메뉴 건너뛰기




Volumn 9, Issue 11, 2015, Pages 1286-1297

An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering

Author keywords

Additive manufacturing; Cartilage regeneration; Cell printing; Cell printed scaffold; Tissue engineering

Indexed keywords

3D PRINTERS; ALGINATE; BODY FLUIDS; CARTILAGE; CELL ENGINEERING; COLLAGEN; CYTOLOGY; DEPOSITION; POLYCAPROLACTONE; SCAFFOLDS (BIOLOGY); SELF ASSEMBLY; TISSUE REGENERATION;

EID: 84946497789     PISSN: 19326254     EISSN: 19327005     Source Type: Journal    
DOI: 10.1002/term.1682     Document Type: Article
Times cited : (468)

References (48)
  • 1
    • 70649106738 scopus 로고    scopus 로고
    • Treatment of cartilage defects in the knee using alginate beads containing human mature allogeneic chondrocytes
    • Almqvist KF, Dhollander AA, Verdonk PC, et al. 2009; Treatment of cartilage defects in the knee using alginate beads containing human mature allogeneic chondrocytes. Am J Sports Med 37: 1920-1929.
    • (2009) Am J Sports Med , vol.37 , pp. 1920-1929
    • Almqvist, K.F.1    Dhollander, A.A.2    Verdonk, P.C.3
  • 2
    • 58149186449 scopus 로고    scopus 로고
    • The relationship between the mechanical properties and cell behavior on PLGA and PCL scaffolds for bladder tissue engineering
    • Baker SC, Rohman G, Southgate J, et al. 2009; The relationship between the mechanical properties and cell behavior on PLGA and PCL scaffolds for bladder tissue engineering. Biomaterials 30: 1321-1328.
    • (2009) Biomaterials , vol.30 , pp. 1321-1328
    • Baker, S.C.1    Rohman, G.2    Southgate, J.3
  • 3
    • 1542741004 scopus 로고    scopus 로고
    • Application of laser printing to mammalian cells
    • Barron JA, Ringeisen BR, Kim H, et al. 2004; Application of laser printing to mammalian cells. Thin Solid Films 453: 383-387.
    • (2004) Thin Solid Films , vol.453 , pp. 383-387
    • Barron, J.A.1    Ringeisen, B.R.2    Kim, H.3
  • 4
    • 33751182499 scopus 로고    scopus 로고
    • Application of inkjet printing to tissue engineering
    • Boland T, Xu T, Damon B, et al. 2006; Application of inkjet printing to tissue engineering. Biotechnol J 1: 910-917.
    • (2006) Biotechnol J , vol.1 , pp. 910-917
    • Boland, T.1    Xu, T.2    Damon, B.3
  • 5
    • 0036289353 scopus 로고    scopus 로고
    • Biological response of chondrocytes to hydrogels
    • Elisseeff JH, Lee A, Kleinman HK, et al. 2002; Biological response of chondrocytes to hydrogels. Ann NY Acad Sci 961: 118-122.
    • (2002) Ann NY Acad Sci , vol.961 , pp. 118-122
    • Elisseeff, J.H.1    Lee, A.2    Kleinman, H.K.3
  • 6
    • 33847090946 scopus 로고    scopus 로고
    • Porous gelatin-chondroitin-hyaluronate tri-copolymer scaffolds containing microspheres loaded with TGF
    • Fan H, Hu Y, Qin L, et al. 2006; Porous gelatin-chondroitin-hyaluronate tri-copolymer scaffolds containing microspheres loaded with TGF. J Biomed Mater Res A 77: 785-794.
    • (2006) J Biomed Mater Res A , vol.77 , pp. 785-794
    • Fan, H.1    Hu, Y.2    Qin, L.3
  • 7
    • 0022552896 scopus 로고
    • Improved quantitation and discrimination of sulphated glycosaminoglycans by the use of dimethylmethylene blue
    • Farndale R, Buttle D, Barrett A. 1986; Improved quantitation and discrimination of sulphated glycosaminoglycans by the use of dimethylmethylene blue. Biochim Biophys Acta 883: 173-177.
    • (1986) Biochim Biophys Acta , vol.883 , pp. 173-177
    • Farndale, R.1    Buttle, D.2    Barrett, A.3
  • 8
  • 9
    • 77955276061 scopus 로고    scopus 로고
    • High-throughput laser printing of cells and biomaterials for tissue engineering
    • Guillermot F, Souquet A, Catros S, et al. 2010; High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomater 6: 2494-2500.
    • (2010) Acta Biomater , vol.6 , pp. 2494-2500
    • Guillermot, F.1    Souquet, A.2    Catros, S.3
  • 10
    • 84855290958 scopus 로고    scopus 로고
    • Regenerative therapies using cell sheet-based tissue engineering for cardiac disease
    • Haraguchi Y, Shimizu T, Yamato M, et al. 2011; Regenerative therapies using cell sheet-based tissue engineering for cardiac disease. Cardiol Res Pract 2011: 845170.
    • (2011) Cardiol Res Pract , vol.2011 , pp. 845170
    • Haraguchi, Y.1    Shimizu, T.2    Yamato, M.3
  • 11
    • 0028140546 scopus 로고
    • Phenotypic stability of bovine articular chondrocytes after long-term culture in alginate beads
    • Hauselmann HJ, Fernandes RJ, Mok SS, et al. 1994; Phenotypic stability of bovine articular chondrocytes after long-term culture in alginate beads. J Cell Sci 107: 17-27.
    • (1994) J Cell Sci , vol.107 , pp. 17-27
    • Hauselmann, H.J.1    Fernandes, R.J.2    Mok, S.S.3
  • 12
    • 0035683866 scopus 로고    scopus 로고
    • Hydrogels for biomedical applications
    • Hoffman AS. 2001; Hydrogels for biomedical applications. Ann NY Acad Sci 944: 62-73.
    • (2001) Ann NY Acad Sci , vol.944 , pp. 62-73
    • Hoffman, A.S.1
  • 13
    • 21844438003 scopus 로고    scopus 로고
    • Porous scaffold design for tissue engineering
    • Hollister SJ. 2005; Porous scaffold design for tissue engineering. Nat Mater 4: 518-524.
    • (2005) Nat Mater , vol.4 , pp. 518-524
    • Hollister, S.J.1
  • 14
    • 3042782581 scopus 로고    scopus 로고
    • Scaffold based tissue engineering: rationale for computer aided design and solid free form fabrication systems
    • Hutmacher DW, Sittinger M, Risnud MV. 2004; Scaffold based tissue engineering: rationale for computer aided design and solid free form fabrication systems. Trends Biotechnol 22: 354-362.
    • (2004) Trends Biotechnol , vol.22 , pp. 354-362
    • Hutmacher, D.W.1    Sittinger, M.2    Risnud, M.V.3
  • 15
    • 0035054981 scopus 로고    scopus 로고
    • Scaffold design and fabrication technologies for engineering tissues - state of the art and future perspectives
    • Hutmacher DW. 2001; Scaffold design and fabrication technologies for engineering tissues - state of the art and future perspectives. J Biomater Sci Polym Ed 12: 107-124.
    • (2001) J Biomater Sci Polym Ed , vol.12 , pp. 107-124
    • Hutmacher, D.W.1
  • 16
    • 61549109884 scopus 로고    scopus 로고
    • Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties
    • Jeon O, Bouhadir KH, Mansour JM, et al. 2009; Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties. Biomaterials 30: 2724-2734.
    • (2009) Biomaterials , vol.30 , pp. 2724-2734
    • Jeon, O.1    Bouhadir, K.H.2    Mansour, J.M.3
  • 17
    • 84863370392 scopus 로고    scopus 로고
    • Projection image-generation algorithm for fabrication of a complex structure using projection-based microstereolithography
    • Jung JW, Kang HW, Kang TY, et al. 2012; Projection image-generation algorithm for fabrication of a complex structure using projection-based microstereolithography. Int J Precis Eng Manuf 13: 445-449.
    • (2012) Int J Precis Eng Manuf , vol.13 , pp. 445-449
    • Jung, J.W.1    Kang, H.W.2    Kang, T.Y.3
  • 18
    • 79251545490 scopus 로고    scopus 로고
    • Effect of a scaffold fabricated thermally from acetylated PLGA on the formation of engineered cartilage
    • Kang S-W, Lee S-J, Kim J-S, et al. 2011; Effect of a scaffold fabricated thermally from acetylated PLGA on the formation of engineered cartilage. Macromol Biosci 11: 267-274.
    • (2011) Macromol Biosci , vol.11 , pp. 267-274
    • Kang, S.-W.1    Lee, S.-J.2    Kim, J.-S.3
  • 19
    • 77954494231 scopus 로고    scopus 로고
    • Bioprinting endothelial cells with alginate for 3D tissue constructs
    • Khalil S, Sun W. 2009; Bioprinting endothelial cells with alginate for 3D tissue constructs. J Biomech Eng 131: 111002-111009.
    • (2009) J Biomech Eng , vol.131 , pp. 111002-111009
    • Khalil, S.1    Sun, W.2
  • 20
    • 0042887458 scopus 로고    scopus 로고
    • Experimental model for cartilage tissue engineering to regenerate the zonal organization of articular cartilage
    • Kim TK, Sharma B, Williams CG, et al. 2003; Experimental model for cartilage tissue engineering to regenerate the zonal organization of articular cartilage. Osteoarthr Cartilage 11, 653-664.
    • (2003) Osteoarthr Cartilage , vol.11 , pp. 653-664
    • Kim, T.K.1    Sharma, B.2    Williams, C.G.3
  • 21
    • 0023739392 scopus 로고
    • Fluorometric assay of DNA in cartilage explants using Hoechst 33258
    • Kim Y, Sah RL, Doong JY, et al. 1988; Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal Biochem 174: 168.
    • (1988) Anal Biochem , vol.174 , pp. 168
    • Kim, Y.1    Sah, R.L.2    Doong, J.Y.3
  • 22
    • 70349954683 scopus 로고    scopus 로고
    • Tissue engineering of articular cartilage with biomimetic zones
    • Klein TJ, Malda J, Sah RL, et al. 2009; Tissue engineering of articular cartilage with biomimetic zones. Tissue Eng 15: 143-157.
    • (2009) Tissue Eng , vol.15 , pp. 143-157
    • Klein, T.J.1    Malda, J.2    Sah, R.L.3
  • 23
    • 0027595948 scopus 로고
    • Tissue engineering
    • Langer R, Vacanti JP. 1993; Tissue engineering. Science 260: 920-926.
    • (1993) Science , vol.260 , pp. 920-926
    • Langer, R.1    Vacanti, J.P.2
  • 24
    • 33751509693 scopus 로고    scopus 로고
    • The effect of 3D construction culture of human chondrocytes using alginate sponge
    • Lee JS, Kim B, Kim MS, et al. 2006; The effect of 3D construction culture of human chondrocytes using alginate sponge. Key Eng Mat 326: 883-888.
    • (2006) Key Eng Mat , vol.326 , pp. 883-888
    • Lee, J.S.1    Kim, B.2    Kim, M.S.3
  • 25
    • 78651295388 scopus 로고    scopus 로고
    • Evaluating cell proliferation based on internal pore size and 3D scaffold architecture fabricated using solid freeform fabrication technology
    • Lee J-W, Ahn G, Kim J-Y, et al. 2010a; Evaluating cell proliferation based on internal pore size and 3D scaffold architecture fabricated using solid freeform fabrication technology. J Mater Sci Mater M 21: 3195-3205.
    • (2010) J Mater Sci Mater M , vol.21 , pp. 3195-3205
    • Lee, J.-W.1    Ahn, G.2    Kim, J.-Y.3
  • 26
    • 78549257386 scopus 로고    scopus 로고
    • Bone regeneration using a microstereolithography produced customized poly(propylene fumarate) diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres
    • Lee J-W, Kang K-S, Lee SH, et al. 2011; Bone regeneration using a microstereolithography produced customized poly(propylene fumarate) diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres. Biomaterials 32: 744-752.
    • (2011) Biomaterials , vol.32 , pp. 744-752
    • Lee, J.-W.1    Kang, K.-S.2    Lee, S.H.3
  • 27
    • 80051585972 scopus 로고    scopus 로고
    • Solid free-form fabrication technology and its application to bone tissue engineering
    • Lee J-W, Kim J-Y, Cho D-W. 2010b; Solid free-form fabrication technology and its application to bone tissue engineering. Inter J Stem Cells 3: 85-93.
    • (2010) Inter J Stem Cells , vol.3 , pp. 85-93
    • Lee, J.-W.1    Kim, J.-Y.2    Cho, D.-W.3
  • 29
    • 0242668870 scopus 로고    scopus 로고
    • Organ printing: computer-aided jet based 3D tissue engineering
    • Mironov V, Boland T, Trusk T, et al. 2003; Organ printing: computer-aided jet based 3D tissue engineering. Trends Biotechnol 21: 157-161.
    • (2003) Trends Biotechnol , vol.21 , pp. 157-161
    • Mironov, V.1    Boland, T.2    Trusk, T.3
  • 31
    • 60549108145 scopus 로고    scopus 로고
    • Organ printing: tissue spheroids as building blocks
    • Mironov V, Visconti RP, Kasyanov V, et al. 2009; Organ printing: tissue spheroids as building blocks. Biomaterials 30: 2164-2174.
    • (2009) Biomaterials , vol.30 , pp. 2164-2174
    • Mironov, V.1    Visconti, R.P.2    Kasyanov, V.3
  • 32
    • 36249018346 scopus 로고    scopus 로고
    • In vivo cultivation of human articular chondrocytes in a nude mouse-based contained defect organ culture model
    • Mueller-Rath R, Gavénis K, Gravius S, et al. 2007; In vivo cultivation of human articular chondrocytes in a nude mouse-based contained defect organ culture model. Biomed Mater Eng 17: 357-366.
    • (2007) Biomed Mater Eng , vol.17 , pp. 357-366
    • Mueller-Rath, R.1    Gavénis, K.2    Gravius, S.3
  • 33
    • 70350100448 scopus 로고    scopus 로고
    • Characterization of cell viability during bioprinting processes
    • Nair K, Gandhi M, Khalil S, et al. 2009; Characterization of cell viability during bioprinting processes. Biotechnol J 4: 1168-1177.
    • (2009) Biotechnol J , vol.4 , pp. 1168-1177
    • Nair, K.1    Gandhi, M.2    Khalil, S.3
  • 34
    • 33947322958 scopus 로고    scopus 로고
    • Inkjet bioprinting as an effective tool for tissue fabrication
    • Nakamura M, Nishiyama Y, Henmi C, et al. 2006; Inkjet bioprinting as an effective tool for tissue fabrication. Proc Digital Fabrication 1: 89-92.
    • (2006) Proc Digital Fabrication , vol.1 , pp. 89-92
    • Nakamura, M.1    Nishiyama, Y.2    Henmi, C.3
  • 35
    • 42449159656 scopus 로고    scopus 로고
    • A review on the rapid prototyping techniques for tissue engineering scaffolds
    • Peltola SM, Melchels FPW, Grijpma DW, et al. 2008; A review on the rapid prototyping techniques for tissue engineering scaffolds. Ann Med 40: 268-280.
    • (2008) Ann Med , vol.40 , pp. 268-280
    • Peltola, S.M.1    Melchels, F.P.W.2    Grijpma, D.W.3
  • 37
    • 0742272583 scopus 로고    scopus 로고
    • Biofunctional rapid prototyping for tissue-engineering applications: 3D bioplotting versus 3D printing
    • Pfister A, Landers R, Laib A, et al. 2004; Biofunctional rapid prototyping for tissue-engineering applications: 3D bioplotting versus 3D printing. J Polym Sci Polym Chem 42: 624-638.
    • (2004) J Polym Sci Polym Chem , vol.42 , pp. 624-638
    • Pfister, A.1    Landers, R.2    Laib, A.3
  • 38
    • 34250724817 scopus 로고    scopus 로고
    • Computer-aided design for additive manufacturing of cellular structures
    • Rosen DW. 2007; Computer-aided design for additive manufacturing of cellular structures. Comput Aided Des Appl 4: 585-594.
    • (2007) Comput Aided Des Appl , vol.4 , pp. 585-594
    • Rosen, D.W.1
  • 40
    • 0034763707 scopus 로고    scopus 로고
    • Collagen fibril diameters increase and fibril densities decrease in skin subjected to repetitive compressive and shear stresses
    • Sanders JE, Goldstein BS. 2001; Collagen fibril diameters increase and fibril densities decrease in skin subjected to repetitive compressive and shear stresses. J Biomech 34: 1581-1587.
    • (2001) J Biomech , vol.34 , pp. 1581-1587
    • Sanders, J.E.1    Goldstein, B.S.2
  • 41
    • 82055196987 scopus 로고    scopus 로고
    • Bioprinting of hybrid tissue constructs with tailorable mechanical properties
    • Schuurman W, Khristov V, Pot MW, et al. 2011; Bioprinting of hybrid tissue constructs with tailorable mechanical properties. Biofabrication 3: 021001-021008.
    • (2011) Biofabrication , vol.3 , pp. 021001-021008
    • Schuurman, W.1    Khristov, V.2    Pot, M.W.3
  • 42
    • 84864459017 scopus 로고    scopus 로고
    • Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system
    • Shim J-H, Lee J-S, Kim JY, et al. 2012; Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system. J Micromech Microeng 22: 085014-085024.
    • (2012) J Micromech Microeng , vol.22 , pp. 085014-085024
    • Shim, J.-H.1    Lee, J.-S.2    Kim, J.Y.3
  • 43
    • 82055190187 scopus 로고    scopus 로고
    • Development of a hybrid scaffold with synthetic biomaterials and hydrogel using solid freeform fabrication technology
    • Shim JH, Kim JY, Park M, et al. 2011; Development of a hybrid scaffold with synthetic biomaterials and hydrogel using solid freeform fabrication technology. Biofabrication 3: 034102-034111.
    • (2011) Biofabrication , vol.3 , pp. 034102-034111
    • Shim, J.H.1    Kim, J.Y.2    Park, M.3
  • 44
    • 56749102639 scopus 로고    scopus 로고
    • Role of cartilage collagen fibrils networks in knee joint biomechanics under compression
    • Shirazi R, Shirazi-Adl A, Hurtig M. 2008; Role of cartilage collagen fibrils networks in knee joint biomechanics under compression. J Biomech 41: 3340-3348.
    • (2008) J Biomech , vol.41 , pp. 3340-3348
    • Shirazi, R.1    Shirazi-Adl, A.2    Hurtig, M.3
  • 45
    • 33748333100 scopus 로고    scopus 로고
    • The effect of anisotropic architecture on cell and tissue infiltration into tissue engineered scaffolds
    • Silva MMCG, Cyster LA, Barry JJ, et al. 2006; The effect of anisotropic architecture on cell and tissue infiltration into tissue engineered scaffolds. Biomaterials 27: 5909-5917.
    • (2006) Biomaterials , vol.27 , pp. 5909-5917
    • Silva, M.M.C.G.1    Cyster, L.A.2    Barry, J.J.3
  • 46
    • 37549037519 scopus 로고    scopus 로고
    • Development of a 95/5 poly(l-lactide-co-glycolide)/hydroxyapatite and β-tricalciumphosphate scaffold as bone replacement material via selective laser sintering
    • Simpson RL, Wiria FE, Amis AA, et al. 2008; Development of a 95/5 poly(l-lactide-co-glycolide)/hydroxyapatite and β-tricalciumphosphate scaffold as bone replacement material via selective laser sintering. J Biomed Mater Res B App Biomat 84: 17-25.
    • (2008) J Biomed Mater Res B App Biomat , vol.84 , pp. 17-25
    • Simpson, R.L.1    Wiria, F.E.2    Amis, A.A.3
  • 47
    • 77953807333 scopus 로고    scopus 로고
    • Printing of titanium implant prototype
    • Wiria FE, Yong JMS, Lim PN, et al. 2010; Printing of titanium implant prototype. Mater Design 31: S101-S105.
    • (2010) Mater Design , vol.31 , pp. S101-S105
    • Wiria, F.E.1    Yong, J.M.S.2    Lim, P.N.3
  • 48
    • 77956645276 scopus 로고    scopus 로고
    • Material properties and osteogenic differentiation of marrow stromal cells on fiber-reinforced laminated hydrogel nanocomposites
    • Xu W, Ma J, Jabbari E. 2010; Material properties and osteogenic differentiation of marrow stromal cells on fiber-reinforced laminated hydrogel nanocomposites. Acta Biomater 6: 1992-2002.
    • (2010) Acta Biomater , vol.6 , pp. 1992-2002
    • Xu, W.1    Ma, J.2    Jabbari, E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.