메뉴 건너뛰기




Volumn 106, Issue 1, 2018, Pages 444-459

3D bioprinting and its in vivo applications

Author keywords

3D bioprinting; clinical application; tissue engineering

Indexed keywords

3D PRINTERS; BIOMATERIALS; CELLS; CYTOLOGY; DRUG DELIVERY; HISTOLOGY; TISSUE; TISSUE ENGINEERING;

EID: 85010815459     PISSN: 15524973     EISSN: 15524981     Source Type: Journal    
DOI: 10.1002/jbm.b.33826     Document Type: Review
Times cited : (179)

References (82)
  • 3
    • 84880237098 scopus 로고    scopus 로고
    • Bioprinting toward organ fabrication: challenges and future trends
    • Ozbolat IT, Yu Y. Bioprinting toward organ fabrication: challenges and future trends. IEEE Transactions on Biomedical Engineering 2013;60(3):691–699.
    • (2013) IEEE Transactions on Biomedical Engineering , vol.60 , Issue.3 , pp. 691-699
    • Ozbolat, I.T.1    Yu, Y.2
  • 5
    • 79952108287 scopus 로고    scopus 로고
    • Additive manufacturing for in situ repair of osteochondral defects
    • Cohen DL, Lipton JI, Bonassar LJ, Lipson H. Additive manufacturing for in situ repair of osteochondral defects. Biofabrication 2010;2(3):035004.
    • (2010) Biofabrication , vol.2 , Issue.3 , pp. 035004
    • Cohen, D.L.1    Lipton, J.I.2    Bonassar, L.J.3    Lipson, H.4
  • 8
    • 84905725612 scopus 로고    scopus 로고
    • 3D bioprinting of tissues and organs
    • Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nature biotechnology 2014;32(8):773–785.
    • (2014) Nature biotechnology , vol.32 , Issue.8 , pp. 773-785
    • Murphy, S.V.1    Atala, A.2
  • 9
    • 84879608611 scopus 로고    scopus 로고
    • Bio-electrospraying and Cell Electrospinning: Progress and Opportunities for Basic Biology and Clinical Sciences
    • Poncelet D, de Vos P, Suter N, Jayasinghe SN. Bio-electrospraying and Cell Electrospinning: Progress and Opportunities for Basic Biology and Clinical Sciences. Advanced healthcare materials 2012;1(1):27–34.
    • (2012) Advanced healthcare materials , vol.1 , Issue.1 , pp. 27-34
    • Poncelet, D.1    de Vos, P.2    Suter, N.3    Jayasinghe, S.N.4
  • 10
    • 84960905071 scopus 로고    scopus 로고
    • A 3D bioprinting system to produce human-scale tissue constructs with structural integrity
    • Kang H-W, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nature biotechnology 2016;34(3):312–319.
    • (2016) Nature biotechnology , vol.34 , Issue.3 , pp. 312-319
    • Kang, H.-W.1    Lee, S.J.2    Ko, I.K.3    Kengla, C.4    Yoo, J.J.5    Atala, A.6
  • 11
    • 84938886720 scopus 로고    scopus 로고
    • Bone tissue engineering drug delivery
    • Costa PF. Bone tissue engineering drug delivery. Current Molecular Biology Reports 2015;1(2):87–93.
    • (2015) Current Molecular Biology Reports , vol.1 , Issue.2 , pp. 87-93
    • Costa, P.F.1
  • 13
    • 33645649233 scopus 로고    scopus 로고
    • High resolution 3D laser scanner measurements of a strike-slip fault quantify its morphological anisotropy at all scales
    • L04305
    • Renard F, Voisin C, Marsan D, Schmittbuhl J. High resolution 3D laser scanner measurements of a strike-slip fault quantify its morphological anisotropy at all scales. Geophysical Research Letters 2006;33(4):L04305.
    • (2006) Geophysical Research Letters , vol.33 , Issue.4
    • Renard, F.1    Voisin, C.2    Marsan, D.3    Schmittbuhl, J.4
  • 17
    • 0035119040 scopus 로고    scopus 로고
    • Biodegradable polymer scaffolds with well-defined interconnected spherical pore network
    • Ma PX, Choi J-W. Biodegradable polymer scaffolds with well-defined interconnected spherical pore network. Tissue engineering 2001;7(1):23–33.
    • (2001) Tissue engineering , vol.7 , Issue.1 , pp. 23-33
    • Ma, P.X.1    Choi, J.-W.2
  • 24
    • 33846267342 scopus 로고    scopus 로고
    • Cell electrospinning: a unique biotechnique for encapsulating living organisms for generating active biological microthreads/scaffolds
    • Townsend-Nicholson A, Jayasinghe SN. Cell electrospinning: a unique biotechnique for encapsulating living organisms for generating active biological microthreads/scaffolds. Biomacromolecules 2006;7(12):3364–3369.
    • (2006) Biomacromolecules , vol.7 , Issue.12 , pp. 3364-3369
    • Townsend-Nicholson, A.1    Jayasinghe, S.N.2
  • 25
    • 84879608611 scopus 로고    scopus 로고
    • Regenerative Medicine: Bio-electrospraying and Cell Electrospinning: Progress and Opportunities for Basic Biology and Clinical Sciences (Adv. Healthcare Mater. 1/2012)
    • Poncelet D, de Vos P, Suter N, Jayasinghe SN. Regenerative Medicine: Bio-electrospraying and Cell Electrospinning: Progress and Opportunities for Basic Biology and Clinical Sciences (Adv. Healthcare Mater. 1/2012). Advanced Healthcare Materials 2012;1(1):26–26.
    • (2012) Advanced Healthcare Materials , vol.1 , Issue.1 , pp. 26
    • Poncelet, D.1    de Vos, P.2    Suter, N.3    Jayasinghe, S.N.4
  • 26
    • 84861826955 scopus 로고    scopus 로고
    • Direct human cartilage repair using three-dimensional bioprinting technology
    • Cui X, Breitenkamp K, Finn M, Lotz M, D'Lima DD. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Engineering Part A 2012;18(11-12):1304–1312.
    • (2012) Tissue Engineering Part A , vol.18 , Issue.11-12 , pp. 1304-1312
    • Cui, X.1    Breitenkamp, K.2    Finn, M.3    Lotz, M.4    D'Lima, D.D.5
  • 27
    • 84870316597 scopus 로고    scopus 로고
    • Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications
    • Xu T, Binder KW, Albanna MZ, Dice D, Zhao W, Yoo JJ, Atala A. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication 2012;5(1):015001.
    • Biofabrication 2012; , vol.5 , Issue.1 , pp. 015001
    • Xu, T.1    Binder, K.W.2    Albanna, M.Z.3    Dice, D.4    Zhao, W.5    Yoo, J.J.6    Atala, A.7
  • 29
    • 69649100202 scopus 로고    scopus 로고
    • Human microvasculature fabrication using thermal inkjet printing technology
    • Cui X, Boland T. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 2009;30(31):6221–6227.
    • (2009) Biomaterials , vol.30 , Issue.31 , pp. 6221-6227
    • Cui, X.1    Boland, T.2
  • 30
    • 84873914826 scopus 로고    scopus 로고
    • Development of a valve-based cell printer for the formation of human embryonic stem cell spheroid aggregates
    • Faulkner-Jones A, Greenhough S, King JA, Gardner J, Courtney A, Shu W. Development of a valve-based cell printer for the formation of human embryonic stem cell spheroid aggregates. Biofabrication 2013;5(1):015013.
    • (2013) Biofabrication , vol.5 , Issue.1 , pp. 015013
    • Faulkner-Jones, A.1    Greenhough, S.2    King, J.A.3    Gardner, J.4    Courtney, A.5    Shu, W.6
  • 31
    • 84954098843 scopus 로고    scopus 로고
    • Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D
    • Faulkner-Jones A, Fyfe C, Cornelissen D-J, Gardner J, King J, Courtney A, Shu W. Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D. Biofabrication 2015;7(4):044102.
    • (2015) Biofabrication , vol.7 , Issue.4 , pp. 044102
    • Faulkner-Jones, A.1    Fyfe, C.2    Cornelissen, D.-J.3    Gardner, J.4    King, J.5    Courtney, A.6    Shu, W.7
  • 36
    • 84941560619 scopus 로고    scopus 로고
    • 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair
    • Hsieh F-Y, Lin H-H, Hsu S-h. 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair. Biomaterials 2015;71:48–57.
    • (2015) Biomaterials , vol.71 , pp. 48-57
    • Hsieh, F.-Y.1    Lin, H.-H.2    Hsu, S.3
  • 37
    • 84864459017 scopus 로고    scopus 로고
    • Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system
    • Shim J-H, Lee J-S, Kim JY, Cho D-W. Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system. Journal of Micromechanics and Microengineering 2012;22(8):085014.
    • (2012) Journal of Micromechanics and Microengineering , vol.22 , Issue.8 , pp. 085014
    • Shim, J.-H.1    Lee, J.-S.2    Kim, J.Y.3    Cho, D.-W.4
  • 38
    • 84959017072 scopus 로고    scopus 로고
    • Three-dimensional bioprinting of multilayered constructs containing human mesenchymal stromal cells for osteochondral tissue regeneration in the rabbit knee joint
    • Shim J-H, Jang K-M, Hahn SK, Park JY, Jung H, Oh K, Park KM, Yeom J, Park SH, Kim SW. Three-dimensional bioprinting of multilayered constructs containing human mesenchymal stromal cells for osteochondral tissue regeneration in the rabbit knee joint. Biofabrication 2016;8(1):014102.
    • (2016) Biofabrication , vol.8 , Issue.1 , pp. 014102
    • Shim, J.-H.1    Jang, K.-M.2    Hahn, S.K.3    Park, J.Y.4    Jung, H.5    Oh, K.6    Park, K.M.7    Yeom, J.8    Park, S.H.9    Kim, S.W.10
  • 39
    • 69249208450 scopus 로고    scopus 로고
    • Scaffold-free vascular tissue engineering using bioprinting
    • Norotte C, Marga FS, Niklason LE, Forgacs G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 2009;30(30):5910–5917.
    • (2009) Biomaterials , vol.30 , Issue.30 , pp. 5910-5917
    • Norotte, C.1    Marga, F.S.2    Niklason, L.E.3    Forgacs, G.4
  • 40
    • 77952545276 scopus 로고    scopus 로고
    • Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture
    • Lee Y-B, Polio S, Lee W, Dai G, Menon L, Carroll RS, Yoo S-S. Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture. Experimental neurology 2010;223(2):645–652.
    • (2010) Experimental neurology , vol.223 , Issue.2 , pp. 645-652
    • Lee, Y.-B.1    Polio, S.2    Lee, W.3    Dai, G.4    Menon, L.5    Carroll, R.S.6    Yoo, S.-S.7
  • 41
    • 58249093214 scopus 로고    scopus 로고
    • Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication
    • Lee W, Debasitis JC, Lee VK, Lee J-H, Fischer K, Edminster K, Park J-K, Yoo S-S. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials 2009;30(8):1587–1595.
    • (2009) Biomaterials , vol.30 , Issue.8 , pp. 1587-1595
    • Lee, W.1    Debasitis, J.C.2    Lee, V.K.3    Lee, J.-H.4    Fischer, K.5    Edminster, K.6    Park, J.-K.7    Yoo, S.-S.8
  • 44
    • 84946497789 scopus 로고    scopus 로고
    • An additive manufacturing-based PCL–alginate–chondrocyte bioprinted scaffold for cartilage tissue engineering
    • Kundu J, Shim JH, Jang J, Kim SW, Cho DW. An additive manufacturing-based PCL–alginate–chondrocyte bioprinted scaffold for cartilage tissue engineering. Journal of tissue engineering and regenerative medicine 2015;9(11):1286–1297.
    • (2015) Journal of tissue engineering and regenerative medicine , vol.9 , Issue.11 , pp. 1286-1297
    • Kundu, J.1    Shim, J.H.2    Jang, J.3    Kim, S.W.4    Cho, D.W.5
  • 45
    • 84872312153 scopus 로고    scopus 로고
    • Cell (MC3T3-E1)-Printed Poly (ε-caprolactone)/Alginate Hybrid Scaffolds for Tissue Regeneration
    • Lee H, Ahn S, Bonassar LJ, Kim G. Cell (MC3T3-E1)-Printed Poly (ε-caprolactone)/Alginate Hybrid Scaffolds for Tissue Regeneration. Macromolecular rapid communications 2013;34(2):142–149.
    • (2013) Macromolecular rapid communications , vol.34 , Issue.2 , pp. 142-149
    • Lee, H.1    Ahn, S.2    Bonassar, L.J.3    Kim, G.4
  • 46
    • 84898436689 scopus 로고    scopus 로고
    • A direct cell printing supplemented with low-temperature processing method for obtaining highly porous three-dimensional cell-laden scaffolds
    • Ahn S, Lee H, Lee EJ, Kim G. A direct cell printing supplemented with low-temperature processing method for obtaining highly porous three-dimensional cell-laden scaffolds. Journal of Materials Chemistry B 2014;2(18):2773–2782.
    • (2014) Journal of Materials Chemistry B , vol.2 , Issue.18 , pp. 2773-2782
    • Ahn, S.1    Lee, H.2    Lee, E.J.3    Kim, G.4
  • 47
    • 84874591959 scopus 로고    scopus 로고
    • Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice
    • Michael S, Sorg H, Peck C-T, Koch L, Deiwick A, Chichkov B, Vogt PM, Reimers K. Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PloS one 2013;8(3):e57741.
    • (2013) PloS one , vol.8 , Issue.3
    • Michael, S.1    Sorg, H.2    Peck, C.-T.3    Koch, L.4    Deiwick, A.5    Chichkov, B.6    Vogt, P.M.7    Reimers, K.8
  • 49
    • 80053913697 scopus 로고    scopus 로고
    • Bio-electrosprayed Living Composite Matrix Implanted into Mouse Models
    • Jayasinghe SN, Warnes G, Scotton CJ. Bio-electrosprayed Living Composite Matrix Implanted into Mouse Models. Macromolecular bioscience 2011;11(10):1364–1369.
    • (2011) Macromolecular bioscience , vol.11 , Issue.10 , pp. 1364-1369
    • Jayasinghe, S.N.1    Warnes, G.2    Scotton, C.J.3
  • 50
    • 34548398567 scopus 로고    scopus 로고
    • Cell electrospinning highly concentrated cellular suspensions containing primary living organisms into cell-bearing threads and scaffolds
    • Jayasinghe SN, Irvine S, McEwan JR. Cell electrospinning highly concentrated cellular suspensions containing primary living organisms into cell-bearing threads and scaffolds. Nanomedicine 2007;2(4):555–567.
    • (2007) Nanomedicine , vol.2 , Issue.4 , pp. 555-567
    • Jayasinghe, S.N.1    Irvine, S.2    McEwan, J.R.3
  • 51
    • 77149143514 scopus 로고    scopus 로고
    • The differentiation and engraftment potential of mouse hematopoietic stem cells is maintained after bio-electrospray
    • Bartolovic K, Mongkoldhumrongkul N, Waddington SN, Jayasinghe SN, Howe SJ. The differentiation and engraftment potential of mouse hematopoietic stem cells is maintained after bio-electrospray. Analyst 2010;135(1):157–164.
    • (2010) Analyst , vol.135 , Issue.1 , pp. 157-164
    • Bartolovic, K.1    Mongkoldhumrongkul, N.2    Waddington, S.N.3    Jayasinghe, S.N.4    Howe, S.J.5
  • 54
    • 77955689253 scopus 로고    scopus 로고
    • Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells
    • Cui X, Dean D, Ruggeri ZM, Boland T. Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells. Biotechnology and bioengineering 2010;106(6):963–969.
    • (2010) Biotechnology and bioengineering , vol.106 , Issue.6 , pp. 963-969
    • Cui, X.1    Dean, D.2    Ruggeri, Z.M.3    Boland, T.4
  • 55
    • 79952108545 scopus 로고    scopus 로고
    • Fabrication and characterization of bio-engineered cardiac pseudo tissues
    • Xu T, Baicu C, Aho M, Zile M, Boland T. Fabrication and characterization of bio-engineered cardiac pseudo tissues. Biofabrication 2009;1(3):035001.
    • (2009) Biofabrication , vol.1 , Issue.3 , pp. 035001
    • Xu, T.1    Baicu, C.2    Aho, M.3    Zile, M.4    Boland, T.5
  • 60
    • 84959420852 scopus 로고    scopus 로고
    • Development of cell-laden 3D scaffolds for efficient engineered skin substitutes by collagen gelation
    • ances
    • Yoon H, Lee J-S, Yim H, Kim G, Chun W. Development of cell-laden 3D scaffolds for efficient engineered skin substitutes by collagen gelation. RSC Advances 2016;6(26):21439–21447.
    • (2016) RSC Adv , vol.6 , Issue.26 , pp. 21439-21447
    • Yoon, H.1    Lee, J.-S.2    Yim, H.3    Kim, G.4    Chun, W.5
  • 66
    • 84929176653 scopus 로고    scopus 로고
    • 3D bioprinting human chondrocytes with nanocellulose–alginate bioink for cartilage tissue engineering applications
    • Markstedt K, Mantas A, Tournier I, Marti'nez A'vila HC, Hägg D, Gatenholm P. 3D bioprinting human chondrocytes with nanocellulose–alginate bioink for cartilage tissue engineering applications. Biomacromolecules 2015;16(5):1489–1496.
    • (2015) Biomacromolecules , vol.16 , Issue.5 , pp. 1489-1496
    • Markstedt, K.1    Mantas, A.2    Tournier, I.3    Marti'nez A'vila, H.C.4    Hägg, D.5    Gatenholm, P.6
  • 67
    • 84905706925 scopus 로고    scopus 로고
    • Study of droplet formation process during drop-on-demand inkjetting of living cell-laden bioink
    • Xu C, Zhang M, Huang Y, Ogale A, Fu J, Markwald RR. Study of droplet formation process during drop-on-demand inkjetting of living cell-laden bioink. Langmuir 2014;30(30):9130–9138.
    • (2014) Langmuir , vol.30 , Issue.30 , pp. 9130-9138
    • Xu, C.1    Zhang, M.2    Huang, Y.3    Ogale, A.4    Fu, J.5    Markwald, R.R.6
  • 68
    • 34548672169 scopus 로고    scopus 로고
    • A multilevel numerical model quantifying cell deformation in encapsulated alginate structures
    • Nair K, Yan K, Sun W. A multilevel numerical model quantifying cell deformation in encapsulated alginate structures. Journal of Mechanics of Materials and Structures 2007;2(6):1121–1139.
    • (2007) Journal of Mechanics of Materials and Structures , vol.2 , Issue.6 , pp. 1121-1139
    • Nair, K.1    Yan, K.2    Sun, W.3
  • 70
    • 32044456949 scopus 로고    scopus 로고
    • Electrohydrodynamic jet processing: an advanced electric-field-driven jetting phenomenon for processing living cells
    • Jayasinghe SN, Qureshi AN, Eagles PA. Electrohydrodynamic jet processing: an advanced electric-field-driven jetting phenomenon for processing living cells. Small 2006;2(2):216–219.
    • (2006) Small , vol.2 , Issue.2 , pp. 216-219
    • Jayasinghe, S.N.1    Qureshi, A.N.2    Eagles, P.A.3
  • 75
    • 78650267994 scopus 로고    scopus 로고
    • Bioprinting is coming of age: report from the International Conference on Bioprinting and Biofabrication in Bordeaux (3B'09)
    • Guillemot F, Mironov V, Nakamura M. Bioprinting is coming of age: report from the International Conference on Bioprinting and Biofabrication in Bordeaux (3B'09). Biofabrication 2010;2(1):010201.
    • (2010) Biofabrication , vol.2 , Issue.1 , pp. 010201
    • Guillemot, F.1    Mironov, V.2    Nakamura, M.3
  • 76
  • 78
    • 84875943184 scopus 로고    scopus 로고
    • Advanced biofabrication strategies for skin regeneration and repair
    • Pereira RF, Barrias CC, Granja PL, Bartolo PJ. Advanced biofabrication strategies for skin regeneration and repair. Nanomedicine 2013;8(4):603–621.
    • (2013) Nanomedicine , vol.8 , Issue.4 , pp. 603-621
    • Pereira, R.F.1    Barrias, C.C.2    Granja, P.L.3    Bartolo, P.J.4
  • 80
    • 84868158132 scopus 로고    scopus 로고
    • Scaffold-free inkjet printing of three-dimensional zigzag cellular tubes
    • Xu C, Chai W, Huang Y, Markwald RR. Scaffold-free inkjet printing of three-dimensional zigzag cellular tubes. Biotechnology and bioengineering 2012;109(12):3152–3160.
    • (2012) Biotechnology and bioengineering , vol.109 , Issue.12 , pp. 3152-3160
    • Xu, C.1    Chai, W.2    Huang, Y.3    Markwald, R.R.4
  • 81
    • 84907332980 scopus 로고    scopus 로고
    • Bioprinting of artificial blood vessels: current approaches towards a demanding goal
    • Hoch E, Tovar GE, Borchers K. Bioprinting of artificial blood vessels: current approaches towards a demanding goal. European Journal of Cardio-Thoracic Surgery 2014;46(5):767–778.
    • (2014) European Journal of Cardio-Thoracic Surgery , vol.46 , Issue.5 , pp. 767-778
    • Hoch, E.1    Tovar, G.E.2    Borchers, K.3
  • 82
    • 84903769764 scopus 로고    scopus 로고
    • 3D nano/microfabrication techniques and nanobiomaterials for neural tissue regeneration
    • Zhu W, O'Brien C, O'Brien JR, Zhang LG. 3D nano/microfabrication techniques and nanobiomaterials for neural tissue regeneration. Nanomedicine 2014;9(6):859–875.
    • (2014) Nanomedicine , vol.9 , Issue.6 , pp. 859-875
    • Zhu, W.1    O'Brien, C.2    O'Brien, J.R.3    Zhang, L.G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.