메뉴 건너뛰기




Volumn 17, Issue , 2016, Pages 1-37

Neural autoregressive distribution estimation

Author keywords

Deep Learning; Density Modeling; Neural Networks; Unsupervised Learning

Indexed keywords

NEURAL NETWORKS; UNSUPERVISED LEARNING;

EID: 85008500730     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (317)

References (76)
  • 3
    • 0142223338 scopus 로고    scopus 로고
    • Modeling high-dimensional discrete data with multi-layer neural networks
    • MIT Press
    • Yoshua Bengio and Samy Bengio. Modeling high-dimensional discrete data with multi-layer neural networks. In Advances in Neural Information Processing Systems 12, pages 400-406. MIT Press, 2000.
    • (2000) Advances in Neural Information Processing Systems , vol.12 , pp. 400-406
    • Bengio, Y.1    Bengio, S.2
  • 4
    • 0000582521 scopus 로고
    • Statistical analysis of non-lattice data
    • Julian Besag. Statistical analysis of non-lattice data. The Statistician, 24(3):179-195, 1975.
    • (1975) The Statistician , vol.24 , Issue.3 , pp. 179-195
    • Besag, J.1
  • 7
    • 84867129058 scopus 로고    scopus 로고
    • Modeling temporal dependencies in high-dimensional sequences: Application to polyphonic music generation and transcription
    • Omnipress
    • Nicolas Boulanger-Lewandowski, Yoshua Bengio, and Pascal Vincent. Modeling temporal dependencies in high-dimensional sequences: Application to polyphonic music generation and transcription. In Proceedings of the 29th International Conference on Machine Learning, pages 1159-1166. Omnipress, 2012.
    • (2012) Proceedings of the 29th International Conference on Machine Learning , pp. 1159-1166
    • Boulanger-Lewandowski, N.1    Bengio, Y.2    Vincent, P.3
  • 10
    • 84877799221 scopus 로고    scopus 로고
    • Enhanced gradient for training restricted Boltzmann machines
    • KyungHyun Cho, Tapani Raiko, and Alexander Ilin. Enhanced gradient for training restricted Boltzmann machines. Neural Computation, 25:805-31, 2013.
    • (2013) Neural Computation , vol.25 , pp. 805-831
    • Cho, K.1    Raiko, T.2    Ilin, A.3
  • 11
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • C.K. Chow and C.N. Liu. Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory, 14(3):462-467, 1968.
    • (1968) IEEE Transactions on Information Theory , vol.14 , Issue.3 , pp. 462-467
    • Chow, C.K.1    Liu, C.N.2
  • 14
    • 84965143571 scopus 로고    scopus 로고
    • Deep generative image models using a Laplacian pyramid of adversarial networks
    • Curran Associates, Inc
    • Emily L. Denton, Soumith Chintala, Arthur Szlam, and Rob Fergus. Deep generative image models using a Laplacian pyramid of adversarial networks. In Advances in Neural Information Processing Systems 28, pages 1486-1494. Curran Associates, Inc., 2015.
    • (2015) Advances in Neural Information Processing Systems , vol.28 , pp. 1486-1494
    • Denton, E.L.1    Chintala, S.2    Szlam, A.3    Fergus, R.4
  • 16
    • 0345368881 scopus 로고
    • Unsupervised learning of distributions on binary vectors using two layer networks
    • Morgan-Kaufmann
    • Yoav Freund and David Haussler. Unsupervised learning of distributions on binary vectors using two layer networks. In Advances in Neural Information Processing Systems 4, pages 912-919. Morgan-Kaufmann, 1992.
    • (1992) Advances in Neural Information Processing Systems , vol.4 , pp. 912-919
    • Freund, Y.1    Haussler, D.2
  • 22
    • 85162557101 scopus 로고    scopus 로고
    • Practical variational inference for neural networks
    • Curran Associates, Inc
    • Alex Graves. Practical variational inference for neural networks. In Advances in Neural Information Processing Systems 24, pages 2348-2356. Curran Associates, Inc., 2011.
    • (2011) Advances in Neural Information Processing Systems , vol.24 , pp. 2348-2356
    • Graves, A.1
  • 29
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Georey E. Hinton. Training products of experts by minimizing contrastive divergence. Neural Computation, 14:1771-1800, 2002.
    • (2002) Neural Computation , vol.14 , pp. 1771-1800
    • Hinton, G.E.1
  • 30
    • 0029652445 scopus 로고
    • The wake-sleep algorithm for unsupervised neural networks
    • Georey E. Hinton, Peter Dayan, Brendan J. Frey, and Radford M. Neal. The wake-sleep algorithm for unsupervised neural networks. Science, 268:1161-1558, 1995.
    • (1995) Science , vol.268 , pp. 1161-1558
    • Hinton, G.E.1    Dayan, P.2    Frey, B.J.3    Neal, R.M.4
  • 31
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Georey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning algorithm for deep belief nets. Neural Computation, 18:1527-1554, 2006.
    • (2006) Neural Computation , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Whye Teh, Y.3
  • 32
    • 22044434800 scopus 로고    scopus 로고
    • Estimation of non-normalized statistical models by score matching
    • Aapo Hyvarinen. Estimation of non-normalized statistical models by score matching. Journal of Machine Learning Research, 6:695-709, 2005.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 695-709
    • Hyvarinen, A.1
  • 34
    • 34548644434 scopus 로고    scopus 로고
    • Connections between score matching, contrastive divergence, and pseudolikelihood for continuous-valued variables
    • Aapo Hyvarinen. Connections between score matching, contrastive divergence, and pseudolikelihood for continuous-valued variables. IEEE Transactions on Neural Networks, 18: 1529-1531, 2007b.
    • (2007) IEEE Transactions on Neural Networks , vol.18 , pp. 1529-1531
    • Hyvarinen, A.1
  • 37
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Curran Associates, Inc
    • Alex Krizhevsky, Ilya Sutskever, and Georey E. Hinton. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems 25, pages 1097-1105. Curran Associates, Inc., 2012.
    • (2012) Advances in Neural Information Processing Systems , vol.25 , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 40
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • Yann LeCun, Yoshua Bengio, and Georey E. Hinton. Deep learning. Nature, 521(7553): 436-444, 2015.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.E.3
  • 43
    • 0034850577 scopus 로고    scopus 로고
    • A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
    • IEEE, July
    • D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In International Conference on Computer Vision, volume 2, pages 416-423. IEEE, July 2001.
    • (2001) International Conference on Computer Vision , vol.2 , pp. 416-423
    • Martin, D.1    Fowlkes, C.2    Tal, D.3    Malik, J.4
  • 45
    • 44049116681 scopus 로고
    • Connectionist learning of belief networks
    • Radford M. Neal. Connectionist learning of belief networks. Artificial Intelligence, 56:71-113, 1992.
    • (1992) Artificial Intelligence , vol.56 , pp. 71-113
    • Neal, R.M.1
  • 48
    • 85156248415 scopus 로고
    • Improved Gaussian mixture density estimates using Bayesian penalty terms and network averaging
    • MIT Press
    • Dirk Ormoneit and Volker Tresp. Improved Gaussian mixture density estimates using Bayesian penalty terms and network averaging. In Advances in Neural Information Processing Systems 8, pages 542-548. MIT Press, 1995.
    • (1995) Advances in Neural Information Processing Systems , vol.8 , pp. 542-548
    • Ormoneit, D.1    Tresp, V.2
  • 49
    • 84937836555 scopus 로고    scopus 로고
    • Iterative neural autoregressive distribution estimator (NADE-k)
    • Curran Associates, Inc
    • Tapani Raiko, Li Yao, Kyunghyun Cho, and Yoshua Bengio. Iterative neural autoregressive distribution estimator (NADE-k). In Advances in Neural Information Processing Systems 27, pages 325-333. Curran Associates, Inc., 2014.
    • (2014) Advances in Neural Information Processing Systems , vol.27 , pp. 325-333
    • Raiko, T.1    Yao, L.2    Cho, K.3    Bengio, Y.4
  • 51
    • 84858735575 scopus 로고    scopus 로고
    • Learning in Markov random fields using tempered transitions
    • Curran Associates, Inc
    • Ruslan Salakhutdinov. Learning in Markov random fields using tempered transitions. In Advances in Neural Information Processing Systems 22, pages 1598-1606. Curran Associates, Inc., 2009.
    • (2009) Advances in Neural Information Processing Systems , vol.22 , pp. 1598-1606
    • Salakhutdinov, R.1
  • 57
    • 0000329993 scopus 로고
    • D.E. Rumelhart and J.L. McClelland, editors, Parallel Distributed Processing Volume 1: Foundations, volume 1, chapter 6 MIT Press, Cambridge
    • Paul Smolensky. Information processing in dynamical systems: Foundations of harmony theory. In D.E. Rumelhart and J.L. McClelland, editors, Parallel Distributed Processing: Volume 1: Foundations, volume 1, chapter 6, pages 194-281. MIT Press, Cambridge, 1986.
    • (1986) Information Processing in Dynamical Systems: Foundations of Harmony Theory , pp. 194-281
    • Smolensky, P.1
  • 58
    • 0032661851 scopus 로고    scopus 로고
    • Linearly combining density estimators via stacking
    • Padhraic Smyth and David Wolpert. Linearly combining density estimators via stacking. Machine Learning, 36(1-2):59-83, 1999.
    • (1999) Machine Learning , vol.36 , Issue.1-2 , pp. 59-83
    • Smyth, P.1    Wolpert, D.2
  • 63
    • 84965111399 scopus 로고    scopus 로고
    • Generative image modeling using spatial lstms
    • Curran Associates, Inc
    • Lucas Theis and Matthias Bethge. Generative image modeling using spatial lstms. In Ad-vances in Neural Information Processing Systems 28, pages 1927-1935. Curran Associates, Inc., 2015.
    • (2015) Ad-vances in Neural Information Processing Systems , vol.28 , pp. 1927-1935
    • Theis, L.1    Bethge, M.2
  • 64
    • 56449086223 scopus 로고    scopus 로고
    • Training restricted Boltzmann machines using approximations to the likelihood gradient
    • Omnipress
    • Tijmen Tieleman. Training restricted Boltzmann machines using approximations to the likelihood gradient. In Proceedings of the 25th International Conference on Machine Learning, pages 1064-1071. Omnipress, 2008.
    • (2008) Proceedings of the 25th International Conference on Machine Learning , pp. 1064-1071
    • Tieleman, T.1
  • 67
    • 84898933061 scopus 로고    scopus 로고
    • RNADE: The real-valued neural autoregressive density-estimator
    • Curran Associates, Inc
    • Benigno Uria, Iain Murray, and Hugo Larochelle. RNADE: The real-valued neural autoregressive density-estimator. In Advances in Neural Information Processing Systems 26, pages 2175-2183. Curran Associates, Inc., 2013.
    • (2013) Advances in Neural Information Processing Systems , vol.26 , pp. 2175-2183
    • Uria, B.1    Murray, I.2    Larochelle, H.3
  • 71
    • 84899000641 scopus 로고    scopus 로고
    • Exponential family harmoniums with an application to information retrieval
    • MIT Press
    • Max Welling, Michal Rosen-Zvi, and Georey E. Hinton. Exponential family harmoniums with an application to information retrieval. In Advances in Neural Information Processing Systems 17, pages 1481-1488. MIT Press, 2005.
    • (2005) Advances in Neural Information Processing Systems , vol.17 , pp. 1481-1488
    • Welling, M.1    Rosen-Zvi, M.2    Hinton, G.E.3
  • 72
    • 0000355193 scopus 로고
    • Parameter inference for imperfectly observed Gibbsian fields
    • Laurent Younes. Parameter inference for imperfectly observed Gibbsian fields. Probability Theory Related Fields, 82:625-645, 1989.
    • (1989) Probability Theory Related Fields , vol.82 , pp. 625-645
    • Younes, L.1
  • 75
    • 84856650948 scopus 로고    scopus 로고
    • From learning models of natural image patches to whole image restoration
    • IEEE
    • Daniel Zoran and Yair Weiss. From learning models of natural image patches to whole image restoration. In International Conference on Computer Vision, pages 479-486. IEEE, 2011.
    • (2011) International Conference on Computer Vision , pp. 479-486
    • Zoran, D.1    Weiss, Y.2
  • 76
    • 84877781993 scopus 로고    scopus 로고
    • Natural images, Gaussian mixtures and dead leaves
    • Curran Associates, Inc
    • Daniel Zoran and YairWeiss. Natural images, Gaussian mixtures and dead leaves. In Advances in Neural Information Processing Systems 25, pages 1745-1753. Curran Associates, Inc., 2012.
    • (2012) Advances in Neural Information Processing Systems , vol.25 , pp. 1745-1753
    • Zoran, D.1    Weiss, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.