-
2
-
-
33751182499
-
Application of inkjet printing to tissue engineering
-
Boland T, Xu T, Damon B, et al. 2006, Application of inkjet printing to tissue engineering. Biotechnology Journal, vol.1(9): 910-917. http://dx.doi.org/10.1002/biot.200600081.
-
(2006)
Biotechnology Journal
, vol.1
, Issue.9
, pp. 910-917
-
-
Boland, T.1
Xu, T.2
Damon, B.3
-
3
-
-
77955275038
-
Laser as-sisted bioprinting of engineered tissue with high cell density and microscale organization
-
Guillotin B, Souquet A, Catros S, et al. 2010, Laser as-sisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials, vol. 31(28): 7250-7256. http://dx.doi.org/10.1016/j.biomaterials.2010.05.055.
-
(2010)
Biomaterials
, vol.31
, Issue.28
, pp. 7250-7256
-
-
Guillotin, B.1
Souquet, A.2
Catros, S.3
-
4
-
-
13844256142
-
Multi-nozzle deposi-tion for construction of 3D biopolymer tissue scaffolds
-
Khalil S, Nam Jand Sun W, 2005, Multi-nozzle deposi-tion for construction of 3D biopolymer tissue scaffolds. Rapid Prototyping Journal, vol.11(1): 9-17. http://dx.doi.org/doi:10.1108/13552540510573347.
-
(2005)
Rapid Prototyping Journal
, vol.11
, Issue.1
, pp. 9-17
-
-
Khalil, S.1
Nam, J.2
Sun, W.3
-
5
-
-
77953627302
-
Recent trends and challenges in complex organ manufacturing
-
Wang X, Yan Yand Zhang R, 2009, Recent trends and challenges in complex organ manufacturing. Tissue En-gineering Part B: Reviews, vol.16(2): 189-197. http://dx.doi.org/10.1089/ten.teb.2009.0576.
-
(2009)
Tissue En-gineering Part B: Reviews
, vol.16
, Issue.2
, pp. 189-197
-
-
Wang, X.1
Yan, Y.2
Zhang, R.3
-
7
-
-
84874306090
-
In situ bioprinting of the skin for burns
-
Binder KW, Zhao W, Aboushwareb T, et al. 2010, In situ bioprinting of the skin for burns. Journal of the American College of Surgeons, vol.211(3): S76. http://dx.doi.org/10.1016/j.jamcollsurg.2010.06.198.
-
(2010)
Journal of the American College of Surgeons
, vol.211
, Issue.3
, pp. S76
-
-
Binder, K.W.1
Zhao, W.2
Aboushwareb, T.3
-
8
-
-
84869086865
-
Design, construction and performance of a portable handheld electrohydrodynamic multi-needle spray gun for bio-medical applications
-
Sofokleous P, Stride E, Bonfield W, et al. 2013, Design, construction and performance of a portable handheld electrohydrodynamic multi-needle spray gun for bio-medical applications. Materials Science and Engineer-ing: C, vol.33(1): 213-223. http://dx.doi.org/10.1016/j.msec.2012.08.033.
-
(2013)
Materials Science and Engineer-ing: C
, vol.33
, Issue.1
, pp. 213-223
-
-
Sofokleous, P.1
Stride, E.2
Bonfield, W.3
-
9
-
-
77951245659
-
In vivo bioprinting for computer-and robotic-assisted medical intervention: preliminary study in mice
-
Keriquel V, Guillemot F, Arnault I, et al. 2010, In vivo bioprinting for computer-and robotic-assisted medical intervention: preliminary study in mice. Biofabrication, vol.2(1): 014101. http://dx.doi.org/10.1088/1758-5082/2/1/014101.
-
(2010)
Biofabrication
, vol.2
, Issue.1
, pp. 014101
-
-
Keriquel, V.1
Guillemot, F.2
Arnault, I.3
-
10
-
-
79952108287
-
Addi-tive manufacturing for in situ repair of osteochondral defects
-
Cohen DL, Lipton JI, Bonassar LJ, et al. 2010, Addi-tive manufacturing for in situ repair of osteochondral defects. Biofabrication, vol.2(3): 035004. http://dx.doi.org/10.1088/1758-5082/2/3/035004.
-
(2010)
Biofabrication
, vol.2
, Issue.3
, pp. 035004
-
-
Cohen, D.L.1
Lipton, J.I.2
Bonassar, L.J.3
-
11
-
-
84856569253
-
Self-attaching and cell-attracting in-situ forming dex-tran-tyramine conjugates hydrogels for arthroscopic car-tilage repair
-
Moreira Teixeira LS, Bijl S, Pully VV, et al. 2012, Self-attaching and cell-attracting in-situ forming dex-tran-tyramine conjugates hydrogels for arthroscopic car-tilage repair. Biomaterials, vol.33(11): 3164-3174. http://dx.doi.org/10.1016/j.biomaterials.2012.01.001.
-
(2012)
Biomaterials
, vol.33
, Issue.11
, pp. 3164-3174
-
-
Moreira Teixeira, L.S.1
Bijl, S.2
Pully, V.V.3
-
13
-
-
77957670564
-
An in situ formed biodegradable hydrogel for reconstruction of the corneal endothelium
-
Liang Y, Liu W, Han B, et al. 2011, An in situ formed biodegradable hydrogel for reconstruction of the corneal endothelium. Colloids and Surfaces. B, Biointerfaces, vol.82(1): 1-7. http://media.uow.edu.au/news/UOW162803.html> http://dx.doi.org/10.1016/j.colsurfb.2010.07.043.
-
(2011)
Colloids and Surfaces. B, Biointerfaces
, vol.82
, Issue.1
, pp. 1-7
-
-
Liang, Y.1
Liu, W.2
Han, B.3
-
14
-
-
84904075137
-
Bioprinting for constructing microvascular sys-tems for organs, in Rapid Prototyping of Biomaterials: Principles and Applications
-
Xu T, Rodriguez-Devora JI, Reyna-Soriano D, et al. 2014, Bioprinting for constructing microvascular sys-tems for organs, in Rapid Prototyping of Biomaterials: Principles and Applications, Woodhead Publishing, Cambridge, 201-220.
-
(2014)
Woodhead Publishing, Cambridge
, pp. 201-220
-
-
Xu, T.1
Rodriguez-Devora, J.I.2
Reyna-Soriano, D.3
-
15
-
-
84924411549
-
Bioprinting tech-nology: a current state-of-the-art review
-
Dababneh AB and Ozbolat IT, 2014, Bioprinting tech-nology: a current state-of-the-art review. Journal of Manufacturing Science and Engineering, vol.136(6): 061016. http://dx.doi.org/10.1115/1.4028512.
-
(2014)
Journal of Manufacturing Science and Engineering
, vol.136
, Issue.6
, pp. 061016
-
-
Dababneh, A.B.1
Ozbolat, I.T.2
-
16
-
-
84880237098
-
Bioprinting toward organ fabrication: challenges and future trends
-
Ozbolat IT and Yu Y, 2013, Bioprinting toward organ fabrication: challenges and future trends. IEEE Transac-tions on Bio-medical Engineering, vol.60(3): 691-699. http://dx.doi.org/10.1109/tbme.2013.2243912.
-
(2013)
IEEE Transac-tions on Bio-medical Engineering
, vol.60
, Issue.3
, pp. 691-699
-
-
Ozbolat, I.T.1
Yu, Y.2
-
17
-
-
79952139373
-
Gela-tin-based laser direct-write technique for the precise spatial patterning of cells
-
Schiele NR, Chrisey DB and Corr DT, 2011, Gela-tin-based laser direct-write technique for the precise spatial patterning of cells. Tissue Engineering. Part C, Methods, vol.17(3): 289-298. http://dx.doi.org/10.1089/ten.TEC.2010.0442.
-
(2011)
Tissue Engineering. Part C, Methods
, vol.17
, Issue.3
, pp. 289-298
-
-
Schiele, N.R.1
Chrisey, D.B.2
Corr, D.T.3
-
18
-
-
78650294024
-
Bioprinting by laser-induced forward transfer for tissue engineering applications: jet formation modeling
-
Mezel C, Souquet A, Hallo L, et al. 2010, Bioprinting by laser-induced forward transfer for tissue engineering applications: jet formation modeling. Biofabrication, vol. 2(1): 014103. http://dx.doi.org/10.1088/1758-5082/2/1/014103.
-
(2010)
Biofabrication
, vol.2
, Issue.1
, pp. 014103
-
-
Mezel, C.1
Souquet, A.2
Hallo, L.3
-
19
-
-
77955276061
-
High-throughput laser printing of cells and biomaterials for tissue engineering
-
Guillemot F, Souquet A, Catros S, et al. 2010, High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomaterialia, vol.6(7): 2494-2500. http://dx.doi.org/10.1016/j.actbio.2009.09.029.
-
(2010)
Acta Biomaterialia
, vol.6
, Issue.7
, pp. 2494-2500
-
-
Guillemot, F.1
Souquet, A.2
Catros, S.3
-
20
-
-
33748922161
-
Adigital mi-cro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaf-folds
-
Lu Y, Mapili G, Suhali G, et al. 2006, A digital mi-cro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaf-folds. Journal of Biomedical Materials Research. Part A, vol.77(2): 396-405. http://dx.doi.org/10.1002/jbm.a.30601.
-
(2006)
Journal of Biomedical Materials Research. Part A
, vol.77
, Issue.2
, pp. 396-405
-
-
Lu, Y.1
Mapili, G.2
Suhali, G.3
-
21
-
-
77953651502
-
Are-view on stereolithography and its applications in bio-medical engineering
-
Melchels FP W, Feijen Jand Grijpma DW, 2010, A re-view on stereolithography and its applications in bio-medical engineering. Biomaterials, vol.31(24): 6121-6130. http://dx.doi.org/10.1016/j.biomaterials.2010.04.050.
-
(2010)
Biomaterials
, vol.31
, Issue.24
, pp. 6121-6130
-
-
Melchels F.P, W.1
Feijen, J.2
Grijpma, D.W.3
-
22
-
-
79960661039
-
-
Springer US, New York
-
Bártolo P, 2011, Stereolithographic Processes, in Stereo-lithography, Springer US, New York, 1-36. http://dx.doi.org/10.1007/978-0-387-92904-0_1.
-
(2011)
Stereolithographic Processes, in Stereo-lithography
, pp. 1-36
-
-
Bártolo, P.1
-
23
-
-
33645883539
-
Viability and electrophysiology of neural cell structures generated by the inkjet printing method
-
Xu T, Gregory CA, Molnar P, et al. 2006, Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials, vol.27(19): 3580-3588. http://dx.doi.org/10.1016/j.biomaterials.2006.01.048.
-
(2006)
Biomaterials
, vol.27
, Issue.19
, pp. 3580-3588
-
-
Xu, T.1
Gregory, C.A.2
Molnar, P.3
-
24
-
-
69649100202
-
Human microvasculature fa-brication using thermal inkjet printing technology
-
Cui Xand Boland T, 2009, Human microvasculature fa-brication using thermal inkjet printing technology. Bio-materials, vol.30(31): 6221-6227. http://dx.doi.org/10.1016/j.biomaterials.2009.07.056.
-
(2009)
Bio-materials
, vol.30
, Issue.31
, pp. 6221-6227
-
-
Cui, X.1
Boland, T.2
-
25
-
-
79952108545
-
Fabrication and characterization of bio-engineered cardiac pseudo tis-sues
-
Xu T, Baicu C, Aho M, et al. 2009, Fabrication and characterization of bio-engineered cardiac pseudo tis-sues. Biofabrication, vol.1(3): 035001. http://dx.doi.org/10.1088/1758-5082/1/3/035001.
-
(2009)
Biofabrication
, vol.1
, Issue.3
, pp. 035001
-
-
Xu, T.1
Baicu, C.2
Aho, M.3
-
26
-
-
84862869528
-
Areview of trends and limitations in hydrogel-rapid pro-totyping for tissue engineering
-
Billiet T, Vandenhaute M, Schelfhout J, et al. 2012, A review of trends and limitations in hydrogel-rapid pro-totyping for tissue engineering. Biomaterials, vol. 33(26): 6020-6041. http://dx.doi.org/10.1016/j.biomaterials.2012.04.050.
-
(2012)
Biomaterials
, vol.33
, Issue.26
, pp. 6020-6041
-
-
Billiet, T.1
Vandenhaute, M.2
Schelfhout, J.3
-
27
-
-
77952545276
-
Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture
-
Lee YB, Polio S, Lee W, et al. 2010, Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture. Experimental Neurology, vol. 223(2): 645-652. http://dx.doi.org/10.1016/j.expneurol.2010.02.014.
-
(2010)
Experimental Neurology
, vol.223
, Issue.2
, pp. 645-652
-
-
Lee, Y.B.1
Polio, S.2
Lee, W.3
-
28
-
-
84864459017
-
Bioprinting of a mechanically enhanced three-dimensional dual cell-la-den construct for osteochondral tissue engineering using a multi-head tissue/organ building system
-
Shim J-H, Lee J-S, Kim JY, et al. 2012, Bioprinting of a mechanically enhanced three-dimensional dual cell-la-den construct for osteochondral tissue engineering using a multi-head tissue/organ building system. Journal of Micromechanics and Microengineering, vol.22(8): 085014. http://dx.doi.org/10.1088/0960-1317/22/8/085014.
-
(2012)
Journal of Micromechanics and Microengineering
, vol.22
, Issue.8
, pp. 085014
-
-
Shim, J.-H.1
Lee, J.-S.2
Kim, J.Y.3
-
29
-
-
84901923061
-
Printing three-dim-ensional tissue analogues with decellularized extracel-lular matrix bioink
-
Pati F, Jang J, Ha D-H, et al. 2014, Printing three-dim-ensional tissue analogues with decellularized extracel-lular matrix bioink. Nature Communications, vol.5. http://dx.doi.org/10.1038/ncomms4935.
-
(2014)
Nature Communications
, vol.5
-
-
Pati, F.1
Jang, J.2
Ha, D.-H.3
-
30
-
-
84888369158
-
Development of 'Multi-arm Bioprinter' for hybrid biofabrication of tis-sue engineering constructs
-
Ozbolat IT, Chen Hand Yu Y, 2014, Development of 'Multi-arm Bioprinter' for hybrid biofabrication of tis-sue engineering constructs. Robotics and Comput-er-Integrated Manufacturing, vol.30(3): 295-304. http://dx.doi.org/10.1016/j.rcim.2013.10.005.
-
(2014)
Robotics and Comput-er-Integrated Manufacturing
, vol.30
, Issue.3
, pp. 295-304
-
-
Ozbolat, I.T.1
Chen, H.2
Yu, Y.3
-
31
-
-
84862648665
-
Additive manufacturing of tissues and organs
-
Melchels FP W, Domingos MA N, Klein TJ, et al. 2012, Additive manufacturing of tissues and organs. Progress in Polymer Science, vol.37(8): 1079-1104. http://dx.doi.org/10.1016/j.progpolymsci.2011.11.007.
-
(2012)
Progress in Polymer Science
, vol.37
, Issue.8
, pp. 1079-1104
-
-
Melchels F.P, W.1
Domingos M.A, N.2
Klein, T.J.3
-
32
-
-
0029311025
-
Educational goals for biomaterials science and engineering: Prospective view
-
Von Recum AF and Laberge M, 1995, Educational goals for biomaterials science and engineering: Prospective view. Journal of Applied Biomaterials, vol.6(2): 137-144. http://dx.doi.org/10.1002/jab.770060209.
-
(1995)
Journal of Applied Biomaterials
, vol.6
, Issue.2
, pp. 137-144
-
-
Von Recum, A.F.1
Laberge, M.2
-
33
-
-
84920989984
-
Long-term culture of genome-stable bipotent stem cells from adult human liver
-
Huch M, Gehart H, van Boxtel R, et al. 2015, Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell, vol.160(1-2): 299-312. http://dx.doi.org/10.1016/j.cell.2014.11.050.
-
(2015)
Cell
, vol.160
, Issue.1-2
, pp. 299-312
-
-
Huch, M.1
Gehart, H.2
van Boxtel, R.3
-
34
-
-
77953025978
-
Cell-laden microengineered gelatin methacrylate hydrogels
-
Nichol JW, Koshy ST, Bae H, et al. 2010, Cell-laden microengineered gelatin methacrylate hydrogels. Bio-materials, vol.31(21): 5536-5544. http://dx.doi.org/10.1016/j.biomaterials.2010.03.064.
-
(2010)
Bio-materials
, vol.31
, Issue.21
, pp. 5536-5544
-
-
Nichol, J.W.1
Koshy, S.T.2
Bae, H.3
-
35
-
-
55249106125
-
The effect of photopolymerization on stem cells embedded in hydrogels
-
Fedorovich NE, Oudshoorn MH, van Geemen D, et al. 2009, The effect of photopolymerization on stem cells embedded in hydrogels. Biomaterials, vol.30(3): 344-353. http://dx.doi.org/10.1016/j.biomaterials.2008.09.037.
-
(2009)
Biomaterials
, vol.30
, Issue.3
, pp. 344-353
-
-
Fedorovich, N.E.1
Oudshoorn, M.H.2
van Geemen, D.3
-
36
-
-
79551573106
-
Me-thods for photocrosslinking alginate hydrogel scaffolds with high cell viability
-
Rouillard AD, Berglund CM, Lee JY, et al. 2011, Me-thods for photocrosslinking alginate hydrogel scaffolds with high cell viability. Tissue Engineering. Part C, Methods, vol.17(2): 173-179. http://dx.doi.org/10.1089/ten.TEC.2009.0582.
-
(2011)
Tissue Engineering. Part C, Methods
, vol.17
, Issue.2
, pp. 173-179
-
-
Rouillard, A.D.1
Berglund, C.M.2
Lee, J.Y.3
-
37
-
-
84888637406
-
Abiomimetic extracellular matrix for cartilage tissue engineering centered on photocurable gelatin, hyaluron-ic acid and chondroitin sulfate
-
Levett PA, Melchels FP W, Schrobback K, et al. 2014, A biomimetic extracellular matrix for cartilage tissue engineering centered on photocurable gelatin, hyaluron-ic acid and chondroitin sulfate. Acta Biomaterialia, vol. 10(1): 214-223. http://dx.doi.org/10.1016/j.actbio.2013.10.005.
-
(2014)
Acta Biomaterialia
, vol.10
, Issue.1
, pp. 214-223
-
-
Levett, P.A.1
Melchels F.P, W.2
Schrobback, K.3
-
38
-
-
84864217932
-
Gelatin methacrylate as a promising hydrogel for 3D microscale organization and proliferation of dielectro-phoretically patterned cells
-
Ramon-Azcon J, Ahadian S, Obregon R, et al. 2012, Gelatin methacrylate as a promising hydrogel for 3D microscale organization and proliferation of dielectro-phoretically patterned cells. Lab on a Chip, vol.12(16): 2959-2969. http://dx.doi.org/10.1039/C2LC40213K.
-
(2012)
Lab on a Chip
, vol.12
, Issue.16
, pp. 2959-2969
-
-
Ramon-Azcon, J.1
Ahadian, S.2
Obregon, R.3
-
39
-
-
84867139967
-
Directed endothelial cell morphogenesis in micropatterned gela-tin methacrylate hydrogels
-
Nikkhah M, Eshak N, Zorlutuna P, et al. 2012, Directed endothelial cell morphogenesis in micropatterned gela-tin methacrylate hydrogels. Biomaterials, vol.33(35): 9009-9018. http://dx.doi.org/10.1016/j.biomaterials.2012.08.068.
-
(2012)
Biomaterials
, vol.33
, Issue.35
, pp. 9009-9018
-
-
Nikkhah, M.1
Eshak, N.2
Zorlutuna, P.3
-
40
-
-
84861143986
-
Functional human vascular network generated in photocrosslinkable gela-tin methacrylate hydrogels
-
Chen Y-C, Lin R-Z, Qi H, et al. 2012, Functional human vascular network generated in photocrosslinkable gela-tin methacrylate hydrogels. Advanced Functional Mate-rials, vol.22(10): 2027-2039. http://dx.doi.org/10.1002/adfm.201101662.
-
(2012)
Advanced Functional Mate-rials
, vol.22
, Issue.10
, pp. 2027-2039
-
-
Chen, Y.-C.1
Lin, R.-Z.2
Qi, H.3
-
41
-
-
84862808511
-
Microfabri-cation of complex porous tissue engineering scaffolds using 3D projection stereolithography
-
Gauvin R, Chen YC, Lee JW, et al. 2012, Microfabri-cation of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials, vol. 33(15): 3824-3834. http://dx.doi.org/10.1016/j.biomaterials.2012.01.048.
-
(2012)
Biomaterials
, vol.33
, Issue.15
, pp. 3824-3834
-
-
Gauvin, R.1
Chen, Y.C.2
Lee, J.W.3
-
42
-
-
85164071020
-
Algi-nate bioprinting as a template for 3D bacterial cellulose scaffolds growth for bone healing applications
-
Zaborowska M, Sundberg J, Vest N, et al. 2010, Algi-nate bioprinting as a template for 3D bacterial cellulose scaffolds growth for bone healing applications. Ab-stracts of Papers of the American Chemical Society, vol.239.
-
(2010)
Ab-stracts of Papers of the American Chemical Society
, vol.239
-
-
Zaborowska, M.1
Sundberg, J.2
Vest, N.3
-
43
-
-
77954494231
-
Bioprinting endothelial cells with alginate for 3D tissue Constructs
-
Khalil Sand Sun W, 2009, Bioprinting endothelial cells with alginate for 3D tissue Constructs. Journal of Bio-mechanical Engineering, vol.131(11): 111002. http://dx.doi.org/10.1115/1.3128729.
-
(2009)
Journal of Bio-mechanical Engineering
, vol.131
, Issue.11
, pp. 111002
-
-
Khalil, S.1
Sun, W.2
-
44
-
-
84996428483
-
Direct bioprinting of alginate-based tubular constructs using multi-nozzle ex-trusion-based technique
-
Tan YS E and Yeong WY, 2014, Direct bioprinting of alginate-based tubular constructs using multi-nozzle ex-trusion-based technique. 1st International Conference on Progress in Additive Manufacturing, http://dx.doi.org/10.3850/978-981-09-0446-3_093.
-
(2014)
1st International Conference on Progress in Additive Manufacturing
-
-
Tan Y.S, E.1
Yeong, W.Y.2
-
45
-
-
84908222844
-
Engineering alginate as bioink for bioprinting
-
Jia J, Richards DJ, Pollard S, et al. 2014, Engineering alginate as bioink for bioprinting. Acta Biomaterialia, vol.10(10): 4323-4331. http://dx.doi.org/10.1016/j.actbio.2014.06.034.
-
(2014)
Acta Biomaterialia
, vol.10
, Issue.10
, pp. 4323-4331
-
-
Jia, J.1
Richards, D.J.2
Pollard, S.3
-
46
-
-
81855185474
-
Sodium algi-nate hydrogel-based bioprinting using a novel multinoz-zle bioprinting system
-
Song S-J, Choi J, Park Y-D, et al. 2011, Sodium algi-nate hydrogel-based bioprinting using a novel multinoz-zle bioprinting system. Artificial Organs, vol.35(11): 1132-1136. http://dx.doi.org/10.1111/j.1525-1594.2011.01377.x.
-
(2011)
Artificial Organs
, vol.35
, Issue.11
, pp. 1132-1136
-
-
Song, S.-J.1
Choi, J.2
Park, Y.-D.3
-
47
-
-
84884211629
-
3D Bi-oprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels
-
Duan B, Hockaday LA, Kang KH, et al. 2013, 3D Bi-oprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. Journal of Biomedical Mate-rials Research Part A, vol.101A(5): 1255-1264. http://dx.doi.org/10.1002/jbm.a.34420.
-
(2013)
Journal of Biomedical Mate-rials Research Part A
, vol.101A
, Issue.5
, pp. 1255-1264
-
-
Duan, B.1
Hockaday, L.A.2
Kang, K.H.3
-
48
-
-
80051827430
-
In-jectable in situ crosslinkable RGD-modified alginate matrix for endothelial cells delivery
-
Bidarra SJ, Barrias CC, Fonseca KB, et al. 2011, In-jectable in situ crosslinkable RGD-modified alginate matrix for endothelial cells delivery. Biomaterials, vol. 32(31): 7897-7904. http://dx.doi.org/10.1016/j.biomaterials.2011.07.013.
-
(2011)
Biomaterials
, vol.32
, Issue.31
, pp. 7897-7904
-
-
Bidarra, S.J.1
Barrias, C.C.2
Fonseca, K.B.3
-
49
-
-
77954384544
-
The use of human mesenchymal stem cells encapsulated in RGD modified alginate microspheres in the repair of myocardial infarc-tion in the rat
-
Yu J, Du KT, Fang Q, et al. 2010, The use of human mesenchymal stem cells encapsulated in RGD modified alginate microspheres in the repair of myocardial infarc-tion in the rat. Biomaterials, vol.31(27): 7012-7020. http://dx.doi.org/10.1016/j.biomaterials.2010.05.078.
-
(2010)
Biomaterials
, vol.31
, Issue.27
, pp. 7012-7020
-
-
Yu, J.1
Du, K.T.2
Fang, Q.3
-
50
-
-
84899574160
-
Acomparative study on collagen type Iand hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting
-
Park JY, Choi JC, Shim JH, et al. 2014, A comparative study on collagen type Iand hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting. Bio-fabrication, vol.6(3): 035004. http://dx.doi.org/10.1088/1758-5082/6/3/035004.
-
(2014)
Bio-fabrication
, vol.6
, Issue.3
, pp. 035004
-
-
Park, J.Y.1
Choi, J.C.2
Shim, J.H.3
-
51
-
-
84923169710
-
Rapid formation of a supramolecular polypeptide-DNA hy-drogel for in situ three-dimensional multilayer bioprint-ing
-
Li C, Faulkner-Jones A, Dun AR, et al. 2015, Rapid formation of a supramolecular polypeptide-DNA hy-drogel for in situ three-dimensional multilayer bioprint-ing. Angewandte Chemie International Edition, vol. 54(13): 3957-3961. http://dx.doi.org/10.1002/anie.201411383.
-
(2015)
Angewandte Chemie International Edition
, vol.54
, Issue.13
, pp. 3957-3961
-
-
Li, C.1
Faulkner-Jones, A.2
Dun, A.R.3
-
52
-
-
84896549846
-
Tunable hy-drogel composite with two-step processing in combina-tion with innovative hardware upgrade for cell-based three-dimensional bioprinting
-
Wüst S, Godla ME, Müller R, et al. 2014, Tunable hy-drogel composite with two-step processing in combina-tion with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomaterialia, vol. 10(2): 630-640. http://dx.doi.org/10.1016/j.actbio.2013.10.016.
-
(2014)
Acta Biomaterialia
, vol.10
, Issue.2
, pp. 630-640
-
-
Wüst, S.1
Godla, M.E.2
Müller, R.3
-
53
-
-
60549108145
-
Or-gan printing: Tissue spheroids as building blocks
-
Mironov V, Visconti RP, Kasyanov V, et al. 2009, Or-gan printing: Tissue spheroids as building blocks. Bio-materials, vol.30(12): 2164-2174. http://dx.doi.org/10.1016/j.biomaterials.2008.12.084.
-
(2009)
Bio-materials
, vol.30
, Issue.12
, pp. 2164-2174
-
-
Mironov, V.1
Visconti, R.P.2
Kasyanov, V.3
-
54
-
-
77953688143
-
Anovel concept for scaffold-free vessel tissue engineering: Self-assembly of microtissue building blocks
-
Kelm JM, Lorber V, Snedeker JG, et al. 2010, A novel concept for scaffold-free vessel tissue engineering: Self-assembly of microtissue building blocks. Journal of Biotechnology, vol.148(1): 46-55. http://dx.doi.org/10.1016/j.jbiotec.2010.03.002.
-
(2010)
Journal of Biotechnology
, vol.148
, Issue.1
, pp. 46-55
-
-
Kelm, J.M.1
Lorber, V.2
Snedeker, J.G.3
-
55
-
-
79955033758
-
Nanofibrous hollow microspheres self-assembled from star-shaped polymers as injectable cell carriers for knee repair
-
Liu X, Jin Xand Ma PX, 2011, Nanofibrous hollow microspheres self-assembled from star-shaped polymers as injectable cell carriers for knee repair. Nature Mate-rials, vol.10(5): 398-406.
-
(2011)
Nature Mate-rials
, vol.10
, Issue.5
, pp. 398-406
-
-
Liu, X.1
Jin, X.2
Ma, P.X.3
-
56
-
-
44349145918
-
Gelation of particles with short-range attraction
-
Lu PJ, Zaccarelli E, Ciulla F, et al. 2008, Gelation of particles with short-range attraction. Nature, vol. 453(7194): 499-503.
-
(2008)
Nature
, vol.453
, Issue.7194
, pp. 499-503
-
-
Lu, P.J.1
Zaccarelli, E.2
Ciulla, F.3
-
57
-
-
84884151261
-
Scalable Biofabrication of Tissue Spheroids for Organ Printing
-
Rezende RA, Pereira FD A S, Kasyanov V, et al. 2013, Scalable Biofabrication of Tissue Spheroids for Organ Printing. Procedia CIRP, vol.5(0): 276-281. http://dx.doi.org/10.1016/j.procir.2013.01.054.
-
(2013)
Procedia CIRP
, vol.5
, pp. 276-281
-
-
Rezende, R.A.1
Pereira, F.D.A.S.2
Kasyanov, V.3
-
58
-
-
79951678150
-
Purpose-driven biomaterials research in liver-tissue en-gineering
-
Ananthanarayanan A, Narmada BC, Mo X, et al. 2011, Purpose-driven biomaterials research in liver-tissue en-gineering. Trends in Biotechnology, vol.29(3): 110-118. http://dx.doi.org/10.1016/j.tibtech.2010.10.006.
-
(2011)
Trends in Biotechnology
, vol.29
, Issue.3
, pp. 110-118
-
-
Ananthanarayanan, A.1
Narmada, B.C.2
Mo, X.3
-
59
-
-
33645651901
-
Future trends in minimally invasive surgery
-
quiz 1019-1022
-
Bragg K, Vanbalen Nand Cook N, 2005, Future trends in minimally invasive surgery. AORN Journal, vol. 82(6): 1006-1014, 1016-1008; quiz 1019-1022. http://dx.doi.org/10.1016/S0001-2092(06)60252-4.
-
(2005)
AORN Journal
, vol.82
, Issue.6
-
-
Bragg, K.1
Vanbalen, N.2
Cook, N.3
-
60
-
-
0346994782
-
Minimally invasive tis-sue engineering composites and cell printing
-
Burg KJ L and Boland T, 2003, Minimally invasive tis-sue engineering composites and cell printing. Engineer-ing in Medicine and Biology Magazine, IEEE, vol.22(5): 84-91. http://dx.doi.org/10.1109/MEMB.2003.1256277.
-
(2003)
Engineer-ing in Medicine and Biology Magazine, IEEE
, vol.22
, Issue.5
, pp. 84-91
-
-
Burg K.J, L.1
Boland, T.2
-
61
-
-
84878624399
-
Autologous collagen-induced chondrogenesis: single-stage arthros-copic cartilage repair technique
-
Shetty AA, Kim SJ, Bilagi P, et al. 2013, Autologous collagen-induced chondrogenesis: single-stage arthros-copic cartilage repair technique. Orthopedics, vol. 36(5): e648-652. http://dx.doi.org/10.3928/01477447-20130426-30.
-
(2013)
Orthopedics
, vol.36
, Issue.5
-
-
Shetty, A.A.1
Kim, S.J.2
Bilagi, P.3
-
62
-
-
84896489412
-
Biological va-riability in biomechanical engineering research: Signi-ficance and meta-analysis of current modeling practices
-
Cook D, Julias Mand Nauman E, 2014, Biological va-riability in biomechanical engineering research: Signi-ficance and meta-analysis of current modeling practices. Journal of Biomechanics, vol.47(6): 1241-1250. http://dx.doi.org/10.1016/j.jbiomech.2014.01.040.
-
(2014)
Journal of Biomechanics
, vol.47
, Issue.6
, pp. 1241-1250
-
-
Cook, D.1
Julias, M.2
Nauman, E.3
-
63
-
-
84925047614
-
Development of high speed and high accuracy 3D dental intra oral scanner
-
Hong-Seok Pand Chintal S, 2015, Development of high speed and high accuracy 3D dental intra oral scanner. Procedia Engineering, vol.100: 1174-1181. http://dx.doi.org/10.1016/j.proeng.2015.01.481.
-
(2015)
Procedia Engineering
, vol.100
, pp. 1174-1181
-
-
Hong-Seok, P.1
Chintal, S.2
-
64
-
-
84922752764
-
Imaging strategies for tissue engineering applications
-
Nam SY, Ricles LM, Suggs LJ, et al. 2014, Imaging strategies for tissue engineering applications. Tissue En-gineering Part B: Reviews, vol.21(1): 88-102. http://dx.doi.org/10.1089/ten.teb.2014.0180.
-
(2014)
Tissue En-gineering Part B: Reviews
, vol.21
, Issue.1
, pp. 88-102
-
-
Nam, S.Y.1
Ricles, L.M.2
Suggs, L.J.3
|