메뉴 건너뛰기




Volumn , Issue , 2012, Pages 1201-1211

Semantic compositionality through recursive matrix-vector spaces

Author keywords

[No Author keywords available]

Indexed keywords

LEXICAL INFORMATION; NATURAL LANGUAGES; PROPOSITIONAL LOGIC; RECURSIVE NEURAL NETWORKS; SEMANTIC RELATIONSHIPS; STATE-OF-THE-ART PERFORMANCE; VECTOR REPRESENTATIONS; VECTOR SPACE MODELS;

EID: 84870715081     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (1319)

References (40)
  • 1
    • 78650686637 scopus 로고    scopus 로고
    • Distributional memory: A general framework for corpus-based semantics
    • M. Baroni and A. Lenci. 2010. Distributional memory: A general framework for corpus-based semantics. Computational Linguistics, 36(4):673-721.
    • (2010) Computational Linguistics , vol.36 , Issue.4 , pp. 673-721
    • Baroni, M.1    Lenci, A.2
  • 2
    • 80053232678 scopus 로고    scopus 로고
    • Nouns are vectors, adjectives are matrices: Representing adjective-noun constructions in semantic space
    • M. Baroni and Roberto Zamparelli. 2010. Nouns are vectors, adjectives are matrices: Representing adjective-noun constructions in semantic space. In EMNLP.
    • (2010) EMNLP
    • Baroni, M.1    Zamparelli, R.2
  • 4
    • 80053364056 scopus 로고    scopus 로고
    • Broad-coverage sense disambiguation and information extraction with a su-persense sequence tagger
    • M. Ciaramita and Y. Altun. 2006. Broad-coverage sense disambiguation and information extraction with a su-persense sequence tagger. In EMNLP.
    • (2006) EMNLP
    • Ciaramita, M.1    Altun, Y.2
  • 6
    • 56449095373 scopus 로고    scopus 로고
    • A unified architecture for natural language processing: Deep neural networks with multitask learning
    • R. Collobert and J. Weston. 2008. A unified architecture for natural language processing: deep neural networks with multitask learning. In ICML.
    • (2008) ICML
    • Collobert, R.1    Weston, J.2
  • 8
    • 0001419757 scopus 로고
    • Distributed representations, simple recurrent networks, and grammatical structure
    • J. L. Elman. 1991. Distributed representations, simple recurrent networks, and grammatical structure. Machine Learning, 7(2-3).
    • (1991) Machine Learning , vol.7 , Issue.2-3
    • Elman, J.L.1
  • 12
    • 80053235817 scopus 로고    scopus 로고
    • Experimental support for a categorical compositional distributional model of meaning
    • E. Grefenstette and M. Sadrzadeh. 2011. Experimental support for a categorical compositional distributional model of meaning. In EMNLP.
    • (2011) EMNLP
    • Grefenstette, E.1    Sadrzadeh, M.2
  • 15
    • 0025519204 scopus 로고
    • Mapping part-whole hierarchies into connectionist networks
    • G. E. Hinton. 1990. Mapping part-whole hierarchies into connectionist networks. Artificial Intelligence, 46(1-2).
    • (1990) Artificial Intelligence , vol.46 , Issue.1-2
    • Hinton, G.E.1
  • 17
    • 85146417759 scopus 로고    scopus 로고
    • Accurate unlexical-ized parsing
    • D. Klein and C. D. Manning. 2003. Accurate unlexical-ized parsing. In ACL.
    • (2003) ACL
    • Klein, D.1    Manning, C.D.2
  • 18
    • 85143523004 scopus 로고    scopus 로고
    • Automatic retrieval and clustering of similar words
    • D. Lin. 1998. Automatic retrieval and clustering of similar words. In Proceedings of COLING-ACL, pages 768-774.
    • (1998) Proceedings of COLING-ACL , pp. 768-774
    • Lin, D.1
  • 19
    • 84883407332 scopus 로고
    • A compositive holographic associative recall model
    • E. J. Metcalfe. 1990. A compositive holographic associative recall model. Psychological Review, 88:627-661.
    • (1990) Psychological Review , vol.88 , pp. 627-661
    • Metcalfe, E.J.1
  • 20
    • 80053288309 scopus 로고    scopus 로고
    • Composition in distributional models of semantics
    • J. Mitchell and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive Science, 34(8):1388-1429.
    • (2010) Cognitive Science , vol.34 , Issue.8 , pp. 1388-1429
    • Mitchell, J.1    Lapata, M.2
  • 22
    • 84858426560 scopus 로고    scopus 로고
    • Dependency tree-based sentiment classification using CRFs with hidden variables
    • HLT
    • T. Nakagawa, K. Inui, and S. Kurohashi. 2010. Dependency tree-based sentiment classification using CRFs with hidden variables. In NAACL, HLT.
    • (2010) NAACL
    • Nakagawa, T.1    Inui, K.2    Kurohashi, S.3
  • 23
    • 70350607224 scopus 로고    scopus 로고
    • Names and similarities on the web: Fact extraction in the fast lane
    • M. Paşca, D. Lin, J. Bigham, A. Lifchits, and A. Jain. 2006. Names and similarities on the web: fact extraction in the fast lane. In ACL.
    • (2006) ACL
    • Paşca, M.1    Lin, D.2    Bigham, J.3    Lifchits, A.4    Jain, A.5
  • 24
    • 34347357484 scopus 로고    scopus 로고
    • Dependency-based construction of semantic space models
    • S. Pado and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics, 33(2):161-199.
    • (2007) Computational Linguistics , vol.33 , Issue.2 , pp. 161-199
    • Pado, S.1    Lapata, M.2
  • 25
    • 84859895244 scopus 로고    scopus 로고
    • Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales
    • B. Pang and L. Lee. 2005. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. In ACL, pages 115-124.
    • (2005) ACL , pp. 115-124
    • Pang, B.1    Lee, L.2
  • 26
    • 0029310084 scopus 로고
    • Holographic reduced representations
    • T. A. Plate. 1995. Holographic reduced representations. IEEE Transactions on Neural Networks, 6(3):623-641.
    • (1995) IEEE Transactions on Neural Networks , vol.6 , Issue.3 , pp. 623-641
    • Plate, T.A.1
  • 27
    • 0025519291 scopus 로고
    • Recursive distributed representations
    • November
    • J. B. Pollack. 1990. Recursive distributed representations. Artificial Intelligence, 46, November.
    • (1990) Artificial Intelligence , vol.46
    • Pollack, J.B.1
  • 28
    • 84866032110 scopus 로고    scopus 로고
    • On the negativity of negation
    • David Lutz and Nan Li, editors CLC Publications, Ithaca, NY
    • C. Potts. 2010. On the negativity of negation. In David Lutz and Nan Li, editors, Proceedings of Semantics and Linguistic Theory 20. CLC Publications, Ithaca, NY.
    • (2010) Proceedings of Semantics and Linguistic Theory , vol.20
    • Potts, C.1
  • 29
    • 84859042430 scopus 로고    scopus 로고
    • Local and global algorithms for disambiguation to wikipedia
    • L. Ratinov, D. Roth, D. Downey, and M. Anderson. 2011. Local and global algorithms for disambiguation to wikipedia. In ACL.
    • (2011) ACL
    • Ratinov, L.1    Roth, D.2    Downey, D.3    Anderson, M.4
  • 31
    • 80053259376 scopus 로고    scopus 로고
    • Compositional matrix-space models of language
    • S. Rudolph and E. Giesbrecht. 2010. Compositional matrix-space models of language. In ACL.
    • (2010) ACL
    • Rudolph, S.1    Giesbrecht, E.2
  • 32
    • 0347596961 scopus 로고    scopus 로고
    • Automatic word sense discrimination
    • H. Schütze. 1998. Automatic word sense discrimination. Computational Linguistics, 24:97-124.
    • (1998) Computational Linguistics , vol.24 , pp. 97-124
    • Schütze, H.1
  • 34
    • 85162476102 scopus 로고    scopus 로고
    • Dynamic pooling and unfolding recursive autoencoders for paraphrase detection
    • MIT Press
    • R. Socher, E. H. Huang, J. Pennington, A. Y. Ng, and C. D. Manning. 2011a. Dynamic Pooling and Unfolding Recursive Autoencoders for Paraphrase Detection. In NIPS. MIT Press.
    • (2011) NIPS
    • Socher, R.1    Huang, E.H.2    Pennington, J.3    Ng, A.Y.4    Manning, C.D.5
  • 35
    • 80053438267 scopus 로고    scopus 로고
    • Parsing natural scenes and natural language with recursive neural networks
    • R. Socher, C. Lin, A. Y. Ng, and C.D. Manning. 2011b. Parsing Natural Scenes and Natural Language with Recursive Neural Networks. In ICML.
    • (2011) ICML
    • Socher, R.1    Lin, C.2    Ng, A.Y.3    Manning, C.D.4
  • 36
    • 80053261327 scopus 로고    scopus 로고
    • Semi-supervised recursive autoencoders for predicting sentiment distributions
    • R. Socher, J. Pennington, E. H. Huang, A. Y. Ng, and C. D. Manning. 2011c. Semi-Supervised Recursive Autoencoders for Predicting Sentiment Distributions. In EMNLP.
    • (2011) EMNLP
    • Socher, R.1    Pennington, J.2    Huang, E.H.3    Ng, A.Y.4    Manning, C.D.5
  • 39
    • 80053240499 scopus 로고    scopus 로고
    • Compositional matrix-space models for sentiment analysis
    • A. Yessenalina and C. Cardie. 2011. Compositional matrix-space models for sentiment analysis. In EMNLP.
    • (2011) EMNLP
    • Yessenalina, A.1    Cardie, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.