-
1
-
-
84961712231
-
-
https://www.google.com/atap/project-tango/.
-
-
-
-
2
-
-
84961698053
-
-
https://www.microsoft.com/microsoft-hololens/en-us/.
-
-
-
-
3
-
-
84856645388
-
Fusing visual and range imaging for object class recognition
-
A. Bar-Hillel, D. Hanukaev, and D. Levi. Fusing visual and range imaging for object class recognition. In ICCV, 2011.
-
(2011)
ICCV
-
-
Bar-Hillel, A.1
Hanukaev, D.2
Levi, D.3
-
5
-
-
84455172978
-
Depth kernel descriptors for object recognition
-
L. Bo, X. Ren, and D. Fox. Depth kernel descriptors for object recognition. In IROS, 2011.
-
(2011)
IROS
-
-
Bo, L.1
Ren, X.2
Fox, D.3
-
6
-
-
85162387004
-
Hierarchical matching pursuit for image classification: Architecture and fast algorithms
-
L. Bo, X. Ren, and D. Fox. Hierarchical matching pursuit for image classification: architecture and fast algorithms. In NIPS, 2011.
-
(2011)
NIPS
-
-
Bo, L.1
Ren, X.2
Fox, D.3
-
7
-
-
84872231524
-
Unsupervised feature learning for rgb-d based object recognition
-
June
-
L. Bo, X. Ren, and D. Fox. Unsupervised feature learning for rgb-d based object recognition. ISER, June, 2012.
-
(2012)
ISER
-
-
Bo, L.1
Ren, X.2
Fox, D.3
-
8
-
-
84856641335
-
Going into depth: Evaluating 2d and 3d cues for object classification on a new, large-scale object dataset
-
B. Browatzki, J. Fischer, B. Graf, H. Bulthoff, and C. Wallraven. Going into depth: Evaluating 2d and 3d cues for object classification on a new, large-scale object dataset. In ICCV Workshops, 2011.
-
(2011)
ICCV Workshops
-
-
Browatzki, B.1
Fischer, J.2
Graf, B.3
Bulthoff, H.4
Wallraven, C.5
-
9
-
-
84898420173
-
The devil is in the details: An evaluation of recent feature encoding methods
-
V. L. A. V. Chatfield Ken and A. Zisserman. The devil is in the details: an evaluation of recent feature encoding methods. In BMVC, 2011.
-
(2011)
BMVC
-
-
Chatfield Ken, V.L.A.V.1
Zisserman, A.2
-
10
-
-
84919915366
-
Semisupervised learning for rgb-d object recognition
-
Y. Cheng, X. Zhao, K. Huang, and T. Tan. Semisupervised learning for rgb-d object recognition. In ICPR, 2014.
-
(2014)
ICPR
-
-
Cheng, Y.1
Zhao, X.2
Huang, K.3
Tan, T.4
-
12
-
-
80053446757
-
An analysis of single-layer networks in unsupervised feature learning
-
A. Coates, A. Y. Ng, and H. Lee. An analysis of single-layer networks in unsupervised feature learning. In AISTATS, 2011.
-
(2011)
AISTATS
-
-
Coates, A.1
Ng, A.Y.2
Lee, H.3
-
13
-
-
85198028989
-
Imagenet: A large-scale hierarchical image database
-
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and F.-F. Li. Imagenet: A large-scale hierarchical image database. In CVPR, 2009.
-
(2009)
CVPR
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Li, F.-F.6
-
14
-
-
84880644383
-
-
M. Everingham, L. V. Gool, C. K. I.Williams, J.Winn, and A. Zisserman. The pascal visual object classes (voc) challenge 2012 (voc 2012) results, 2012.
-
(2012)
The Pascal Visual Object Classes (Voc) Challenge 2012 (Voc 2012) Results
-
-
Everingham, M.1
Gool, L.V.2
Williams, C.K.I.3
Winn, J.4
Zisserman, A.5
-
15
-
-
84922645579
-
Learning rich features from rgb-d images for object detection and segmentation
-
S. Gupta, R. Girshick, P. Arbelaez, and J. Malik. Learning rich features from rgb-d images for object detection and segmentation. In ECCV, 2014.
-
(2014)
ECCV
-
-
Gupta, S.1
Girshick, R.2
Arbelaez, P.3
Malik, J.4
-
16
-
-
84894569115
-
Feature coding in image classification: A comprehensive study
-
Z.W. L.W. Huang, Yongzhen and T. Tan. Feature coding in image classification: A comprehensive study. PAMI, 36(3):493-506, 2014.
-
(2014)
PAMI
, vol.36
, Issue.3
, pp. 493-506
-
-
Huang Yongzhen, Z.W.L.W.1
Tan, T.2
-
17
-
-
0032685832
-
Using spin images for efficient object recognition in cluttered 3d scenes
-
A. E. Johnson and M. Hebert. Using spin images for efficient object recognition in cluttered 3d scenes. PAMI, 21(5):433-449, 1999.
-
(1999)
PAMI
, vol.21
, Issue.5
, pp. 433-449
-
-
Johnson, A.E.1
Hebert, M.2
-
18
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
I. S. Krizhevsky, Alex and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
-
(2012)
NIPS
-
-
Krizhevsky Alex, I.S.1
Hinton, G.E.2
-
19
-
-
84455168545
-
A large-scale hierarchical multi-view rgb-d object dataset
-
K. Lai, L. Bo, X. Ren, and D. Fox. A large-scale hierarchical multi-view rgb-d object dataset. In ICRA, 2011.
-
(2011)
ICRA
-
-
Lai, K.1
Bo, L.2
Ren, X.3
Fox, D.4
-
20
-
-
84455201478
-
Sparse distance learning for object recognition combining rgb and depth information
-
K. Lai, L. Bo, X. Ren, and D. Fox. Sparse distance learning for object recognition combining rgb and depth information. In ICRA, 2011.]
-
(2011)
ICRA
-
-
Lai, K.1
Bo, L.2
Ren, X.3
Fox, D.4
-
21
-
-
33845572523
-
Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
-
S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In CVPR, 2006.
-
(2006)
CVPR
-
-
Lazebnik, S.1
Schmid, C.2
Ponce, J.3
-
22
-
-
0035358496
-
Representing and recognizing the visual appearance of materials using threedimensional textons
-
T. Leung and J. Malik. Representing and recognizing the visual appearance of materials using threedimensional textons. IJCV, 43(1):29-44, 2001.
-
(2001)
IJCV
, vol.43
, Issue.1
, pp. 29-44
-
-
Leung, T.1
Malik, J.2
-
23
-
-
3042535216
-
Distinctive image features from scaleinvariant keypoints
-
D. G. Lowe. Distinctive image features from scaleinvariant keypoints. IJCV, 60(2):91-110, 2004.
-
(2004)
IJCV
, vol.60
, Issue.2
, pp. 91-110
-
-
Lowe, D.G.1
-
24
-
-
34948815101
-
Fisher kernels on visual vocabularies for image categorization
-
F. Perronnin and C. Dance. Fisher kernels on visual vocabularies for image categorization. In CVPR, 2007.
-
(2007)
CVPR
-
-
Perronnin, F.1
Dance, C.2
-
25
-
-
79959771606
-
Improving the fisher kernel for large-scale image classification
-
J. S. Perronnin, Florent and T. Mensink. Improving the fisher kernel for large-scale image classification. In ECCV, 2010.
-
(2010)
ECCV
-
-
Perronnin Florent, J.S.1
Mensink, T.2
-
29
-
-
84897374881
-
Deep fisher networks for large-scale image classification
-
A. V. Simonyan, Karen and A. Zisserman. Deep fisher networks for large-scale image classification. In NIPS, 2013.
-
(2013)
NIPS
-
-
Simonyan Karen, A.V.1
Zisserman, A.2
-
30
-
-
84877789646
-
Convolutional-recursive deep learning for 3d object classification
-
R. Socher, B. Huval, B. Bath, C. D. Manning, and A. Ng. Convolutional-recursive deep learning for 3d object classification. In NIPS, 2012.
-
(2012)
NIPS
-
-
Socher, R.1
Huval, B.2
Bath, B.3
Manning, C.D.4
Ng, A.5
-
31
-
-
84911395964
-
Deep fisher kernels-end to end learning of the fisher kernel gmm parameters
-
M. S. Sydorov, Vladyslav and C. H. Lampert. Deep fisher kernels-end to end learning of the fisher kernel gmm parameters. In CVPR, 2014.
-
(2014)
CVPR
-
-
Sydorov Vladyslav, M.S.1
Lampert, C.H.2
-
32
-
-
77955996870
-
Locality-constrained linear coding for image classification
-
J.Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained linear coding for image classification. In CVPR, 2010.
-
(2010)
CVPR
-
-
Wang, J.1
Yang, J.2
Yu, K.3
Lv, F.4
Huang, T.5
Gong, Y.6
-
33
-
-
84875841401
-
Feature coding via vector difference for image classification
-
X. Zhao, Y. Yu, Y. Huang, K. Huang, and T. Tan. Feature coding via vector difference for image classification. In ICIP, 2012.
-
(2012)
ICIP
-
-
Zhao, X.1
Yu, Y.2
Huang, Y.3
Huang, K.4
Tan, T.5
-
34
-
-
80052886214
-
Huang. Image classification using super-vector coding of local image descriptors
-
X. Zhou, K. Yu, T. Zhang, and T. S. Huang. Image classification using super-vector coding of local image descriptors. In ECCV, 2010.
-
(2010)
ECCV
-
-
Zhou, X.1
Yu, K.2
Zhang, T.3
Huang, T.S.4
|