메뉴 건너뛰기




Volumn 07-12-June-2015, Issue , 2015, Pages 1770-1778

PatchCut: Data-driven object segmentation via local shape transfer

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; IMAGE MATCHING; ITERATIVE METHODS; PATTERN RECOGNITION;

EID: 84959204067     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2015.7298786     Document Type: Conference Paper
Times cited : (19)

References (37)
  • 1
    • 84959217735 scopus 로고    scopus 로고
    • Photoshop
    • Adobe Systems Inc
    • Adobe Systems Inc. Photoshop. Creative Cloud, 2014
    • (2014) Creative Cloud
  • 4
    • 80052894155 scopus 로고    scopus 로고
    • Kernelized structural SVM learning for supervised object segmentation
    • L. Bertelli, T. Yu, D. Vu, and B. Gokturk. Kernelized structural SVM learning for supervised object segmentation. In CVPR, 2011
    • (2011) CVPR
    • Bertelli, L.1    Yu, T.2    Vu, D.3    Gokturk, B.4
  • 5
    • 0042004575 scopus 로고    scopus 로고
    • Class-specific, top-down segmentation
    • E. Borenstein and S. Ullman. Class-specific, top-down segmentation. In ECCV, 2002
    • (2002) ECCV
    • Borenstein, E.1    Ullman, S.2
  • 6
    • 0034844730 scopus 로고    scopus 로고
    • Interactive graph cuts for optimal boundary & region segmentation of objects in n-d images
    • Y. Y. Boykov and M.-P. Jolly. Interactive graph cuts for optimal boundary & region segmentation of objects in n-d images. In ICCV, 2001
    • (2001) ICCV
    • Boykov, Y.Y.1    Jolly, M.-P.2
  • 7
    • 77956008665 scopus 로고    scopus 로고
    • Constrained parametric min-cuts for automatic object segmentation
    • J. Carreira and C. Sminchisescu. Constrained parametric min-cuts for automatic object segmentation. In CVPR, 2010
    • (2010) CVPR
    • Carreira, J.1    Sminchisescu, C.2
  • 9
    • 84898820142 scopus 로고    scopus 로고
    • Structured forests for fast edge detection
    • P. Dollár and C. Zitnick. Structured forests for fast edge detection. In ICCV, 2013
    • (2013) ICCV
    • Dollár, P.1    Zitnick, C.2
  • 11
  • 13
    • 84887362370 scopus 로고    scopus 로고
    • Shape sharing for object segmentation
    • J. Kim and K. Grauman. Shape sharing for object segmentation. In ECCV, 2012
    • (2012) ECCV
    • Kim, J.1    Grauman, K.2
  • 14
    • 84887382752 scopus 로고    scopus 로고
    • Deformable spatial pyramid matching for fast dense correspondences
    • J. Kim, C. Liu, F. Sha, and K. Grauman. Deformable spatial pyramid matching for fast dense correspondences. In CVPR, 2013
    • (2013) CVPR
    • Kim, J.1    Liu, C.2    Sha, F.3    Grauman, K.4
  • 15
    • 84856646828 scopus 로고    scopus 로고
    • Structured class-labels in random forests for semantic image labelling
    • P. Kontschieder, S. R. Bulo, H. Bischof, and M. Pelillo. Structured class-labels in random forests for semantic image labelling. In ICCV, 2011
    • (2011) ICCV
    • Kontschieder, P.1    Bulo, S.R.2    Bischof, H.3    Pelillo, M.4
  • 16
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 17
    • 84866697047 scopus 로고    scopus 로고
    • Figure-ground segmentation by transferring window masks
    • D. Kuettel and V. Ferrari. Figure-ground segmentation by transferring window masks. In CVPR, 2012
    • (2012) CVPR
    • Kuettel, D.1    Ferrari, V.2
  • 19
    • 51949086303 scopus 로고    scopus 로고
    • Combining appearance models and markov random fields for category level object segmentation
    • D. Larlus and F. Jurie. Combining appearance models and markov random fields for category level object segmentation. In CVPR, 2008
    • (2008) CVPR
    • Larlus, D.1    Jurie, F.2
  • 21
    • 34548799026 scopus 로고    scopus 로고
    • Learning to combine bottom-up and top-down segmentation
    • A. Levin and Y. Weiss. Learning to combine bottom-up and top-down segmentation. In ECCV, 2006
    • (2006) ECCV
    • Levin, A.1    Weiss, Y.2
  • 23
    • 84887360102 scopus 로고    scopus 로고
    • Exploring compositional high order pattern potentials for structured output learning
    • Y. Li, D. Tarlow, and R. Zemel. Exploring compositional high order pattern potentials for structured output learning. In CVPR, 2013
    • (2013) CVPR
    • Li, Y.1    Tarlow, D.2    Zemel, R.3
  • 24
    • 80054898486 scopus 로고    scopus 로고
    • Nonparametric scene parsing via label transfer
    • C. Liu, J. Yuen, and A. Torralba. Nonparametric scene parsing via label transfer. PAMI, 33(12):2368-2382, 2011
    • (2011) PAMI , vol.33 , Issue.12 , pp. 2368-2382
    • Liu, C.1    Yuen, J.2    Torralba, A.3
  • 26
    • 84959234259 scopus 로고    scopus 로고
    • Nonparametric higher-order random fields for image segmentation
    • P. Marquez-Neila, P. Kohli, C. Rother, and L. Baumela. Nonparametric higher-order random fields for image segmentation. In ECCV, 2014
    • (2014) ECCV
    • Marquez-Neila, P.1    Kohli, P.2    Rother, C.3    Baumela, L.4
  • 28
    • 84866667038 scopus 로고    scopus 로고
    • Saliency filters: Contrast based filtering for salient region detection
    • F. Perazzi, P. Krähenbühl, Y. Pritch, and A. Hornung. Saliency filters: Contrast based filtering for salient region detection. In CVPR, 2012
    • (2012) CVPR
    • Perazzi, F.1    Krähenbühl, P.2    Pritch, Y.3    Hornung, A.4
  • 30
    • 84887379226 scopus 로고    scopus 로고
    • Unsupervised joint object discovery and segmentation in internet images
    • M. Rubinstein, A. Joulin, J. Kopf, and C. Liu. Unsupervised joint object discovery and segmentation in internet images. In CVPR, 2013
    • (2013) CVPR
    • Rubinstein, M.1    Joulin, A.2    Kopf, J.3    Liu, C.4
  • 31
    • 84866698558 scopus 로고    scopus 로고
    • Object retrieval and localization with spatially-constrained similarity measure and k-nn reranking
    • X. Shen, Z. Lin, J. Brandt, S. Avidan, and Y. Wu. Object retrieval and localization with spatially-constrained similarity measure and k-nn reranking. In CVPR, 2012
    • (2012) CVPR
    • Shen, X.1    Lin, Z.2    Brandt, J.3    Avidan, S.4    Wu, Y.5
  • 32
    • 84887363465 scopus 로고    scopus 로고
    • Finding things: Image parsing with regions and per-exemplar detectors
    • J. Tighe and S. Lazebnik. Finding things: Image parsing with regions and per-exemplar detectors. In CVPR, 2013
    • (2013) CVPR
    • Tighe, J.1    Lazebnik, S.2
  • 33
    • 80052885237 scopus 로고    scopus 로고
    • Multi-level inference by relaxed dual decomposition for human pose segmentation
    • H. Wang and D. Koller. Multi-level inference by relaxed dual decomposition for human pose segmentation. In CVPR, 2011
    • (2011) CVPR
    • Wang, H.1    Koller, D.2
  • 34
    • 84911451328 scopus 로고    scopus 로고
    • Milcut: A sweeping line multiple instance learning paradigm for interactive image segmentation
    • J. Wu, Y. Zhao, J.-Y. Zhu, S. Luo, and Z. Tu. Milcut: A sweeping line multiple instance learning paradigm for interactive image segmentation. In CVPR, 2014
    • (2014) CVPR
    • Wu, J.1    Zhao, Y.2    Zhu, J.-Y.3    Luo, S.4    Tu, Z.5
  • 36
    • 84911438661 scopus 로고    scopus 로고
    • Max-margin boltzmann machines for object segmentation
    • J. Yang, S. Safar, and M.-H. Yang. Max-margin boltzmann machines for object segmentation. In CVPR, 2014
    • (2014) CVPR
    • Yang, J.1    Safar, S.2    Yang, M.-H.3
  • 37
    • 84856650948 scopus 로고    scopus 로고
    • From learning models of natural image patches to whole image restoration
    • D. Zoran and Y. Weiss. From learning models of natural image patches to whole image restoration. In ICCV, 2011.
    • (2011) ICCV
    • Zoran, D.1    Weiss, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.