메뉴 건너뛰기




Volumn 954, Issue , 2017, Pages 22-31

Convolutional neural networks for vibrational spectroscopic data analysis

Author keywords

Convolutional neural networks; Preprocessing; Vibrational spectroscopy

Indexed keywords

CONVOLUTION; NEURAL NETWORKS; SPEECH RECOGNITION; VIBRATIONAL SPECTROSCOPY;

EID: 85008469114     PISSN: 00032670     EISSN: 18734324     Source Type: Journal    
DOI: 10.1016/j.aca.2016.12.010     Document Type: Article
Times cited : (353)

References (41)
  • 1
    • 84921264494 scopus 로고    scopus 로고
    • Identification of different forms of cocaine and substances used in adulteration using near-infrared raman spectroscopy and infrared absorption spectroscopy
    • [1] Penido, C.A., Pacheco, M.T.T., Zângaro, R.A., Silveira, L., Identification of different forms of cocaine and substances used in adulteration using near-infrared raman spectroscopy and infrared absorption spectroscopy. J. Forensic Sci. 60 (2015), 171–178.
    • (2015) J. Forensic Sci. , vol.60 , pp. 171-178
    • Penido, C.A.1    Pacheco, M.T.T.2    Zângaro, R.A.3    Silveira, L.4
  • 4
    • 79952040991 scopus 로고    scopus 로고
    • Near-infrared (NIR) spectroscopy for motor oil classification: from discriminant analysis to support vector machines
    • [4] Balabin, R.M., Safieva, R.Z., Lomakina, E.I., Near-infrared (NIR) spectroscopy for motor oil classification: from discriminant analysis to support vector machines. Microchem. J. 98 (2011), 121–128.
    • (2011) Microchem. J. , vol.98 , pp. 121-128
    • Balabin, R.M.1    Safieva, R.Z.2    Lomakina, E.I.3
  • 5
    • 77953702262 scopus 로고    scopus 로고
    • Gasoline classification using near infrared (nir) spectroscopy data: comparison of multivariate techniques
    • [5] Balabin, R.M., Safieva, R.Z., Lomakina, E.I., Gasoline classification using near infrared (nir) spectroscopy data: comparison of multivariate techniques. Anal. Chim. Acta 671 (2010), 27–35.
    • (2010) Anal. Chim. Acta , vol.671 , pp. 27-35
    • Balabin, R.M.1    Safieva, R.Z.2    Lomakina, E.I.3
  • 6
    • 79954634261 scopus 로고    scopus 로고
    • Variable selection in near-infrared spectroscopy: benchmarking of feature selection methods on biodiesel data
    • [6] Balabin, R.M., Smirnov, S.V., Variable selection in near-infrared spectroscopy: benchmarking of feature selection methods on biodiesel data. Anal. Chim. Acta 692 (2011), 63–72.
    • (2011) Anal. Chim. Acta , vol.692 , pp. 63-72
    • Balabin, R.M.1    Smirnov, S.V.2
  • 8
    • 84953408452 scopus 로고    scopus 로고
    • Review of multidimensional data processing approaches for raman and infrared spectroscopy
    • [8] Gautam, R., Vanga, S., Ariese, F., Umapathy, S., Review of multidimensional data processing approaches for raman and infrared spectroscopy. EPJ Tech. Instrum. 2 (2015), 1–38.
    • (2015) EPJ Tech. Instrum. , vol.2 , pp. 1-38
    • Gautam, R.1    Vanga, S.2    Ariese, F.3    Umapathy, S.4
  • 10
    • 84952861959 scopus 로고    scopus 로고
    • Chemospec: an r package for chemometric analysis of spectroscopic data and chromatograms
    • [10] Hanson, B., Chemospec: an r package for chemometric analysis of spectroscopic data and chromatograms. Package Version, 2, 2014.
    • (2014) Package Version , vol.2
    • Hanson, B.1
  • 13
    • 39149085365 scopus 로고    scopus 로고
    • Artificial neural networks in chemometrics: history, examples and perspectives
    • [13] Marini, F., Bucci, R., Magrì, A.L., Magrì, A.D., Artificial neural networks in chemometrics: history, examples and perspectives. Microchem. J. 88 (2008), 178–185.
    • (2008) Microchem. J. , vol.88 , pp. 178-185
    • Marini, F.1    Bucci, R.2    Magrì, A.L.3    Magrì, A.D.4
  • 14
    • 0002263996 scopus 로고
    • Convolutional networks for images, speech, and time-series
    • M.A. Arbib MIT Press
    • [14] LeCun, Y., Bengio, Y., Convolutional networks for images, speech, and time-series. Arbib, M.A., (eds.) The Handbook of Brain Theory and Neural Networks, 1995, MIT Press, 255–257.
    • (1995) The Handbook of Brain Theory and Neural Networks , pp. 255-257
    • LeCun, Y.1    Bengio, Y.2
  • 15
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • F. Pereira C.J.C. Burges L. Bottou K.Q. Weinberger Curran Associates, Inc.
    • [15] Krizhevsky, A., Sutskever, I., Hinton, G.E., Imagenet classification with deep convolutional neural networks. Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q., (eds.) Advances in Neural Information Processing Systems 25, 2012, Curran Associates, Inc., 1097–1105.
    • (2012) Advances in Neural Information Processing Systems 25 , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 19
    • 68949157380 scopus 로고    scopus 로고
    • Robustness and regularization of support vector machines
    • [19] Xu, H., Caramanis, C., Mannor, S., Robustness and regularization of support vector machines. J. Mach. Learn. Res. 10 (2009), 1485–1510.
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 1485-1510
    • Xu, H.1    Caramanis, C.2    Mannor, S.3
  • 20
    • 84904136037 scopus 로고    scopus 로고
    • Large-scale machine learning with stochastic gradient descent
    • Y. Lechevallier G. Saporta Physica-Verlag HD
    • [20] Bottou, L., Large-scale machine learning with stochastic gradient descent. Lechevallier, Y., Saporta, G., (eds.) Proceedings of COMPSTAT’2010, 2010, Physica-Verlag HD, 177–186.
    • (2010) Proceedings of COMPSTAT’2010 , pp. 177-186
    • Bottou, L.1
  • 22
    • 0031599142 scopus 로고    scopus 로고
    • Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator
    • [22] Matsumoto, M., Nishimura, T., Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8 (1998), 3–30.
    • (1998) ACM Trans. Model. Comput. Simul. , vol.8 , pp. 3-30
    • Matsumoto, M.1    Nishimura, T.2
  • 23
    • 84857855190 scopus 로고    scopus 로고
    • Random search for hyper-parameter optimization
    • [23] Bergstra, J., Bengio, Y., Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13 (2012), 281–305.
    • (2012) J. Mach. Learn. Res. , vol.13 , pp. 281-305
    • Bergstra, J.1    Bengio, Y.2
  • 24
    • 84949111078 scopus 로고    scopus 로고
    • Novel unified framework for latent modeling and its interpretation
    • Part B
    • [24] Tran, T.N., Blanchet, L., Afanador, N.L., Buydens, L.M., Novel unified framework for latent modeling and its interpretation. Chemom. Intell. Lab. Syst. 149 (2015), 127–139 Part B.
    • (2015) Chemom. Intell. Lab. Syst. , vol.149 , pp. 127-139
    • Tran, T.N.1    Blanchet, L.2    Afanador, N.L.3    Buydens, L.M.4
  • 25
    • 70449708973 scopus 로고    scopus 로고
    • Optimal feature selection for support vector machines
    • [25] Nguyen, M.H., De la Torre, F., Optimal feature selection for support vector machines. Pattern Recognit. 43 (2010), 584–591.
    • (2010) Pattern Recognit. , vol.43 , pp. 584-591
    • Nguyen, M.H.1    De la Torre, F.2
  • 27
    • 84866389083 scopus 로고
    • Generalized additive models: some applications
    • [27] Hastie, T., Tibshirani, R., Generalized additive models: some applications. J. Am. Stat. Assoc. 82 (1987), 371–386.
    • (1987) J. Am. Stat. Assoc. , vol.82 , pp. 371-386
    • Hastie, T.1    Tibshirani, R.2
  • 28
    • 84866117056 scopus 로고    scopus 로고
    • Confirmation of brand identity of a trappist beer by mid-infrared spectroscopy coupled with multivariate data analysis
    • [28] Engel, J., Blanchet, L., Buydens, L.M., Downey, G., Confirmation of brand identity of a trappist beer by mid-infrared spectroscopy coupled with multivariate data analysis. Talanta 99 (2012), 426–432.
    • (2012) Talanta , vol.99 , pp. 426-432
    • Engel, J.1    Blanchet, L.2    Buydens, L.M.3    Downey, G.4
  • 29
    • 42649145887 scopus 로고    scopus 로고
    • Multiblock variance partitioning: A new approach for comparing variation in multiple data blocks
    • [29] Skov, T., Ballabio, D., Bro, R., Multiblock variance partitioning: A new approach for comparing variation in multiple data blocks. Anal. Chim. Acta 615 (2008), 18–29.
    • (2008) Anal. Chim. Acta , vol.615 , pp. 18-29
    • Skov, T.1    Ballabio, D.2    Bro, R.3
  • 30
    • 0036575606 scopus 로고    scopus 로고
    • Chemometric quantitation of the active substance (containing C=N) in a pharmaceutical tablet using near-infrared (NIR) transmittance and NIR FT-Raman spectra
    • [30] Dyrby, M., Engelsen, S.B., Nørgaard, L., Bruhn, M., Lundsberg-Nielsen, L., Chemometric quantitation of the active substance (containing C=N) in a pharmaceutical tablet using near-infrared (NIR) transmittance and NIR FT-Raman spectra. Appl. Spectrosc. 56 (2002), 579–585.
    • (2002) Appl. Spectrosc. , vol.56 , pp. 579-585
    • Dyrby, M.1    Engelsen, S.B.2    Nørgaard, L.3    Bruhn, M.4    Lundsberg-Nielsen, L.5
  • 31
    • 0003173790 scopus 로고    scopus 로고
    • Discrimination of Arabica and Robusta in instant coffee by fourier transform infrared spectroscopy and chemometrics
    • [31] Briandet, R., Kemsley, E.K., Wilson, R.H., Discrimination of Arabica and Robusta in instant coffee by fourier transform infrared spectroscopy and chemometrics. J. Agric. Food Chem. 44 (1996), 170–174.
    • (1996) J. Agric. Food Chem. , vol.44 , pp. 170-174
    • Briandet, R.1    Kemsley, E.K.2    Wilson, R.H.3
  • 32
    • 0141706543 scopus 로고    scopus 로고
    • FTIR spectroscopy and multivariate analysis can distinguish the geographic origin of extra virgin olive oils
    • [32] Tapp, H.S., Defernez, M., Kemsley, E.K., FTIR spectroscopy and multivariate analysis can distinguish the geographic origin of extra virgin olive oils. J. Agric. Food Chem. 51 (2003), 6110–6115.
    • (2003) J. Agric. Food Chem. , vol.51 , pp. 6110-6115
    • Tapp, H.S.1    Defernez, M.2    Kemsley, E.K.3
  • 33
    • 84965095587 scopus 로고    scopus 로고
    • Semi-supervised Learning with Ladder Network
    • arXiv
    • [33] Rasmus, A., Valpola, H., Berglund, M., Semi-supervised Learning with Ladder Network. 2015, arXiv, 1–17.
    • (2015) , pp. 1-17
    • Rasmus, A.1    Valpola, H.2    Berglund, M.3
  • 34
    • 0030932503 scopus 로고    scopus 로고
    • Mid-infrared spectroscopy and authenticity problems in selected meats: a feasibility study
    • [34] Al-Jowder, O., Kemsley, E., Wilson, R., Mid-infrared spectroscopy and authenticity problems in selected meats: a feasibility study. Food Chem. 59 (1997), 195–201.
    • (1997) Food Chem. , vol.59 , pp. 195-201
    • Al-Jowder, O.1    Kemsley, E.2    Wilson, R.3
  • 35
    • 0037350844 scopus 로고    scopus 로고
    • Partial least squares for discrimination
    • [35] Barker, M., Rayens, W., Partial least squares for discrimination. J. Chemom. 17 (2003), 166–173.
    • (2003) J. Chemom. , vol.17 , pp. 166-173
    • Barker, M.1    Rayens, W.2
  • 36
    • 0024701578 scopus 로고
    • Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra
    • [36] Barnes, R.J., Dhanoa, M.S., Lister, S.J., Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl. Spectrosc. 43 (1989), 772–777.
    • (1989) Appl. Spectrosc. , vol.43 , pp. 772-777
    • Barnes, R.J.1    Dhanoa, M.S.2    Lister, S.J.3
  • 37
    • 84930942655 scopus 로고    scopus 로고
    • Baseline correction using asymmetrically reweighted penalized least squares smoothing
    • [37] Baek, S.-J., Park, A., Ahn, Y.-J., Choo, J., Baseline correction using asymmetrically reweighted penalized least squares smoothing. Analyst 140 (2015), 250–257.
    • (2015) Analyst , vol.140 , pp. 250-257
    • Baek, S.-J.1    Park, A.2    Ahn, Y.-J.3    Choo, J.4
  • 38
    • 0033004851 scopus 로고    scopus 로고
    • The robust normal variate transform for pattern recognition with near-infrared data
    • [38] Guo, Q., Wu, W., Massart, D., The robust normal variate transform for pattern recognition with near-infrared data. Anal. Chim. Acta 382 (1999), 87–103.
    • (1999) Anal. Chim. Acta , vol.382 , pp. 87-103
    • Guo, Q.1    Wu, W.2    Massart, D.3
  • 39
    • 0022059848 scopus 로고
    • Linearization and scatter-correction for near-infrared reflectance spectra of meat
    • [39] Geladi, P., MacDougall, D., Martens, H., Linearization and scatter-correction for near-infrared reflectance spectra of meat. Appl. Spectrosc. 39 (1985), 491–500.
    • (1985) Appl. Spectrosc. , vol.39 , pp. 491-500
    • Geladi, P.1    MacDougall, D.2    Martens, H.3
  • 40
    • 0042553279 scopus 로고
    • Smoothing and differentiation of data by simplified least squares procedures
    • [40] Savitzky, A., Golay, M.J.E., Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36 (1964), 1627–1639.
    • (1964) Anal. Chem. , vol.36 , pp. 1627-1639
    • Savitzky, A.1    Golay, M.J.E.2
  • 41
    • 33747019547 scopus 로고    scopus 로고
    • Centering, scaling, and transformations: improving the biological information content of metabolomics data
    • [41] Berg, R.A., Hoefsloot, H.C., Westerhuis, J.A., Smilde, A.K., Werf, M.J., Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 7 (2006), 1–15.
    • (2006) BMC Genomics , vol.7 , pp. 1-15
    • Berg, R.A.1    Hoefsloot, H.C.2    Westerhuis, J.A.3    Smilde, A.K.4    Werf, M.J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.