pombe using nourseothricin resistance
    • Van Driessche B, Tafforeau L, Hentges P, Carr AM, Vandenhaute J. Additional vectors for PCR-based gene tagging in Saccharomyces cerevisiae and Schizosaccharomyces pombe using nourseothricin resistance. Yeast. 2005;22:1061-8.
    • (2005) Yeast , vol.22 , pp. 1061-1068
    • Driessche, B.1    Tafforeau, L.2    Hentges, P.3    Carr, A.M.4    Vandenhaute, J.5
  • 38
    • 34548775911 scopus 로고    scopus 로고
    • Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid
    • Mollapour M, Piper PW. Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid. Mol Cell Biol. 2007;27:6446-56.
    • (2007) Mol Cell Biol , vol.27 , pp. 6446-6456
    • Mollapour, M.1    Piper, P.W.2
  • 39
    • 84922783974 scopus 로고    scopus 로고
    • Improved ethanol production from xylose in the presence of acetic acid by the overexpression of the HAA1 gene in Saccharomyces cerevisiae
    • Sakihama Y, Hasunuma T, Kondo A. Improved ethanol production from xylose in the presence of acetic acid by the overexpression of the HAA1 gene in Saccharomyces cerevisiae. J Biosci Bioeng. 2014;119:297-302.
    • (2014) J Biosci Bioeng , vol.119 , pp. 297-302
    • Sakihama, Y.1    Hasunuma, T.2    Kondo, A.3
  • 41
    • 85011371270 scopus 로고    scopus 로고
    • Acetate resistance in yeast based on introduction of a mutant Haa1 allele
    • PCT/US2013/051500 edition. US
    • Zahn K, Jacobson S. Acetate resistance in yeast based on introduction of a mutant Haa1 allele. PCT/US2013/051500 edition. US; 2014.
    • (2014)
    • Zahn, K.1    Jacobson, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.