메뉴 건너뛰기




Volumn 1, Issue 1, 2015, Pages 3-14

Smart hydrogels for 3D bioprinting

Author keywords

3D printing; Addictive manufacturing; Bioprinting; Hydrogel; Rapid prototyping; Tissue engineering

Indexed keywords


EID: 85009181092     PISSN: None     EISSN: 24248002     Source Type: Journal    
DOI: 10.18063/IJB.2015.01.005     Document Type: Review
Times cited : (165)

References (106)
  • 1
    • 78650267994 scopus 로고    scopus 로고
    • Bio-printing is coming of age: report from the International Conference on Bioprinting and Biofabrication in Bor-deaux (3B'09)
    • Guillemot F, Mironov Vand Nakamura M, 2010, Bio-printing is coming of age: report from the International Conference on Bioprinting and Biofabrication in Bor-deaux (3B'09). Biofabrication, vol.2(1): 010201. http://dx.doi.org/10.1088/1758-5082/2/1/010201.
    • (2010) Biofabrication , vol.2 , Issue.1 , pp. 010201
    • Guillemot, F.1    Mironov, V.2    Nakamura, M.3
  • 3
    • 84894620937 scopus 로고    scopus 로고
    • Bio-printing and tissue engineering: recent advances and fu-ture perspectives
    • Seliktar D, Dikovsky Dand Napadensky E, 2013, Bio-printing and tissue engineering: recent advances and fu-ture perspectives. Israel Journal of Chemistry, vol.53(9-10): 795-804. http://dx.doi.org/10.1002/ijch.201300084.
    • (2013) Israel Journal of Chemistry , vol.53 , Issue.9-10 , pp. 795-804
    • Seliktar, D.1    Dikovsky, D.2    Napadensky, E.3
  • 4
    • 84904308833 scopus 로고    scopus 로고
    • 3D biofabrication strategies for tissue engineering and regenerative medicine
    • Bajaj P, Schweller RM, Khademhosseini A, et al. 2014, 3D biofabrication strategies for tissue engineering and regenerative medicine. Annual Review of Biomedical Engineering, vol.16: 247-276. http://dx.doi.org/10.1146/annurev-bioeng-071813-105155.
    • (2014) Annual Review of Biomedical Engineering , vol.16 , pp. 247-276
    • Bajaj, P.1    Schweller, R.M.2    Khademhosseini, A.3
  • 5
    • 84905725612 scopus 로고    scopus 로고
    • 3D bioprinting of tissues and organs
    • Murphy SV and Atala A, 2014, 3D bioprinting of tissues and organs. Nature Biotechnology, vol.32: 773-785. http://dx.doi.org/10.1038/nbt.2958.
    • (2014) Nature Biotechnology , vol.32 , pp. 773-785
    • Murphy, S.V.1    Atala, A.2
  • 6
    • 84892404553 scopus 로고    scopus 로고
    • State of the art and future direction of additive manufactured scaf-folds-based bone tissue engineering
    • Arafat MT, Gibson Iand Li X, 2014, State of the art and future direction of additive manufactured scaf-folds-based bone tissue engineering. Rapid Prototyping Journal, vol.20(1): 13-26. http://dx.doi.org/10.1108/RPJ-03-2012-0023.
    • (2014) Rapid Prototyping Journal , vol.20 , Issue.1 , pp. 13-26
    • Arafat, M.T.1    Gibson, I.2    Li, X.3
  • 7
    • 84896792598 scopus 로고    scopus 로고
    • Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects
    • Castilho M, Moseke C, Ewald A, et al. 2014, Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects. Biofabrication, vol.6(1): 015006. http://dx.doi.org/ 10.1088/1758-5082/6/1/015006.
    • (2014) Biofabrication , vol.6 , Issue.1 , pp. 015006
    • Castilho, M.1    Moseke, C.2    Ewald, A.3
  • 8
    • 84912525884 scopus 로고    scopus 로고
    • 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications
    • Cox SC, Thornby JA, Gibbons GJ, et al. 2015, 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Materials Science & Engineering C-Materials for Biological Ap-plications, vol.47: 237-247. http://dx.doi.org/10.1016/j.msec.2014.11.024.
    • (2015) Materials Science & Engineering C-Materials for Biological Ap-plications , vol.47 , pp. 237-247
    • Cox, S.C.1    Thornby, J.A.2    Gibbons, G.J.3
  • 9
    • 84871703021 scopus 로고    scopus 로고
    • Bioprinting for stem cell research
    • Tasoglu Sand Demirci U, 2013, Bioprinting for stem cell research. Trends in Biotechnology, vol.31: 10-19. http://dx.doi.org/10.1016/j.tibtech.2012.10.005.
    • (2013) Trends in Biotechnology , vol.31 , pp. 10-19
    • Tasoglu, S.1    Demirci, U.2
  • 10
    • 84899513546 scopus 로고    scopus 로고
    • Three-dimensional in vitro cancer models: a short review
    • Wang CY, Tang ZY, Zhao Y, et al. 2014, Three-dimensional in vitro cancer models: a short review. Bio-fabrication, vol.6(2): 022001. http://dx.doi.org/10.1088/1758-5082/6/2/022001.
    • (2014) Bio-fabrication , vol.6 , Issue.2 , pp. 022001
    • Wang, C.Y.1    Tang, Z.Y.2    Zhao, Y.3
  • 11
    • 45249122800 scopus 로고    scopus 로고
    • Direct cell writing of 3D microorgan for in vitro pharmacokinetic model
    • Chang R, Nam Jand Sun W, 2008, Direct cell writing of 3D microorgan for in vitro pharmacokinetic model. Tis-sue Engineering Part C: Methods, vol.14: 157-166. http://dx.doi.org/10.1089/ten.tec.2007.0392.
    • (2008) Tis-sue Engineering Part C: Methods , vol.14 , pp. 157-166
    • Chang, R.1    Nam, J.2    Sun, W.3
  • 12
    • 84942297050 scopus 로고    scopus 로고
    • Engineering an in vitro air-blood barrier by 3D bioprinting
    • Horváth L, Umehara Y, Jud C, et al. 2015, Engineering an in vitro air-blood barrier by 3D bioprinting. Scientific Reports, vol.5. http://dx.doi.org/10.1038/srep07974.
    • (2015) Scientific Reports , vol.5
    • Horváth, L.1    Umehara, Y.2    Jud, C.3
  • 13
    • 84924565872 scopus 로고    scopus 로고
    • Culturing Fibroblasts in 3D human hair keratin hydrogels
    • Wang S, Wang ZX, Foo SE M, et al. 2015, Culturing Fibroblasts in 3D human hair keratin hydrogels. Acs Ap-plied Materials & Interfaces, vol.7(9): 5187-5198. http://dx.doi.org/10.1021/acsami.5b00854.
    • (2015) Acs Ap-plied Materials & Interfaces , vol.7 , Issue.9 , pp. 5187-5198
    • Wang, S.1    Wang, Z.X.2    Foo S.E, M.3
  • 14
    • 84862817788 scopus 로고    scopus 로고
    • Human keratin hydrogels support fibroblast attachment and proliferation in vitro
    • Wang S, Taraballi F, Tan LP, et al. 2012, Human keratin hydrogels support fibroblast attachment and proliferation in vitro. Cell and Tissue Research, vol.347(3): 795-802. http://dx.doi.org/10.1007/s00441-011-1295-2.
    • (2012) Cell and Tissue Research , vol.347 , Issue.3 , pp. 795-802
    • Wang, S.1    Taraballi, F.2    Tan, L.P.3
  • 15
    • 84855404988 scopus 로고    scopus 로고
    • Acustomized self-assembling peptide hydrogel for den-tal pulp tissue engineering
    • Galler KM, Hartgerink JD, Cavender AC, et al. 2012, A customized self-assembling peptide hydrogel for den-tal pulp tissue engineering. Tissue Engineering Part A, vol.18(1-2): 176-184. http://dx.doi.org/10.1089/ten.tea.2011.0222.
    • (2012) Tissue Engineering Part A , vol.18 , Issue.1-2 , pp. 176-184
    • Galler, K.M.1    Hartgerink, J.D.2    Cavender, A.C.3
  • 16
    • 84865022909 scopus 로고    scopus 로고
    • Silk seri-cin/polyacrylamide in situ forming hydrogels for dermal reconstruction
    • Kundu Band Kundu SC, 2012, Silk seri-cin/polyacrylamide in situ forming hydrogels for dermal reconstruction. Biomaterials, vol.33(30): 7456-7467. http://dx.doi.org/10.1016/j.biomaterials.2012.06.091.
    • (2012) Biomaterials , vol.33 , Issue.30 , pp. 7456-7467
    • Kundu, B.1    Kundu, S.C.2
  • 17
    • 82855161330 scopus 로고    scopus 로고
    • En-hancement of mesenchymal stem cell angiogenic capac-ity and stemness by a biomimetic hydrogel scaffold
    • Rustad KC, Wong VW, Sorkin M, et al. 2012, En-hancement of mesenchymal stem cell angiogenic capac-ity and stemness by a biomimetic hydrogel scaffold. Biomaterials, vol.33(1): 80-90. http://dx.doi.org/10.1016/j.biomaterials.2011.09.041.
    • (2012) Biomaterials , vol.33 , Issue.1 , pp. 80-90
    • Rustad, K.C.1    Wong, V.W.2    Sorkin, M.3
  • 18
    • 70449645064 scopus 로고    scopus 로고
    • Superabsorbent hydrogels based on cellulose for smart swelling and con-trollable delivery
    • Chang CY, Duan B, Cai J, et al. 2010, Superabsorbent hydrogels based on cellulose for smart swelling and con-trollable delivery. European Polymer Journal, vol.46(1): 92-100. http://dx.doi.org/10.1016/j.eurpolymj.2009.04.033.
    • (2010) European Polymer Journal , vol.46 , Issue.1 , pp. 92-100
    • Chang, C.Y.1    Duan, B.2    Cai, J.3
  • 19
    • 78649716391 scopus 로고    scopus 로고
    • Self-healing and self-mendable polymers
    • Syrett JA, Becer CR and Haddleton DM, 2010, Self-healing and self-mendable polymers. Polymer Chemistry, vol.1(7): 978-987. http://dx.doi.org/10.1039/c0py00104j.
    • (2010) Polymer Chemistry , vol.1 , Issue.7 , pp. 978-987
    • Syrett, J.A.1    Becer, C.R.2    Haddleton, D.M.3
  • 20
    • 84873273378 scopus 로고    scopus 로고
    • Stimuli-responsive polymers: Bio-medical applications and challenges for clinical transla-tion
    • Hoffman AS, 2013, Stimuli-responsive polymers: Bio-medical applications and challenges for clinical transla-tion. Advanced Drug Delivery Reviews, vol.65(1): 10-16. http://dx.doi.org/10.1016/j.addr.2012.11.004.
    • (2013) Advanced Drug Delivery Reviews , vol.65 , Issue.1 , pp. 10-16
    • Hoffman, A.S.1
  • 21
    • 84874444013 scopus 로고    scopus 로고
    • Temperature-and light-responsive smart polymer materials
    • Jochum FD and Theato P, 2013, Temperature-and light-responsive smart polymer materials. Chemical So-ciety Reviews, vol.42(17): 7468-7483. http://dx.doi.org/10.1039/c2cs35191a.
    • (2013) Chemical So-ciety Reviews , vol.42 , Issue.17 , pp. 7468-7483
    • Jochum, F.D.1    Theato, P.2
  • 22
    • 44949166671 scopus 로고    scopus 로고
    • Three-dimensional cell culture matrices: state of the art
    • Lee J, Cuddihy MJ and Kotov NA, 2008, Three-dimensional cell culture matrices: state of the art. Tissue Engineering Part B: Reviews, vol.14(1): 61-86. http://dx.doi.org/10.1089/teb.2007.0150.
    • (2008) Tissue Engineering Part B: Reviews , vol.14 , Issue.1 , pp. 61-86
    • Lee, J.1    Cuddihy, M.J.2    Kotov, N.A.3
  • 23
    • 33646017698 scopus 로고    scopus 로고
    • Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration
    • Adachi T, Osako Y, Tanaka M, et al. 2006, Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration. Bioma-terials, vol.27(21): 3964-3972. http://dx.doi.org/10.1016/j.biomaterials.2006.02.039.
    • (2006) Bioma-terials , vol.27 , Issue.21 , pp. 3964-3972
    • Adachi, T.1    Osako, Y.2    Tanaka, M.3
  • 24
  • 25
    • 68549110166 scopus 로고    scopus 로고
    • Fabri-cation of transferable micropatterned-co-cultured cell sheets with microcontact printing
    • Hannachi IE, Itoga K, Kumashiro Y, et al. 2009, Fabri-cation of transferable micropatterned-co-cultured cell sheets with microcontact printing. Biomaterials, vol.30 (29): 5427-5432. http://dx.doi.org/10.1016/j.biomaterials.2009.06.033.
    • (2009) Biomaterials , vol.30 , Issue.29 , pp. 5427-5432
    • Hannachi, I.E.1    Itoga, K.2    Kumashiro, Y.3
  • 26
    • 33745786636 scopus 로고    scopus 로고
    • Direct freeform fabrication of seeded hydrogels in arbitrary geometries
    • Cohen DL, Malone E, Lipson H, et al. 2006, Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue Engineering, vol.12(5): 1325-1335. http://dx.doi.org/10.1089/ten.2006.12.1325.
    • (2006) Tissue Engineering , vol.12 , Issue.5 , pp. 1325-1335
    • Cohen, D.L.1    Malone, E.2    Lipson, H.3
  • 27
    • 9344221639 scopus 로고    scopus 로고
    • Three-dimensional bioassembly tool for generating via-ble tissue-engineered constructs
    • Smith CM, Stone AL, Parkhill RL, et al. 2004, Three-dimensional bioassembly tool for generating via-ble tissue-engineered constructs. Tissue Engineering, vol.10(9-10): 1566-1576. http://dx.doi.org/10.1089/ten.2004.10.1566.
    • (2004) Tissue Engineering , vol.10 , Issue.9-10 , pp. 1566-1576
    • Smith, C.M.1    Stone, A.L.2    Parkhill, R.L.3
  • 28
    • 33847076827 scopus 로고    scopus 로고
    • Cha-racterizing environmental factors that impact the viabili-ty of tissue-engineered constructs fabricated by a di-rect-write bioassembly tool
    • Smith CM, Christian JJ, Warren WL, et al. 2007, Cha-racterizing environmental factors that impact the viabili-ty of tissue-engineered constructs fabricated by a di-rect-write bioassembly tool. Tissue Engineering, vol.13(2): 373-383. http://dx.doi.org/10.1089/ten.2006.0101.
    • (2007) Tissue Engineering , vol.13 , Issue.2 , pp. 373-383
    • Smith, C.M.1    Christian, J.J.2    Warren, W.L.3
  • 29
    • 33644880790 scopus 로고    scopus 로고
    • Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system
    • Wang XH, Yan YN, Pan YQ, et al. 2006, Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system. Tissue Engineering, vol.12(1): 83-90. http://dx.doi.org/10.1089/ten.2006.12.83.
    • (2006) Tissue Engineering , vol.12 , Issue.1 , pp. 83-90
    • Wang, X.H.1    Yan, Y.N.2    Pan, Y.Q.3
  • 30
    • 38349195609 scopus 로고    scopus 로고
    • Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing
    • Fedorovich NE, De Wijn JR, Verbout AJ, et al. 2008, Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing. Tissue En-gineering Part A, vol.14(1): 127-133. http://dx.doi.org/10.1089/ten.a.2007.0158.
    • (2008) Tissue En-gineering Part A , vol.14 , Issue.1 , pp. 127-133
    • Fedorovich, N.E.1    De Wijn, J.R.2    Verbout, A.J.3
  • 31
    • 1642385430 scopus 로고    scopus 로고
    • Microscale tissue engineering using gravity-enforced cell assembly
    • Kelm JM and Fussenegger M, 2004, Microscale tissue engineering using gravity-enforced cell assembly. Trends in Biotechnology, vol.22(4): 195-202. http://dx.doi.org/10.1016/j.tibtech.2004.02.002.
    • (2004) Trends in Biotechnology , vol.22 , Issue.4 , pp. 195-202
    • Kelm, J.M.1    Fussenegger, M.2
  • 32
    • 84883122624 scopus 로고    scopus 로고
    • Biofabrication of multi-material anatomically shaped tissue constructs
    • Visser J, Peters B, Burger TJ, et al. 2013, Biofabrication of multi-material anatomically shaped tissue constructs. Biofabrication, vol.5(3): 035007. http://dx.doi.org/10.1088/1758-5082/5/3/035007.
    • (2013) Biofabrication , vol.5 , Issue.3 , pp. 035007
    • Visser, J.1    Peters, B.2    Burger, T.J.3
  • 33
    • 84887016191 scopus 로고    scopus 로고
    • The 3D printing of gelatin methacrylamide cell-laden tis-sue-engineered constructs with high cell viability
    • Billiet T, Gevaert E, De Schryver T, et al. 2014, The 3D printing of gelatin methacrylamide cell-laden tis-sue-engineered constructs with high cell viability. Bio-materials, vol.35(1): 49-62. http://dx.doi.org/10.1016/j.biomaterials.2013.09.078.
    • (2014) Bio-materials , vol.35 , Issue.1 , pp. 49-62
    • Billiet, T.1    Gevaert, E.2    De Schryver, T.3
  • 34
    • 84868125762 scopus 로고    scopus 로고
    • Complex hetero-geneous tissue constructs containing multiple cell types prepared by inkjet printing technology
    • Xu T, Zhao WX, Zhu JM, et al. 2013, Complex hetero-geneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials, vol.34(1): 130-139. http://dx.doi.org/10.1016/j.biomaterials.2012.09.035.
    • (2013) Biomaterials , vol.34 , Issue.1 , pp. 130-139
    • Xu, T.1    Zhao, W.X.2    Zhu, J.M.3
  • 35
    • 71449090560 scopus 로고    scopus 로고
    • Bio-electrospraying embryonic stem cells: interrogating cellular viability and pluripotency
    • Abeyewickreme A, Kwok A, McEwan JR, et al. 2009, Bio-electrospraying embryonic stem cells: interrogating cellular viability and pluripotency. Integrative Biology, vol.1(3): 260-266. http://dx.doi.org/10.1039/B819889f.
    • (2009) Integrative Biology , vol.1 , Issue.3 , pp. 260-266
    • Abeyewickreme, A.1    Kwok, A.2    McEwan, J.R.3
  • 36
    • 84867033441 scopus 로고    scopus 로고
    • Rapid generation of multiplexed cell cocultures using acoustic droplet ejection followed by aqueous two-phase exclu-sion patterning
    • Fang Y, Frampton JP, Raghavan S, et al. 2012, Rapid generation of multiplexed cell cocultures using acoustic droplet ejection followed by aqueous two-phase exclu-sion patterning. Tissue Engineering Part C: Methods, vol.18(9): 647-657. http://dx.doi.org/10.1089/ten.TEC.2011.0709.
    • (2012) Tissue Engineering Part C: Methods , vol.18 , Issue.9 , pp. 647-657
    • Fang, Y.1    Frampton, J.P.2    Raghavan, S.3
  • 37
    • 84874591959 scopus 로고    scopus 로고
    • Tissue engi-neered skin substitutes created by laser-assisted bio-printing form skin-like structures in the dorsal skin fold chamber in mice
    • Michael S, Sorg H, Peck CT, et al. 2013, Tissue engi-neered skin substitutes created by laser-assisted bio-printing form skin-like structures in the dorsal skin fold chamber in mice. PLoS ONE, vol.8(3): e57741 http://dx.doi.org/10.1371/journal.pone.0057741.
    • (2013) PLoS ONE , vol.8 , Issue.3
    • Michael, S.1    Sorg, H.2    Peck, C.T.3
  • 38
    • 84884530179 scopus 로고    scopus 로고
    • Digital mi-crofabrication of user-defined 3D microstructures in cell-laden hydrogels
    • Soman P, Chung PH, Zhang AP, et al. 2013, Digital mi-crofabrication of user-defined 3D microstructures in cell-laden hydrogels. Biotechnology and Bioengineering, vol.110(11): 3038-3047. http://dx.doi.org/10.1002/Bit.24957.
    • (2013) Biotechnology and Bioengineering , vol.110 , Issue.11 , pp. 3038-3047
    • Soman, P.1    Chung, P.H.2    Zhang, A.P.3
  • 39
    • 84925504430 scopus 로고    scopus 로고
    • Vertex dynam-ics simulations of viscosity-dependent deformation dur-ing tissue morphogenesis
    • Okuda S, Inoue Y, Eiraku M, et al. 2015, Vertex dynam-ics simulations of viscosity-dependent deformation dur-ing tissue morphogenesis. Biomechanics and Modeling in Mechanobiology, vol.14(2): 413-425. http://dx.doi.org/10.1007/s10237-014-0613-5.
    • (2015) Biomechanics and Modeling in Mechanobiology , vol.14 , Issue.2 , pp. 413-425
    • Okuda, S.1    Inoue, Y.2    Eiraku, M.3
  • 40
    • 84884211629 scopus 로고    scopus 로고
    • 3D bio-printing of heterogeneous aortic valve conduits with al-ginate/gelatin hydrogels
    • Duan B, Hockaday LA, Kang KH, et al. 2013, 3D bio-printing of heterogeneous aortic valve conduits with al-ginate/gelatin hydrogels. Jounal of Biomedical Materials Research Part A, vol.101A(5): 1255-1264. http://dx.doi.org/10.1002/jbm.a.34420.
    • (2013) Jounal of Biomedical Materials Research Part A , vol.101A , Issue.5 , pp. 1255-1264
    • Duan, B.1    Hockaday, L.A.2    Kang, K.H.3
  • 41
    • 84864459017 scopus 로고    scopus 로고
    • Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering us-ing a multi-head tissue/organ building system
    • Shim J-H, Lee J-S, Kim JY, et al. 2012, Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering us-ing a multi-head tissue/organ building system. Journal of Micromechanics and Microengineering, vol.22(8): 085014. http://dx.doi.org/10.1088/0960-1317/22/8/085014.
    • (2012) Journal of Micromechanics and Microengineering , vol.22 , Issue.8 , pp. 085014
    • Shim, J.-H.1    Lee, J.-S.2    Kim, J.Y.3
  • 42
    • 65549089737 scopus 로고    scopus 로고
    • De-velopment of a three-dimensional bioprinter: construc-tion of cell supporting structures using hydrogel and state-of-the-art inkjet technology
    • Nishiyama Y, Nakamura M, Henmi C, et al. 2008, De-velopment of a three-dimensional bioprinter: construc-tion of cell supporting structures using hydrogel and state-of-the-art inkjet technology. Journal of Biome-chanical Engineering, vol.131(3): 035001. http://dx.doi.org/10.1115/1.3002759.
    • (2008) Journal of Biome-chanical Engineering , vol.131 , Issue.3 , pp. 035001
    • Nishiyama, Y.1    Nakamura, M.2    Henmi, C.3
  • 43
    • 79957622047 scopus 로고    scopus 로고
    • Repair of pe-ripheral nerve defects in rabbits using keratin hydrogel scaffolds
    • Hill PS, Apel PJ, Barnwell J, et al. 2011, Repair of pe-ripheral nerve defects in rabbits using keratin hydrogel scaffolds. Tissue Engineering Part A, vol.17(11-12): 1499-1505. http://dx.doi.org/10.1089/ten.TEA.2010.0184.
    • (2011) Tissue Engineering Part A , vol.17 , Issue.11-12 , pp. 1499-1505
    • Hill, P.S.1    Apel, P.J.2    Barnwell, J.3
  • 44
    • 69649100202 scopus 로고    scopus 로고
    • Human microvasculature fabrication using thermal inkjet printing technology
    • Cui XF and Boland T, 2009, Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials, vol.30(31): 6221-6227. http://dx.doi.org/10.1016/j.biomaterials.2009.07.056.
    • (2009) Biomaterials , vol.30 , Issue.31 , pp. 6221-6227
    • Cui, X.F.1    Boland, T.2
  • 45
    • 83755195479 scopus 로고    scopus 로고
    • La-ser-assisted bioprinting to deal with tissue complexity in regenerative medicine
    • Guillemot F, Guillotin B, Fontaine A, et al. 2011, La-ser-assisted bioprinting to deal with tissue complexity in regenerative medicine. MRS Bulletin, vol.36(12): 1015-1019. http://dx.doi.org/10.1557/Mrs.2011.272.
    • (2011) MRS Bulletin , vol.36 , Issue.12 , pp. 1015-1019
    • Guillemot, F.1    Guillotin, B.2    Fontaine, A.3
  • 46
    • 84899520611 scopus 로고    scopus 로고
    • Direct-write bioprinting of cell-laden methacrylated ge-latin hydrogels
    • Bertassoni LE, Cardoso JC, Manoharan V, et al. 2014, Direct-write bioprinting of cell-laden methacrylated ge-latin hydrogels. Biofabrication, vol.6(2): 024105. http://dx.doi.org/10.1088/1758-5082/6/2/024105.
    • (2014) Biofabrication , vol.6 , Issue.2 , pp. 024105
    • Bertassoni, L.E.1    Cardoso, J.C.2    Manoharan, V.3
  • 47
  • 48
    • 77951139891 scopus 로고    scopus 로고
    • Piezoelectric inkjet printing of polymers: stem cell patterning on po-lymer substrates
    • Kim JD, Choi JS, Kim BS, et al. 2010, Piezoelectric inkjet printing of polymers: stem cell patterning on po-lymer substrates. Polymer, vol.51(10): 2147-2154. http://dx.doi.org/10.1016/j.polymer.2010.03.038.
    • (2010) Polymer , vol.51 , Issue.10 , pp. 2147-2154
    • Kim, J.D.1    Choi, J.S.2    Kim, B.S.3
  • 49
    • 78649593359 scopus 로고    scopus 로고
    • Athree-dimensional bioprinting system for use with a hy-drogel-based biomaterial and printing parameter cha-racterization
    • Song S-J, Choi J, Park Y-D, et al. 2010, A three-dimensional bioprinting system for use with a hy-drogel-based biomaterial and printing parameter cha-racterization. Artificial Organs, vol.34(11): 1044-1048. http://dx.doi.org/10.1111/j.1525-1594.2010.01143.x.
    • (2010) Artificial Organs , vol.34 , Issue.11 , pp. 1044-1048
    • Song, S.-J.1    Choi, J.2    Park, Y.-D.3
  • 51
    • 77953626607 scopus 로고    scopus 로고
    • Injectable Biodegrad-able Hydrogels
    • Nguyen MK and Lee DS, 2010, Injectable Biodegrad-able Hydrogels. Macromolecular Bioscience, vol.10(6): 563-579. http://dx.doi.org/10.1002/mabi.200900402.
    • (2010) Macromolecular Bioscience , vol.10 , Issue.6 , pp. 563-579
    • Nguyen, M.K.1    Lee, D.S.2
  • 53
    • 84908291543 scopus 로고    scopus 로고
    • In situ gelling pH-and temperature-sensitive biodegradable block copolymer hydrogels for drug delivery
    • Singh NK and Lee DS, 2014, In situ gelling pH-and temperature-sensitive biodegradable block copolymer hydrogels for drug delivery. Journal of Controlled Re-lease, vol.193: 214-227. http://dx.doi.org/10.1016/j.jconrel.2014.04.056.
    • (2014) Journal of Controlled Re-lease , vol.193 , pp. 214-227
    • Singh, N.K.1    Lee, D.S.2
  • 54
    • 1542328767 scopus 로고    scopus 로고
    • Inkjet printing for high-throughput cell patterning
    • Roth EA, Xu T, Das M, et al. 2004, Inkjet printing for high-throughput cell patterning. Biomaterials, vol.25(17): 3707-3715. http://dx.doi.org/10.1016/j.biomaterials.2003.10.052.
    • (2004) Biomaterials , vol.25 , Issue.17 , pp. 3707-3715
    • Roth, E.A.1    Xu, T.2    Das, M.3
  • 55
    • 84901016012 scopus 로고    scopus 로고
    • Design and fa-brication of human skin by three-dimensional bioprint-ing
    • Lee V, Singh G, Trasatti JP, et al. 2014, Design and fa-brication of human skin by three-dimensional bioprint-ing. Tissue Engineering Part C: Methods, vol.20(6): 473-484. http://dx.doi.org/10.1089/ten.tec.2013.0335.
    • (2014) Tissue Engineering Part C: Methods , vol.20 , Issue.6 , pp. 473-484
    • Lee, V.1    Singh, G.2    Trasatti, J.P.3
  • 56
    • 84899574160 scopus 로고    scopus 로고
    • Acompara-tive study on collagen type Iand hyaluronic acid de-pendent cell behavior for osteochondral tissue bioprint-ing
    • Park JY, Choi J-C, Shim J-H, et al. 2014, A compara-tive study on collagen type Iand hyaluronic acid de-pendent cell behavior for osteochondral tissue bioprint-ing. Biofabrication, vol.6(3): 035004. http://dx.doi.org/10.1088/1758-5082/6/3/035004.
    • (2014) Biofabrication , vol.6 , Issue.3 , pp. 035004
    • Park, J.Y.1    Choi, J.-C.2    Shim, J.-H.3
  • 57
    • 84861199493 scopus 로고    scopus 로고
    • Skin tissue generation by laser cell printing
    • Koch L, Deiwick A, Schlie S, et al. 2012, Skin tissue generation by laser cell printing. Biotechnolgy and Bio-engineering, vol.109(7): 1855-1863. http://dx.doi.org/10.1002/bit.24455.
    • (2012) Biotechnolgy and Bio-engineering , vol.109 , Issue.7 , pp. 1855-1863
    • Koch, L.1    Deiwick, A.2    Schlie, S.3
  • 58
    • 77956092359 scopus 로고    scopus 로고
    • Areview of kera-tin-based biomaterials for biomedical applications
    • Rouse JG and Van Dyke ME, 2010, A review of kera-tin-based biomaterials for biomedical applications. Ma-terials, vol.3(2): 999-1014. http://dx.doi.org/10.3390/ma3020999.
    • (2010) Ma-terials , vol.3 , Issue.2 , pp. 999-1014
    • Rouse, J.G.1    Van Dyke, M.E.2
  • 59
    • 84856747493 scopus 로고    scopus 로고
    • Characteri-zation of keratin-collagen 3D scaffold for biomedical applications
    • Balaji S, Kumar R, Sripriya R, et al. 2012, Characteri-zation of keratin-collagen 3D scaffold for biomedical applications. Polymers for Advanced Technologies, vol.23(3): 500-507. http://dx.doi.org/10.1002/pat.1905.
    • (2012) Polymers for Advanced Technologies , vol.23 , Issue.3 , pp. 500-507
    • Balaji, S.1    Kumar, R.2    Sripriya, R.3
  • 60
    • 40549123948 scopus 로고    scopus 로고
    • The human intermediate filament database: comprehensive information on a gene family involved in many human diseases
    • Szeverenyi I, Cassidy AJ, Chung CW, et al. 2008, The human intermediate filament database: comprehensive information on a gene family involved in many human diseases. Human Mutation, vol.29(3): 351-360. http://dx.doi.org/10.1002/humu.20652.
    • (2008) Human Mutation , vol.29 , Issue.3 , pp. 351-360
    • Szeverenyi, I.1    Cassidy, A.J.2    Chung, C.W.3
  • 61
    • 0026039659 scopus 로고
    • LDV: a novel cell adhesion motif recognized by the integrin a4ß1
    • Makarem Rand Humphries MJ, 1991, LDV: a novel cell adhesion motif recognized by the integrin a4ß1. Biochemical Society Transactions, vol.19(4): 380S.
    • (1991) Biochemical Society Transactions , vol.19 , Issue.4 , pp. 380S
    • Makarem, R.1    Humphries, M.J.2
  • 62
    • 43149083069 scopus 로고    scopus 로고
    • Preparation of scaffolds from human hair proteins for tissue-engineering applications
    • Verma V, Verma P, Ray P, et al. 2008, Preparation of scaffolds from human hair proteins for tissue-engineering applications. Biomedical Materials, vol.3(2): 025007. http://dx.doi.org/10.1088/1748-6041/3/2/025007.
    • (2008) Biomedical Materials , vol.3 , Issue.2 , pp. 025007
    • Verma, V.1    Verma, P.2    Ray, P.3
  • 63
    • 68749094066 scopus 로고    scopus 로고
    • Reverse thermogelling biodegradable polymer aqueous solutions
    • Joo MK, Park MH, Choi BG, et al. 2009, Reverse thermogelling biodegradable polymer aqueous solutions. Journal of Materials Chemistry, vol.19(33): 5891-5905. http://dx.doi.org/10.1039/b902208b.
    • (2009) Journal of Materials Chemistry , vol.19 , Issue.33 , pp. 5891-5905
    • Joo, M.K.1    Park, M.H.2    Choi, B.G.3
  • 64
    • 47749146197 scopus 로고    scopus 로고
    • Injectable hydrogels as unique biomedical materials
    • Yu Land Ding JD, 2008, Injectable hydrogels as unique biomedical materials. Chemical Society Reviews, vol.37(8): 1473-1481. http://dx.doi.org/10.1039/b713009k.
    • (2008) Chemical Society Reviews , vol.37 , Issue.8 , pp. 1473-1481
    • Yu, L.1    Ding, J.D.2
  • 65
    • 34548304900 scopus 로고    scopus 로고
    • Biodegradable thermosensitive copolymer hydrogels for drug delivery
    • Loh XJ and Li J, 2007, Biodegradable thermosensitive copolymer hydrogels for drug delivery. Expert Opinion on Therapeutic Patents, vol.17(8): 965-977.
    • (2007) Expert Opinion on Therapeutic Patents , vol.17 , Issue.8 , pp. 965-977
    • Loh, X.J.1    Li, J.2
  • 66
    • 34249935409 scopus 로고    scopus 로고
    • Injectable matrices and scaffolds for drug delivery in tissue engi-neering
    • Kretlow JD, Klouda Land Mikos AG, 2007, Injectable matrices and scaffolds for drug delivery in tissue engi-neering. Advanced Drug Delivery Reviews, vol.59(4-5): 263-273. http://dx.doi.org/10.1016/j.addr.2007.03.013.
    • (2007) Advanced Drug Delivery Reviews , vol.59 , Issue.4-5 , pp. 263-273
    • Kretlow, J.D.1    Klouda, L.2    Mikos, A.G.3
  • 67
    • 54949141067 scopus 로고    scopus 로고
    • Negative temperature sensitive hydrogels in controlled drug deli-very
    • Geever L, Cooney C, Devine D, et al. 2008, Negative temperature sensitive hydrogels in controlled drug deli-very. Macromolecular Symposia, vol.266(1): 53-58. http://dx.doi.org/10.1002/masy.200850610.
    • (2008) Macromolecular Symposia , vol.266 , Issue.1 , pp. 53-58
    • Geever, L.1    Cooney, C.2    Devine, D.3
  • 68
    • 84919683704 scopus 로고    scopus 로고
    • Tunable thermo-responsive hydrogels: synthesis, structural anal-ysis and drug release studies
    • Cirillo G, Spataro T, Curcio M, et al. 2015, Tunable thermo-responsive hydrogels: synthesis, structural anal-ysis and drug release studies. Materials Science and En-gineering: C, vol.48: 499-510. http://dx.doi.org/10.1016/j.msec.2014.12.045.
    • (2015) Materials Science and En-gineering: C , vol.48 , pp. 499-510
    • Cirillo, G.1    Spataro, T.2    Curcio, M.3
  • 69
    • 79956126266 scopus 로고    scopus 로고
    • Aprintable photopolymerizable thermosensitive p(HPMAm-lactate)-PEG hydrogel for tissue engineering
    • Censi R, Schuurman W, Malda J, et al. 2011, A printable photopolymerizable thermosensitive p(HPMAm-lactate)-PEG hydrogel for tissue engineering. Advanced Functional Materials, vol.21(10): 1833-1842. http://dx.doi.org/10.1002/adfm.201002428.
    • (2011) Advanced Functional Materials , vol.21 , Issue.10 , pp. 1833-1842
    • Censi, R.1    Schuurman, W.2    Malda, J.3
  • 70
    • 36048941406 scopus 로고    scopus 로고
    • Photo-crosslinkable and biodegradable Pluronic/heparin hy-drogels for local and sustained delivery of angiogenic growth factor
    • Yoon JJ, Chung HJ and Park TG, 2007, Photo-crosslinkable and biodegradable Pluronic/heparin hy-drogels for local and sustained delivery of angiogenic growth factor. Journal of Biomedical Materials Re-search Part A, vol.83A(3): 597-605. http://dx.doi.org/10.1002/jbm.a.31271.
    • (2007) Journal of Biomedical Materials Re-search Part A , vol.83A , Issue.3 , pp. 597-605
    • Yoon, J.J.1    Chung, H.J.2    Park, T.G.3
  • 72
    • 84897968199 scopus 로고    scopus 로고
    • Printing thermoresponsive reverse molds for the crea-tion of patterned two-component hydrogels for 3D cell culture
    • Müller M, Becher J, Schnabelrauch M, et al. 2013, Printing thermoresponsive reverse molds for the crea-tion of patterned two-component hydrogels for 3D cell culture. Journal of Visualized Experiments, vol.2013(77): e50632. http://dx.doi.org/10.3791/50632.
    • (2013) Journal of Visualized Experiments , vol.2013 , Issue.77
    • Müller, M.1    Becher, J.2    Schnabelrauch, M.3
  • 73
    • 84900988712 scopus 로고    scopus 로고
    • 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs
    • Kolesky DB, Truby RL, Gladman AS, et al. 2014, 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Advanced Materials, vol.26(19): 3124-3130. http://dx.doi.org/10.1002/adma.201305506.
    • (2014) Advanced Materials , vol.26 , Issue.19 , pp. 3124-3130
    • Kolesky, D.B.1    Truby, R.L.2    Gladman, A.S.3
  • 74
    • 0036051304 scopus 로고    scopus 로고
    • Pho-tocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering
    • Schmedlen RH, Masters KS and West JL, 2002, Pho-tocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering. Biomaterials, vol.23(22): 4325-4332. http://dx.doi.org/10.1016/S0142-9612(02)00177-1.
    • (2002) Biomaterials , vol.23 , Issue.22 , pp. 4325-4332
    • Schmedlen, R.H.1    Masters, K.S.2    West, J.L.3
  • 75
    • 35348874191 scopus 로고    scopus 로고
    • Review: photopo-lymerizable and degradable biomaterials for tissue en-gineering applications
    • Ifkovits JL and Burdick JA, 2007, Review: photopo-lymerizable and degradable biomaterials for tissue en-gineering applications. Tissue Engineering, vol.13(10): 2369-2385. http://dx.doi.org/10.1089/ten.2007.0093.
    • (2007) Tissue Engineering , vol.13 , Issue.10 , pp. 2369-2385
    • Ifkovits, J.L.1    Burdick, J.A.2
  • 76
    • 0036345151 scopus 로고    scopus 로고
    • Photopolymerizable hydrogels for tissue engineering applications
    • Nguyen KT and West JL, 2002, Photopolymerizable hydrogels for tissue engineering applications. Biomate-rials, vol.23(22): 4307-4314. http://dx.doi.org/10.1016/s0142-9612(02)00175-8.
    • (2002) Biomate-rials , vol.23 , Issue.22 , pp. 4307-4314
    • Nguyen, K.T.1    West, J.L.2
  • 77
    • 0036906821 scopus 로고    scopus 로고
    • Three-dimensional pho-topatterning of hydrogels containing living cells
    • Liu VA and Bhatia SN, 2002, Three-dimensional pho-topatterning of hydrogels containing living cells. Bio-medical Microdevices, vol.4(4): 257-266. http://dx.doi.org/10.1023/a:1020932105236.
    • (2002) Bio-medical Microdevices , vol.4 , Issue.4 , pp. 257-266
    • Liu, V.A.1    Bhatia, S.N.2
  • 78
    • 77953025978 scopus 로고    scopus 로고
    • Cell-laden microengineered gelatin methacrylate hydrogels
    • Nichol JW, Koshy ST, Bae H, et al. 2010, Cell-laden microengineered gelatin methacrylate hydrogels. Bio-materials, vol.31(21): 5536-5544. http://dx.doi.org/10.1016/j.biomaterials.2010.03.064.
    • (2010) Bio-materials , vol.31 , Issue.21 , pp. 5536-5544
    • Nichol, J.W.1    Koshy, S.T.2    Bae, H.3
  • 79
    • 84884904189 scopus 로고    scopus 로고
    • Hydrogels for two-photon polymerization: a toolbox for mimicking the extracellular matrix
    • Torgersen J, Qin XH, Li ZQ, et al. 2013, Hydrogels for two-photon polymerization: a toolbox for mimicking the extracellular matrix. Advanced Functional Materials, vol.23(36): 4542-4554. http://dx.doi.org/10.1002/adfm.201203880.
    • (2013) Advanced Functional Materials , vol.23 , Issue.36 , pp. 4542-4554
    • Torgersen, J.1    Qin, X.H.2    Li, Z.Q.3
  • 80
    • 77956090298 scopus 로고    scopus 로고
    • Photo-crosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting
    • Skardal A, Zhang JX, McCoard L, et al. 2010, Photo-crosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting. Tissue Engineering Part A, vol.16(8): 2675-2685. http://dx.doi.org/10.1089/ten.tea.2009.0798.
    • (2010) Tissue Engineering Part A , vol.16 , Issue.8 , pp. 2675-2685
    • Skardal, A.1    Zhang, J.X.2    McCoard, L.3
  • 81
    • 79955604885 scopus 로고    scopus 로고
    • Synthesis and characterization of photocrosslinkable gelatin and silk fibroin interpenetrating polymer network hydrogels
    • Xiao WQ, He JK, Nichol JW, et al. 2011, Synthesis and characterization of photocrosslinkable gelatin and silk fibroin interpenetrating polymer network hydrogels. Acta Biomaterialia, vol.7(6): 2384-2393. http://dx.doi.org/10.1016/j.actbio.2011.01.016.
    • (2011) Acta Biomaterialia , vol.7 , Issue.6 , pp. 2384-2393
    • Xiao, W.Q.1    He, J.K.2    Nichol, J.W.3
  • 82
    • 84856566414 scopus 로고    scopus 로고
    • The mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules
    • Shin H, Olsen BD and Khademhosseini A, 2012, The mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules. Biomate-rials, vol.33(11): 3143-3152. http://dx.doi.org/10.1016/j.biomaterials.2011.12.050.
    • (2012) Biomate-rials , vol.33 , Issue.11 , pp. 3143-3152
    • Shin, H.1    Olsen, B.D.2    Khademhosseini, A.3
  • 83
    • 84919430937 scopus 로고    scopus 로고
    • Optimization of electrical stimulation parameters for electro-responsive hydrogels for biomedical applications
    • Jackson Nand Stam F, 2015, Optimization of electrical stimulation parameters for electro-responsive hydrogels for biomedical applications. Journal of Applied Polymer Science, vol.132(12): app.41687. http://dx.doi.org/10.1002/app.41687.
    • (2015) Journal of Applied Polymer Science , vol.132 , Issue.12 , pp. 41687
    • Jackson, N.1    Stam, F.2
  • 84
    • 85040379755 scopus 로고    scopus 로고
    • Properties of electrically responsive hydrogels as a po-tential dynamic tool for biomedical applications
    • Adesanya K, Vanderleyden E, Embrechts A, et al. 2014, Properties of electrically responsive hydrogels as a po-tential dynamic tool for biomedical applications. Jour-nal of Applied Polymer Science, vol.131(23): app.41195 http://dx.doi.org/10.1002/app.41195.
    • (2014) Jour-nal of Applied Polymer Science , vol.131 , Issue.23 , pp. 41195
    • Adesanya, K.1    Vanderleyden, E.2    Embrechts, A.3
  • 85
    • 84923339745 scopus 로고    scopus 로고
    • Modeling and simulation of the bending behavior of electrically-stimulated cantilevered hydrogels
    • Attaran A, Brummund Jand Wallmersperger T, 2015, Modeling and simulation of the bending behavior of electrically-stimulated cantilevered hydrogels. Smart Materials and Structures, vol.24: 035021 http://dx.doi.org/10.1088/0964-1726/24/3/035021.
    • (2015) Smart Materials and Structures , vol.24
    • Attaran, A.1    Brummund, J.2    Wallmersperger, T.3
  • 86
    • 84918801833 scopus 로고    scopus 로고
    • Synthesis and evaluation of swelling kinetics of electric field respon-sive poly(vinyl alcohol)-g-polyacrylic acid/OMNT na-nocomposite hydrogels
    • Boruah M, Mili M, Sharma S, et al. 2015, Synthesis and evaluation of swelling kinetics of electric field respon-sive poly(vinyl alcohol)-g-polyacrylic acid/OMNT na-nocomposite hydrogels. Polymer Composites, vol.36(1): 34-41. http://dx.doi.org/10.1002/pc.22909.
    • (2015) Polymer Composites , vol.36 , Issue.1 , pp. 34-41
    • Boruah, M.1    Mili, M.2    Sharma, S.3
  • 87
    • 84921692313 scopus 로고    scopus 로고
    • Classification of stimuli-responsive polymers as anti-cancer drug delivery systems
    • Taghizadeh B, Taranejoo S, Monemian SA, et al. 2015, Classification of stimuli-responsive polymers as anti-cancer drug delivery systems. Drug Delivery, vol.22(2): 145-155. http://dx.doi.org/10.3109/10717544.2014.887157.
    • (2015) Drug Delivery , vol.22 , Issue.2 , pp. 145-155
    • Taghizadeh, B.1    Taranejoo, S.2    Monemian, S.A.3
  • 88
    • 84908577658 scopus 로고    scopus 로고
    • Forward osmo-sis using electric-responsive polymer hydrogels as draw agents: Influence of freezing-thawing cycles, voltage, feed solutions on process performance
    • Zhang HM, Li JJ, Cui HT, et al. 2015, Forward osmo-sis using electric-responsive polymer hydrogels as draw agents: Influence of freezing-thawing cycles, voltage, feed solutions on process performance. Chemical Engi-neering Journal, vol.259: 814-819. http://dx.doi.org/10.1016/j.cej.2014.08.065.
    • (2015) Chemical Engi-neering Journal , vol.259 , pp. 814-819
    • Zhang, H.M.1    Li, J.J.2    Cui, H.T.3
  • 90
    • 0025608277 scopus 로고
    • Electri-cally controlled drug delivery system using polyelectro-lyte gels
    • Sawahata K, Hara M, Yasunaga H, et al. 1990, Electri-cally controlled drug delivery system using polyelectro-lyte gels. Journal of Controlled Release, vol.14(3): 253-262. http://dx.doi.org/10.1016/0168-3659(90)90165-P.
    • (1990) Journal of Controlled Release , vol.14 , Issue.3 , pp. 253-262
    • Sawahata, K.1    Hara, M.2    Yasunaga, H.3
  • 91
    • 84862519038 scopus 로고    scopus 로고
    • Hybrid magnetic hydrogel: A potential system for controlled drug deli-very by means of alternating magnetic fields
    • Giani G, Fedi Sand Barbucci R, 2012, Hybrid magnetic hydrogel: A potential system for controlled drug deli-very by means of alternating magnetic fields. Polymers, vol.4(2): 1157-1169. http://dx.doi.org/ 10.3390/polym4021157.
    • (2012) Polymers , vol.4 , Issue.2 , pp. 1157-1169
    • Giani, G.1    Fedi, S.2    Barbucci, R.3
  • 92
    • 84891547752 scopus 로고    scopus 로고
    • Nano-magnetic poly (vinyl alcohol) hydrogels
    • Asa'di S, Frounchi Mand Dadbin S, 2013, Nano-magnetic poly (vinyl alcohol) hydrogels. Advanced Me-terials Research, vol.829: 539-543. http://dx.doi.org/10.4028/www.scientific.net/AMR.829.539.
    • (2013) Advanced Me-terials Research , vol.829 , pp. 539-543
    • Asa'di, S.1    Frounchi, M.2    Dadbin, S.3
  • 93
    • 84859608896 scopus 로고    scopus 로고
    • Preparation and characterization of sodium alginate/poly(N-sopropy-acrylamide)/clay semi-IPN magnetic hydrogels
    • Li ZQ, Shen JF, Ma HW, et al. 2012, Preparation and characterization of sodium alginate/poly(N-sopropy-acrylamide)/clay semi-IPN magnetic hydrogels. Poly-mer Bulletin, vol.68: 1153-1169. http://dx.doi.org/10.1007/s00289-011-0671-0.
    • (2012) Poly-mer Bulletin , vol.68 , pp. 1153-1169
    • Li, Z.Q.1    Shen, J.F.2    Ma, H.W.3
  • 94
    • 84922876525 scopus 로고    scopus 로고
    • Magnetic hyaluronate hydrogels: preparation and characterization
    • Tóth IY, Veress G, Szekeres M, et al. 2015, Magnetic hyaluronate hydrogels: preparation and characterization. Journal of Magnetism and Magnetic Materials, vol.380:175-180. http://dx.doi.org/10.1016/j.jmmm.2014.10.139.
    • (2015) Journal of Magnetism and Magnetic Materials , vol.380 , pp. 175-180
    • Tóth, I.Y.1    Veress, G.2    Szekeres, M.3
  • 95
    • 84907554286 scopus 로고    scopus 로고
    • In situ synthesis of magnetic CaraPVA IPN nanocomposite hydrogels and controlled drug release
    • Mahdavinia GR and Etemadi H, 2014, In situ synthesis of magnetic CaraPVA IPN nanocomposite hydrogels and controlled drug release. Materials Science & Engi-neering C-Materials for Biological Applications, vol.45: 250-260. http://dx.doi.org/10.1016/j.msec.2014.09.023.
    • (2014) Materials Science & Engi-neering C-Materials for Biological Applications , vol.45 , pp. 250-260
    • Mahdavinia, G.R.1    Etemadi, H.2
  • 96
    • 0342545920 scopus 로고    scopus 로고
    • Magnetic and mössbauer studies of magnetite-loaded polyvinyl alcohol hydrogels
    • Szabó D, Czakó-Nagy I, Zrínyi M, et al. 2000, Magnetic and mössbauer studies of magnetite-loaded polyvinyl alcohol hydrogels. Journal of Colloid and Interface Science, vol. 221(2): 166-172. http://dx.doi.org/10.1006/jcis.1999.6572.
    • (2000) Journal of Colloid and Interface Science , vol.221 , Issue.2 , pp. 166-172
    • Szabó, D.1    Czakó-Nagy, I.2    Zrínyi, M.3
  • 97
    • 84873687049 scopus 로고    scopus 로고
    • Magnetic hydrogels and their potential biomedical applications
    • Li YH, Huang GY, Zhang XH, et al. 2013, Magnetic hydrogels and their potential biomedical applications. Advanced Functional Materials, Vol.23(6): 660-672. http://dx.doi.org/10.1002/adfm.201201708.
    • (2013) Advanced Functional Materials , vol.23 , Issue.6 , pp. 660-672
    • Li, Y.H.1    Huang, G.Y.2    Zhang, X.H.3
  • 98
    • 84860910506 scopus 로고    scopus 로고
    • Experimental and nu-merical determination of cellular traction force on po-lymeric hydrogels
    • Ng SS, Li Cand Chan V, 2011; Experimental and nu-merical determination of cellular traction force on po-lymeric hydrogels. Inerface Focus, vol.1: 777-791. http://dx.doi.org/10.1098/rsfs.2011.0036.
    • (2011) Inerface Focus , vol.1 , pp. 777-791
    • Ng, S.S.1    Li, C.2    Chan, V.3
  • 99
    • 84931565427 scopus 로고    scopus 로고
    • Structural biology response of a collagen hydrogel synthetic e10.1007xtracellular matrix with embedded human fibroblast: computational and experimental analysis
    • Manzano S, Moreno-Loshuertos R, Doblaré M, et al. 2015, Structural biology response of a collagen hydrogel synthetic e10.1007xtracellular matrix with embedded human fibroblast: computational and experimental analysis. Medical & Biological Engineering & Compu-ting, vol.53: 721-735. http://dx.doi.org/10.1007/s11517-015-1277-8.
    • (2015) Medical & Biological Engineering & Compu-ting , vol.53 , pp. 721-735
    • Manzano, S.1    Moreno-Loshuertos, R.2    Doblaré, M.3
  • 100
    • 84860900294 scopus 로고    scopus 로고
    • Biomimetic three-dimensional microenvironment for controlling stem cell fate
    • Zhang H, Dai S, Bi JX, et al. 2011, Biomimetic three-dimensional microenvironment for controlling stem cell fate. Interface Focus, vol.2011(1): 792-803. http://dx.doi.org/10.1098/rsfs.2011.0035.
    • (2011) Interface Focus , vol.2011 , Issue.1 , pp. 792-803
    • Zhang, H.1    Dai, S.2    Bi, J.X.3
  • 102
    • 84885922539 scopus 로고    scopus 로고
    • Fine tuning and measurement of mechanical properties of cros-slinked hyaluronic acid hydrogels as biomimetic scaf-fold coating in regenerative medicine
    • Credi C, Biella S, De Marco C, et al. 2014, Fine tuning and measurement of mechanical properties of cros-slinked hyaluronic acid hydrogels as biomimetic scaf-fold coating in regenerative medicine. Journal of the Mechanical Behavior of Biomedical Materials, vol.29: 309-316. http://dx.doi.org/10.1016/j.jmbbm.2013.09.025.
    • (2014) Journal of the Mechanical Behavior of Biomedical Materials , vol.29 , pp. 309-316
    • Credi, C.1    Biella, S.2    De Marco, C.3
  • 103
    • 84865772146 scopus 로고    scopus 로고
    • Simultaneous measurement of mechanical and surface properties in thermoresponsive, anchored hydrogel films
    • Melzak KA, Mateescu A, Toca-Herrera JL, et al. 2012, Simultaneous measurement of mechanical and surface properties in thermoresponsive, anchored hydrogel films. Langmuir, vol.28(35): 12871-12878. http://dx.doi.org/10.1021/la3019666.
    • (2012) Langmuir , vol.28 , Issue.35 , pp. 12871-12878
    • Melzak, K.A.1    Mateescu, A.2    Toca-Herrera, J.L.3
  • 104
    • 84925120402 scopus 로고    scopus 로고
    • Aversatile bioink for three-dimensional printing of cellular scaf-folds based on thermally and photo-triggered tandem gelation
    • Kesti M, Müeller M, Becher J, et al. 2015, A versatile bioink for three-dimensional printing of cellular scaf-folds based on thermally and photo-triggered tandem gelation. Acta Biomaterialia, vol.11: 162-172. http://dx.doi.org/10.1016/j.actbio.2014.09.033.
    • (2015) Acta Biomaterialia , vol.11 , pp. 162-172
    • Kesti, M.1    Müeller, M.2    Becher, J.3
  • 105
    • 79955853787 scopus 로고    scopus 로고
    • Self-folding all-polymer thermoresponsive microcap-sules
    • Stoychev G, Puretskiy Nand Ionov L, 2011, Self-folding all-polymer thermoresponsive microcap-sules. Soft Matter, vol.2011(7): 3277-3279. http://dx.doi.org/10.1039/C1SM05109A.
    • (2011) Soft Matter , vol.2011 , Issue.7 , pp. 3277-3279
    • Stoychev, G.1    Puretskiy, N.2    Ionov, L.3
  • 106
    • 84881574915 scopus 로고    scopus 로고
    • Bio-origami hydrogel scaffolds composed of photocrosslinked PEG bilayers
    • Jamal M, Kadam SS, Xiao R, et al. 2013, Bio-origami hydrogel scaffolds composed of photocrosslinked PEG bilayers. Advanced Healthcare Materials, vol.2(8): 1142-1150. http://dx.doi.org/10.1002/adhm.201200458.
    • (2013) Advanced Healthcare Materials , vol.2 , Issue.8 , pp. 1142-1150
    • Jamal, M.1    Kadam, S.S.2    Xiao, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.