메뉴 건너뛰기




Volumn , Issue , 2015, Pages 135-143

Convolutional Fisher Kernels for RGB-D Object Recognition

Author keywords

CNN; Fisher Kernel; Recognition; RGB D

Indexed keywords

CONVOLUTION; ENCODING (SYMBOLS); NEURAL NETWORKS;

EID: 84961690141     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/3DV.2015.23     Document Type: Conference Paper
Times cited : (35)

References (34)
  • 1
    • 84961712231 scopus 로고    scopus 로고
    • https://www.google.com/atap/project-tango/.
  • 2
    • 84961698053 scopus 로고    scopus 로고
    • https://www.microsoft.com/microsoft-hololens/en-us/.
  • 3
    • 84856645388 scopus 로고    scopus 로고
    • Fusing visual and range imaging for object class recognition
    • A. Bar-Hillel, D. Hanukaev, and D. Levi. Fusing visual and range imaging for object class recognition. In ICCV, 2011.
    • (2011) ICCV
    • Bar-Hillel, A.1    Hanukaev, D.2    Levi, D.3
  • 4
    • 84864477116 scopus 로고    scopus 로고
    • A learned feature descriptor for object recognition in rgb-d data
    • M. Blum, J. T. Springenberg, J.Wulfing, and M. Riedmiller. A learned feature descriptor for object recognition in rgb-d data. In ICRA, 2012.
    • (2012) ICRA
    • Blum, M.1    Springenberg, J.T.2    Wulfing, J.3    Riedmiller, M.4
  • 5
    • 84455172978 scopus 로고    scopus 로고
    • Depth kernel descriptors for object recognition
    • L. Bo, X. Ren, and D. Fox. Depth kernel descriptors for object recognition. In IROS, 2011.
    • (2011) IROS
    • Bo, L.1    Ren, X.2    Fox, D.3
  • 6
    • 85162387004 scopus 로고    scopus 로고
    • Hierarchical matching pursuit for image classification: Architecture and fast algorithms
    • L. Bo, X. Ren, and D. Fox. Hierarchical matching pursuit for image classification: architecture and fast algorithms. In NIPS, 2011.
    • (2011) NIPS
    • Bo, L.1    Ren, X.2    Fox, D.3
  • 7
    • 84872231524 scopus 로고    scopus 로고
    • Unsupervised feature learning for rgb-d based object recognition
    • June
    • L. Bo, X. Ren, and D. Fox. Unsupervised feature learning for rgb-d based object recognition. ISER, June, 2012.
    • (2012) ISER
    • Bo, L.1    Ren, X.2    Fox, D.3
  • 8
    • 84856641335 scopus 로고    scopus 로고
    • Going into depth: Evaluating 2d and 3d cues for object classification on a new, large-scale object dataset
    • B. Browatzki, J. Fischer, B. Graf, H. Bulthoff, and C. Wallraven. Going into depth: Evaluating 2d and 3d cues for object classification on a new, large-scale object dataset. In ICCV Workshops, 2011.
    • (2011) ICCV Workshops
    • Browatzki, B.1    Fischer, J.2    Graf, B.3    Bulthoff, H.4    Wallraven, C.5
  • 9
    • 84898420173 scopus 로고    scopus 로고
    • The devil is in the details: An evaluation of recent feature encoding methods
    • V. L. A. V. Chatfield Ken and A. Zisserman. The devil is in the details: an evaluation of recent feature encoding methods. In BMVC, 2011.
    • (2011) BMVC
    • Chatfield Ken, V.L.A.V.1    Zisserman, A.2
  • 10
    • 84919915366 scopus 로고    scopus 로고
    • Semisupervised learning for rgb-d object recognition
    • Y. Cheng, X. Zhao, K. Huang, and T. Tan. Semisupervised learning for rgb-d object recognition. In ICPR, 2014.
    • (2014) ICPR
    • Cheng, Y.1    Zhao, X.2    Huang, K.3    Tan, T.4
  • 12
    • 80053446757 scopus 로고    scopus 로고
    • An analysis of single-layer networks in unsupervised feature learning
    • A. Coates, A. Y. Ng, and H. Lee. An analysis of single-layer networks in unsupervised feature learning. In AISTATS, 2011.
    • (2011) AISTATS
    • Coates, A.1    Ng, A.Y.2    Lee, H.3
  • 15
    • 84922645579 scopus 로고    scopus 로고
    • Learning rich features from rgb-d images for object detection and segmentation
    • S. Gupta, R. Girshick, P. Arbelaez, and J. Malik. Learning rich features from rgb-d images for object detection and segmentation. In ECCV, 2014.
    • (2014) ECCV
    • Gupta, S.1    Girshick, R.2    Arbelaez, P.3    Malik, J.4
  • 16
    • 84894569115 scopus 로고    scopus 로고
    • Feature coding in image classification: A comprehensive study
    • Z.W. L.W. Huang, Yongzhen and T. Tan. Feature coding in image classification: A comprehensive study. PAMI, 36(3):493-506, 2014.
    • (2014) PAMI , vol.36 , Issue.3 , pp. 493-506
    • Huang Yongzhen, Z.W.L.W.1    Tan, T.2
  • 17
    • 0032685832 scopus 로고    scopus 로고
    • Using spin images for efficient object recognition in cluttered 3d scenes
    • A. E. Johnson and M. Hebert. Using spin images for efficient object recognition in cluttered 3d scenes. PAMI, 21(5):433-449, 1999.
    • (1999) PAMI , vol.21 , Issue.5 , pp. 433-449
    • Johnson, A.E.1    Hebert, M.2
  • 18
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • I. S. Krizhevsky, Alex and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky Alex, I.S.1    Hinton, G.E.2
  • 19
    • 84455168545 scopus 로고    scopus 로고
    • A large-scale hierarchical multi-view rgb-d object dataset
    • K. Lai, L. Bo, X. Ren, and D. Fox. A large-scale hierarchical multi-view rgb-d object dataset. In ICRA, 2011.
    • (2011) ICRA
    • Lai, K.1    Bo, L.2    Ren, X.3    Fox, D.4
  • 20
    • 84455201478 scopus 로고    scopus 로고
    • Sparse distance learning for object recognition combining rgb and depth information
    • K. Lai, L. Bo, X. Ren, and D. Fox. Sparse distance learning for object recognition combining rgb and depth information. In ICRA, 2011.]
    • (2011) ICRA
    • Lai, K.1    Bo, L.2    Ren, X.3    Fox, D.4
  • 21
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In CVPR, 2006.
    • (2006) CVPR
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 22
    • 0035358496 scopus 로고    scopus 로고
    • Representing and recognizing the visual appearance of materials using threedimensional textons
    • T. Leung and J. Malik. Representing and recognizing the visual appearance of materials using threedimensional textons. IJCV, 43(1):29-44, 2001.
    • (2001) IJCV , vol.43 , Issue.1 , pp. 29-44
    • Leung, T.1    Malik, J.2
  • 23
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scaleinvariant keypoints
    • D. G. Lowe. Distinctive image features from scaleinvariant keypoints. IJCV, 60(2):91-110, 2004.
    • (2004) IJCV , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 24
    • 34948815101 scopus 로고    scopus 로고
    • Fisher kernels on visual vocabularies for image categorization
    • F. Perronnin and C. Dance. Fisher kernels on visual vocabularies for image categorization. In CVPR, 2007.
    • (2007) CVPR
    • Perronnin, F.1    Dance, C.2
  • 25
    • 79959771606 scopus 로고    scopus 로고
    • Improving the fisher kernel for large-scale image classification
    • J. S. Perronnin, Florent and T. Mensink. Improving the fisher kernel for large-scale image classification. In ECCV, 2010.
    • (2010) ECCV
    • Perronnin Florent, J.S.1    Mensink, T.2
  • 29
    • 84897374881 scopus 로고    scopus 로고
    • Deep fisher networks for large-scale image classification
    • A. V. Simonyan, Karen and A. Zisserman. Deep fisher networks for large-scale image classification. In NIPS, 2013.
    • (2013) NIPS
    • Simonyan Karen, A.V.1    Zisserman, A.2
  • 30
    • 84877789646 scopus 로고    scopus 로고
    • Convolutional-recursive deep learning for 3d object classification
    • R. Socher, B. Huval, B. Bath, C. D. Manning, and A. Ng. Convolutional-recursive deep learning for 3d object classification. In NIPS, 2012.
    • (2012) NIPS
    • Socher, R.1    Huval, B.2    Bath, B.3    Manning, C.D.4    Ng, A.5
  • 31
    • 84911395964 scopus 로고    scopus 로고
    • Deep fisher kernels-end to end learning of the fisher kernel gmm parameters
    • M. S. Sydorov, Vladyslav and C. H. Lampert. Deep fisher kernels-end to end learning of the fisher kernel gmm parameters. In CVPR, 2014.
    • (2014) CVPR
    • Sydorov Vladyslav, M.S.1    Lampert, C.H.2
  • 32
    • 77955996870 scopus 로고    scopus 로고
    • Locality-constrained linear coding for image classification
    • J.Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained linear coding for image classification. In CVPR, 2010.
    • (2010) CVPR
    • Wang, J.1    Yang, J.2    Yu, K.3    Lv, F.4    Huang, T.5    Gong, Y.6
  • 33
    • 84875841401 scopus 로고    scopus 로고
    • Feature coding via vector difference for image classification
    • X. Zhao, Y. Yu, Y. Huang, K. Huang, and T. Tan. Feature coding via vector difference for image classification. In ICIP, 2012.
    • (2012) ICIP
    • Zhao, X.1    Yu, Y.2    Huang, Y.3    Huang, K.4    Tan, T.5
  • 34
    • 80052886214 scopus 로고    scopus 로고
    • Huang. Image classification using super-vector coding of local image descriptors
    • X. Zhou, K. Yu, T. Zhang, and T. S. Huang. Image classification using super-vector coding of local image descriptors. In ECCV, 2010.
    • (2010) ECCV
    • Zhou, X.1    Yu, K.2    Zhang, T.3    Huang, T.S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.