-
1
-
-
84864073449
-
Greedy layer-wise training of deep networks
-
Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise training of deep networks. In NIPS, pages 153-160, 2006. 1, 2, 3
-
(2006)
NIPS
, pp. 153-160
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
2
-
-
84855358881
-
Harmony potentials-Fusing global and local scale for semantic image segmentation
-
X. Boix, J. M. Gonfaus, J. van de Weijer, A. D. Bagdanov, J. S. Gual, and J. Gonzàlez. Harmony potentials-fusing global and local scale for semantic image segmentation. IJCV, 96(1):83-102, 2012. 2
-
(2012)
IJCV
, vol.96
, Issue.1
, pp. 83-102
-
-
Boix, X.1
Gonfaus, J.M.2
De W.J.Van3
Bagdanov, A.D.4
Gual, J.S.5
Gonzàlez, J.6
-
3
-
-
84894360206
-
Ecoc-drf: Discriminative random fields based on error-correcting output code
-
F. Ciompi, O. Pujol, and P. Radeva. Ecoc-drf: Discriminative random fields based on error-correcting output codes. Pattern Recognition, 47:2193-2204, 2014. 2
-
(2014)
Pattern Recognition
, vol.47
, pp. 2193-2204
-
-
Ciompi, F.1
Pujol, O.2
Radeva, P.3
-
4
-
-
80053446757
-
An analysis of singlelayer networks in unsupervised feature learning
-
A. Coates, H. Lee, and A. Y. Ng. An analysis of singlelayer networks in unsupervised feature learning. In AISTATS, pages 214-223, 2011. 2
-
(2011)
AISTATS
, pp. 214-223
-
-
Coates, A.1
Lee, H.2
Ng, A.Y.3
-
5
-
-
80053442434
-
The importance of encoding versus training with sparse coding and vector quantization
-
A. Coates and A. Ng. The importance of encoding versus training with sparse coding and vector quantization. In ICML, pages 921-928, 2011. 2
-
(2011)
ICML
, pp. 921-928
-
-
Coates, A.1
Ng, A.2
-
7
-
-
77949522811
-
Why does unsupervised pre-training help deep learning?
-
Mar
-
D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Bengio. Why does unsupervised pre-training help deep learning? JMLR, 11:625-660, Mar. 2010. 1
-
(2010)
JMLR
, vol.11
, pp. 625-660
-
-
Erhan, D.1
Bengio, Y.2
Courville, A.3
Manzagol, P.-A.4
Vincent, P.5
Bengio, S.6
-
8
-
-
84876258641
-
Learning Hierarchical Features for Scene Labeling
-
C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning hierarchical features for scene labeling. IEEE TPAMI, 35(8):1915-1929, 2013. 1, 2, 3, 5, 6, 7
-
(2013)
IEEE TPAMI
, vol.35
, Issue.8
, pp. 1915-1929
-
-
Farabet, C.1
Couprie, C.2
Najman, L.3
Lecun, Y.4
-
9
-
-
84908515201
-
Stacked sequential scale-space taylor context
-
C. Gatta and F. Ciompi. Stacked sequential scale-space taylor context. IEEE TPAMI, 2014. 2
-
(2014)
IEEE TPAMI
-
-
Gatta, C.1
Ciompi, F.2
-
11
-
-
80052892113
-
A hierarchical conditional random field model for labeling and segmenting images of street scenes
-
IEEE
-
Q.-X. Huang, M. Han, B. Wu, and S. Ioffe. A hierarchical conditional random field model for labeling and segmenting images of street scenes. In CVPR, pages 1953-1960. IEEE, 2011. 2
-
(2011)
CVPR
, pp. 1953-1960
-
-
Huang, Q.-X.1
Han, M.2
Wu, B.3
Ioffe, S.4
-
12
-
-
70450182221
-
Efficient scale space auto-context for image segmentation and labeling
-
IEEE
-
J. Jiang and Z. Tu. Efficient scale space auto-context for image segmentation and labeling. In CVPR, pages 1810-1817. IEEE, 2009. 2
-
(2009)
CVPR
, pp. 1810-1817
-
-
Jiang, J.1
Tu, Z.2
-
13
-
-
85162460675
-
Learning convolutional feature hierachies for visual recognition
-
K. Kavukcuoglu, P. Sermanet, Y. Boureau, K. Gregor, M. Mathieu, and Y. LeCun. Learning convolutional feature hierachies for visual recognition. In NIPS, 2010. 2
-
(2010)
NIPS
-
-
Kavukcuoglu, K.1
Sermanet, P.2
Boureau, Y.3
Gregor, K.4
Mathieu, M.5
Lecun, Y.6
-
14
-
-
61349174704
-
Robust higher order potentials for enforcing label consistency
-
P. Kohli, L. Ladicky, and P. H. S. Torr. Robust higher order potentials for enforcing label consistency. IJCV, 82(3):302-324, 2009. 2
-
(2009)
IJCV
, vol.82
, Issue.3
, pp. 302-324
-
-
Kohli, P.1
Ladicky, L.2
Torr, P.H.S.3
-
15
-
-
77953225585
-
Associative hierarchical crfs for object class image segmentation
-
IEEE
-
L. Ladicky, C. Russell, P. Kohli, and P. H. S. Torr. Associative hierarchical crfs for object class image segmentation. In ICCV, pages 739-746. IEEE, 2009. 2
-
(2009)
ICCV
, pp. 739-746
-
-
Ladicky, L.1
Russell, C.2
Kohli, P.3
Torr, P.H.S.4
-
16
-
-
78149343534
-
Graph cut based inference with co-occurrence statistics
-
Springer
-
L. Ladicky, C. Russell, P. Kohli, and P. H. S. Torr. Graph cut based inference with co-occurrence statistics. In ECCV (5), volume 6315 of LNCS, pages 239-253. Springer, 2010. 2
-
(2010)
ECCV, LNCS
, vol.6315
, Issue.5
, pp. 239-253
-
-
Ladicky, L.1
Russell, C.2
Kohli, P.3
Torr, P.H.S.4
-
17
-
-
85161980001
-
Sparse deep belief net model for visual area v2
-
H. Lee, C. Ekanadham, and A. Y. Ng. Sparse deep belief net model for visual area v2. In NIPS, pages 873-880, 2008. 2
-
(2008)
NIPS
, pp. 873-880
-
-
Lee, H.1
Ekanadham, C.2
Ng, A.Y.3
-
18
-
-
80054898486
-
Nonparametric scene parsing via label transfer
-
C. Liu, J. Yuen, and A. Torralba. Nonparametric scene parsing via label transfer. IEEE TPAMI, 33(12):2368-2382, 2011. 2, 5
-
(2011)
IEEE TPAMI
, vol.33
, Issue.12
, pp. 2368-2382
-
-
Liu, C.1
Yuen, J.2
Torralba, A.3
-
19
-
-
78149288414
-
Stacked hierarchical labeling
-
D. Munoz, J. A. D. Bagnell, and M. Hebert. Stacked hierarchical labeling. In ECCV, pages 57-70, 2010. 2
-
(2010)
ECCV
, pp. 57-70
-
-
Munoz, D.1
Bagnell, J.A.D.2
Hebert, M.3
-
20
-
-
85162445285
-
Sparse filtering
-
J. Ngiam, P. W. Koh, Z. Chen, S. Bhaskar, and A. Y. Ng. Sparse filtering. In NIPS, pages 1125-1133, 2011. 2
-
(2011)
NIPS
, pp. 1125-1133
-
-
Ngiam, J.1
Koh, P.W.2
Chen, Z.3
Bhaskar, S.4
Ng, A.Y.5
-
21
-
-
84856642791
-
Decision tree fields
-
S. Nowozin, C. Rother, S. Bagon, T. Sharp, B. Yao, and P. Kholi. Decision tree fields. In ICCV, pages 1668-1675, 2011. 2
-
(2011)
ICCV
, pp. 1668-1675
-
-
Nowozin, S.1
Rother, C.2
Bagon, S.3
Sharp, T.4
Yao, B.5
Kholi, P.6
-
22
-
-
0030779611
-
Sparse coding with an overcomplete basis set: A strategy employed by v1?
-
B. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: a strategy employed by v1? Vision Research, 37(23):3311-3325, 1997. 2
-
(1997)
Vision Research
, vol.37
, Issue.23
, pp. 3311-3325
-
-
Olshausen, B.1
Field, D.J.2
-
23
-
-
84925305292
-
Recurrent convolutional neural networks for scene labeling
-
P. Pinheiro and R. Collobert. Recurrent convolutional neural networks for scene labeling. JMLR, 1(32):82-90, 2014. 1, 2, 3, 4, 5, 6
-
(2014)
JMLR
, vol.1
, Issue.32
, pp. 82-90
-
-
Pinheiro, P.1
Collobert, R.2
-
24
-
-
84864069017
-
Efficient learning of sparse representations with an energy-based model
-
M. A. Ranzato, C. Poultney, S. Chopra, and Y. Lecun. Efficient learning of sparse representations with an energy-based model. In NIPS, pages 1137-1144, 2006. 2
-
(2006)
NIPS
, pp. 1137-1144
-
-
Ranzato, M.A.1
Poultney, C.2
Chopra, S.3
Lecun, Y.4
-
25
-
-
84908515199
-
No more metaparameter tuning in unsupervised sparse feature learning
-
A. Romero, P. Radeva, and C. Gatta. No more metaparameter tuning in unsupervised sparse feature learning. arXiv:1402. 5766, 2014. 2, 5
-
(2014)
Arxiv:1402. 5766
-
-
Romero, A.1
Radeva, P.2
Gatta, C.3
-
26
-
-
84866707104
-
Structured local predictors for image labelling
-
IEEE
-
S. Rota Bulò, P. Kontschieder, M. Pelillo, and H. Bischof. Structured local predictors for image labelling. In CVPR, pages 3530-3537. IEEE, 2012. 2
-
(2012)
CVPR
, pp. 3530-3537
-
-
Rota Bulò, S.1
Kontschieder, P.2
Pelillo, M.3
Bischof, H.4
-
28
-
-
84887364799
-
Nonparametric scene parsing with adaptive feature relevance and semantic context
-
IEEE, 1, 2, 3, 5, 6
-
G. Singh and J. Kosecka. Nonparametric scene parsing with adaptive feature relevance and semantic context. In CVPR, pages 3151-3157. IEEE, 2013. 1, 2, 3, 5, 6
-
(2013)
CVPR
, pp. 3151-3157
-
-
Singh, G.1
Kosecka, J.2
-
29
-
-
84873190838
-
Superparsing-Scalable nonparametric image parsing with superpixels
-
J. Tighe and S. Lazebnik. Superparsing-scalable nonparametric image parsing with superpixels. IJCV, 101(2):329-349, 2013. 2
-
(2013)
IJCV
, vol.101
, Issue.2
, pp. 329-349
-
-
Tighe, J.1
Lazebnik, S.2
-
30
-
-
77956051102
-
Auto-context and its application to highlevel vision tasks and 3d brain image segmentation
-
Z. Tu and X. Bai. Auto-context and its application to highlevel vision tasks and 3d brain image segmentation. IEEE TPAMI, 32(10):1744-1757, 2010. 2
-
(2010)
IEEE TPAMI
, vol.32
, Issue.10
, pp. 1744-1757
-
-
Tu, Z.1
Bai, X.2
|