-
3
-
-
84897544737
-
Theano: New features and speed improvements
-
F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Bergeron, N. Bouchard, D. Warde-Farley, and Y. Bengio. Theano: new features and speed improvements. Submited to the Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop, 2012
-
(2012)
Submited to the Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop
-
-
Bastien, F.1
Lamblin, P.2
Pascanu, R.3
Bergstra, J.4
Goodfellow, I.5
Bergeron, A.6
Bouchard, N.7
Warde-Farley, D.8
Bengio, Y.9
-
4
-
-
84857819132
-
Theano: A CPU and GPU math expression compiler
-
J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, D. Warde-Farley, and Y. Bengio. Theano: A CPU and GPU math expression compiler. In Proceedings of the Python for Scientific Computing Conference (SciPy), 2010
-
(2010)
Proceedings of the Python for Scientific Computing Conference (SciPy)
-
-
Bergstra, J.1
Breuleux, O.2
Bastien, F.3
Lamblin, P.4
Pascanu, R.5
Desjardins, G.6
Turian, J.7
Warde-Farley, D.8
Bengio, Y.9
-
5
-
-
80052894155
-
Kernelized structural SVM learning for supervised object segmentation
-
IEEE
-
L. Bertelli, T. Yu, D. Vu, and B. Gokturk. Kernelized structural svm learning for supervised object segmentation. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 2153-2160. IEEE, 2011
-
(2011)
Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on
, pp. 2153-2160
-
-
Bertelli, L.1
Yu, T.2
Vu, D.3
Gokturk, B.4
-
7
-
-
56049086147
-
Semantic object classes in video: A high-definition ground truth database
-
G. J. Brostow, J. Fauqueur, and R. Cipolla. Semantic object classes in video: A high-definition ground truth database. Pattern Recognition Letters, 30(2):88-97, 2009
-
(2009)
Pattern Recognition Letters
, vol.30
, Issue.2
, pp. 88-97
-
-
Brostow, G.J.1
Fauqueur, J.2
Cipolla, R.3
-
8
-
-
84959245343
-
Scene labeling with lstm recurrent neural networks
-
W. Byeon, T. M. Breuel, F. Raue, and M. Liwicki. Scene labeling with lstm recurrent neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3547-3555, 2015
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 3547-3555
-
-
Byeon, W.1
Breuel, T.M.2
Raue, F.3
Liwicki, M.4
-
9
-
-
84986285934
-
-
arXiv preprint arXiv:1511.03328
-
L.-C. Chen, J. T. Barron, G. Papandreou, K. Murphy, and A. L. Yuille. Semantic image segmentation with task-specific edge detection using cnns and a discriminatively trained domain transform. ArXiv preprint arXiv:1511.03328, 2015
-
(2015)
Semantic Image Segmentation with Task-specific Edge Detection Using Cnns and A Discriminatively Trained Domain Transform
-
-
Chen, L.-C.1
Barron, J.T.2
Papandreou, G.3
Murphy, K.4
Yuille, A.L.5
-
10
-
-
84961291190
-
Learning phrase representations using RNN encoder-decoder for statistical machine translation
-
Oct. 2014. to appear
-
K. Cho, B. van Merrienboer, C. Gulcehre, F. Bougares, H. Schwenk, and Y. Bengio. Learning phrase representations using RNN encoder-decoder for statistical machine translation. In Proceedings of the Empiricial Methods in Natural Language Processing (EMNLP 2014), Oct. 2014. to appear
-
Proceedings of the Empiricial Methods in Natural Language Processing (EMNLP 2014)
-
-
Cho, K.1
Van Merrienboer, B.2
Gulcehre, C.3
Bougares, F.4
Schwenk, H.5
Bengio, Y.6
-
11
-
-
85198028989
-
ImageNet: A Large-Scale Hierarchical Image Database
-
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image Database. In CVPR09, 2009
-
(2009)
CVPR09
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Fei-Fei, L.6
-
12
-
-
84973384984
-
-
Aug.
-
S. Dieleman, J. Schlüter, C. Raffel, E. Olson, S. K. Sønderby, D. Nouri, D. Maturana, M. Thoma, E. Battenberg, J. Kelly, J. D. Fauw, M. Heilman, diogo149, B. McFee, H. Weideman, takacsg84, peterderivaz, Jon, instagibbs, D. K. Rasul, CongLiu, Britefury, and J. Degrave. Lasagne: First release., Aug. 2015
-
(2015)
Lasagne: First Release
-
-
Dieleman, S.1
Schlüter, J.2
Raffel, C.3
Olson, E.4
Sønderby, S.K.5
Nouri, D.6
Maturana, D.7
Thoma, M.8
Battenberg, E.9
Kelly, J.10
Fauw, J.D.11
Heilman, M.12
Diogo, M.B.13
Weideman, B.H.14
Takacsg, P.15
Jon, I.16
Rasul, D.K.17
CongLiu, B.18
Degrave, J.19
-
15
-
-
84911443425
-
Scalable object detection using deep neural networks
-
Washington, DC, USA, 2014. IEEE Computer Society
-
D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov. Scalable object detection using deep neural networks. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR '14, pages 2155-2162,Washington, DC, USA, 2014. IEEE Computer Society
-
Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR '14
, pp. 2155-2162
-
-
Erhan, D.1
Szegedy, C.2
Toshev, A.3
Anguelov, D.4
-
16
-
-
84876258641
-
Learning hierarchical features for scene labeling
-
C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning hierarchical features for scene labeling. IEEE TPAMI, 35(8):1915-1929, 2013
-
(2013)
IEEE TPAMI
, vol.35
, Issue.8
, pp. 1915-1929
-
-
Farabet, C.1
Couprie, C.2
Najman, L.3
LeCun, Y.4
-
17
-
-
84908530334
-
Unrolling loopy top-down semantic feedback in convolutional deep networks
-
OH, USA, June 23-28, 2014
-
C. Gatta, A. Romero, and J. van de Weijer. Unrolling loopy top-down semantic feedback in convolutional deep networks. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR Workshops 2014, Columbus, OH, USA, June 23-28, 2014, pages 504-511, 2014
-
(2014)
IEEE Conference on Computer Vision and Pattern Recognition, CVPR Workshops 2014, Columbus
, pp. 504-511
-
-
Gatta, C.1
Romero, A.2
Van De Weijer, J.3
-
24
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors Curran Associates, Inc.
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 25, pages 1097-1105. Curran Associates, Inc., 2012
-
(2012)
Advances in Neural Information Processing Systems
, vol.25
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
26
-
-
78149356342
-
What, where and how many Combining object detectors and CRFs
-
L. Ladicky, P. Sturgess, K. Alahari, C. Russell, and P. H. S. Torr. What, where and how many Combining object detectors and CRFs. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6314 LNCS(PART 4):424-437, 2010
-
(2010)
Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6314 LNCS(PART 4
, pp. 424-437
-
-
Ladicky, L.1
Sturgess, P.2
Alahari, K.3
Russell, C.4
Torr, P.H.S.5
-
27
-
-
84991552540
-
-
CoRR, abs/1510.01378
-
C. Laurent, G. Pereyra, P. Brakel, Y. Zhang, and Y. Bengio. Batch normalized recurrent neural networks. CoRR, abs/1510.01378, 2015
-
(2015)
Batch Normalized Recurrent Neural Networks
-
-
Laurent, C.1
Pereyra, G.2
Brakel, P.3
Zhang, Y.4
Bengio, Y.5
-
29
-
-
84931577575
-
Crf learning with cnn features for image segmentation
-
F. Liu, G. Lin, and C. Shen. Crf learning with cnn features for image segmentation. Pattern Recognition, 2015
-
(2015)
Pattern Recognition
-
-
Liu, F.1
Lin, G.2
Shen, C.3
-
30
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
(to appear), Nov.
-
J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. CVPR (to appear), Nov. 2015
-
(2015)
CVPR
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
34
-
-
84925305292
-
Recurrent convolutional neural networks for scene labeling
-
P. Pinheiro and R. Collobert. Recurrent convolutional neural networks for scene labeling. JMLR, 1(32):82-90, 2014
-
(2014)
JMLR
, vol.1
, Issue.32
, pp. 82-90
-
-
Pinheiro, P.1
Collobert, R.2
-
36
-
-
84951834022
-
U-net: Convolutional networks for biomedical image segmentation
-
Springer, 2015. (available on arXiv:1505.04597 [cs.CV])
-
O. Ronneberger, P.Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention (MICCAI), volume 9351 of LNCS, pages 234-241. Springer, 2015. (available on arXiv:1505.04597 [cs.CV])
-
Medical Image Computing and Computer-Assisted Intervention (MICCAI), Volume 9351 of LNCS
, pp. 234-241
-
-
Ronneberger, O.1
Fischer, P.2
Brox, T.3
-
37
-
-
12844262766
-
Grabcut: Interactive foreground extraction using iterated graph cuts
-
C. Rother, V. Kolmogorov, and A. Blake. Grabcut: Interactive foreground extraction using iterated graph cuts. ACM Transactions on Graphics (TOG), 23(3):309-314, 2004
-
(2004)
ACM Transactions on Graphics (TOG)
, vol.23
, Issue.3
, pp. 309-314
-
-
Rother, C.1
Kolmogorov, V.2
Blake, A.3
-
39
-
-
85083953063
-
Very deep convolutional networks for large-scale image recognition
-
K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015
-
(2015)
ICLR
-
-
Simonyan, K.1
Zisserman, A.2
-
40
-
-
84887364799
-
Nonparametric scene parsing with adaptive feature relevance and semantic context. in 2013
-
Portland, OR, USA, June 23-28, 2013
-
G. Singh and J. Kosecka. Nonparametric scene parsing with adaptive feature relevance and semantic context. In 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, June 23-28, 2013, pages 3151-3157, 2013
-
(2013)
IEEE Conference on Computer Vision and Pattern Recognition
, pp. 3151-3157
-
-
Singh, G.1
Kosecka, J.2
-
41
-
-
84965136278
-
Parallel multi-dimensional lstm, with application to fast biomedical volumetric image segmentation
-
M. F. Stollenga, W. Byeon, M. Liwicki, and J. Schmidhuber. Parallel multi-dimensional lstm, with application to fast biomedical volumetric image segmentation. In Advances in Neural Information Processing Systems, pages 2980-2988, 2015
-
(2015)
Advances in Neural Information Processing Systems
, pp. 2980-2988
-
-
Stollenga, M.F.1
Byeon, W.2
Liwicki, M.3
Schmidhuber, J.4
-
42
-
-
84898870663
-
Combining appearance and structure from motion features for road scene understanding
-
P. Sturgess, K. Alahari, L. Ladicky, and P. H. S. Torr. Combining Appearance and Structure from Motion Features for Road Scene Understanding. Procedings of the British Machine Vision Conference 2009, pages 62.1-62.11, 2009
-
(2009)
Procedings of the British Machine Vision Conference 2009
, pp. 621-6211
-
-
Sturgess, P.1
Alahari, K.2
Ladicky, L.3
Torr, P.H.S.4
-
43
-
-
84964983441
-
-
arXiv preprint arXiv:1409.4842
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. ArXiv preprint arXiv:1409.4842, 2014
-
(2014)
Going Deeper with Convolutions
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
44
-
-
84873190838
-
Superparsing: Scalable nonparametric image parsing with superpixels
-
J. Tighe and S. Lazebnik. Superparsing: Scalable nonparametric image parsing with superpixels. International Journal of Computer Vision, 101(2):329-349, 2013
-
(2013)
International Journal of Computer Vision
, vol.101
, Issue.2
, pp. 329-349
-
-
Tighe, J.1
Lazebnik, S.2
-
45
-
-
84971668893
-
-
arXiv preprint arXiv:1505.00393
-
F. Visin, K. Kastner, K. Cho, M. Matteucci, A. Courville, and Y. Bengio. Renet: A recurrent neural network based alternative to convolutional networks. ArXiv preprint arXiv:1505.00393, 2015
-
(2015)
Renet: A Recurrent Neural Network Based Alternative to Convolutional Networks
-
-
Visin, F.1
Kastner, K.2
Cho, K.3
Matteucci, M.4
Courville, A.5
Bengio, Y.6
-
46
-
-
85088769921
-
Tri-map self-validation based on least gibbs energy for foreground segmentation
-
BMVA Press
-
X. Wu and K. Kashino. Tri-map self-validation based on least gibbs energy for foreground segmentation. In Proceedings of the British Machine Vision Conference. BMVA Press, 2014
-
(2014)
Proceedings of the British Machine Vision Conference
-
-
Wu, X.1
Kashino, K.2
-
47
-
-
84959204067
-
Patchcut: Data-driven object segmentation via local shape transfer
-
J. Yang, B. Price, S. Cohen, Z. Lin, and M.-H. Yang. Patchcut: Data-driven object segmentation via local shape transfer. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1770-1778, 2015
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1770-1778
-
-
Yang, J.1
Price, B.2
Cohen, S.3
Lin, Z.4
Yang, M.-H.5
-
50
-
-
84921476116
-
Visualizing and understanding convolutional networks
-
M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV'14, 2014.
-
(2014)
ECCV'14
-
-
Zeiler, M.D.1
Fergus, R.2
|