-
1
-
-
84865120266
-
Opportunities and challenges for a sustainable energy future
-
1 Chu, S., Majumdar, A., Opportunities and challenges for a sustainable energy future. Nature 488 (2012), 294–303.
-
(2012)
Nature
, vol.488
, pp. 294-303
-
-
Chu, S.1
Majumdar, A.2
-
2
-
-
4043112177
-
Sustainable hydrogen production
-
2 Turner, J.A., Sustainable hydrogen production. Science 305 (2004), 972–974.
-
(2004)
Science
, vol.305
, pp. 972-974
-
-
Turner, J.A.1
-
3
-
-
33750458683
-
Powering the planet: chemical challenges in solar energy utilization
-
3 Lewis, N.S., Nocera, D.G., Powering the planet: chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 103 (2006), 15729–15735.
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, pp. 15729-15735
-
-
Lewis, N.S.1
Nocera, D.G.2
-
4
-
-
78449289476
-
Solar water splitting cells
-
4 Walter, M.G., Warren, E.L., McKone, J.R., Boettcher, S.W., Mi, Q.X., Santori, E.A., Lewis, N.S., Solar water splitting cells. Chem. Rev. 110 (2010), 6446–6473.
-
(2010)
Chem. Rev.
, vol.110
, pp. 6446-6473
-
-
Walter, M.G.1
Warren, E.L.2
McKone, J.R.3
Boettcher, S.W.4
Mi, Q.X.5
Santori, E.A.6
Lewis, N.S.7
-
5
-
-
0000574755
-
Artificial photosynthesis - solar splitting of water to hydrogen and oxygen
-
5 Bard, A.J., Fox, M.A., Artificial photosynthesis - solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 28 (1995), 141–145.
-
(1995)
Acc. Chem. Res.
, vol.28
, pp. 141-145
-
-
Bard, A.J.1
Fox, M.A.2
-
6
-
-
84890410163
-
Will solar-driven water-splitting devices see the light of day?
-
6 McKone, J.R., Lewis, N.S., Gray, H.B., Will solar-driven water-splitting devices see the light of day?. Chem. Mater. 26 (2014), 407–414.
-
(2014)
Chem. Mater.
, vol.26
, pp. 407-414
-
-
McKone, J.R.1
Lewis, N.S.2
Gray, H.B.3
-
7
-
-
0032540476
-
A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting
-
7 Khaselev, O., Turner, J.A., A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280 (1998), 425–427.
-
(1998)
Science
, vol.280
, pp. 425-427
-
-
Khaselev, O.1
Turner, J.A.2
-
8
-
-
84907983567
-
Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications
-
8 Faber, M.S., Jin, S., Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 7 (2014), 3519–3542.
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 3519-3542
-
-
Faber, M.S.1
Jin, S.2
-
9
-
-
84941779540
-
Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction
-
9 Zeng, M., Li, Y.G., Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 3 (2015), 14942–14962.
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 14942-14962
-
-
Zeng, M.1
Li, Y.G.2
-
10
-
-
84910070418
-
Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials
-
10 Benck, J.D., Hellstern, T.R., Kibsgaard, J., Chakthranont, P., Jaramillo, T.F., Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal. 4 (2014), 3957–3971.
-
(2014)
ACS Catal.
, vol.4
, pp. 3957-3971
-
-
Benck, J.D.1
Hellstern, T.R.2
Kibsgaard, J.3
Chakthranont, P.4
Jaramillo, T.F.5
-
11
-
-
84856690904
-
Molybdenum sulfides-efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolution
-
11 Laursen, A.B., Kegnaes, S., Dahl, S., Chorkendorff, I., Molybdenum sulfides-efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolution. Energy Environ. Sci. 5 (2012), 5577–5591.
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 5577-5591
-
-
Laursen, A.B.1
Kegnaes, S.2
Dahl, S.3
Chorkendorff, I.4
-
12
-
-
84906224151
-
Amorphous molybdenum sulfides as hydrogen evolution catalysts
-
12 Morales-Guio, C.G., Hu, X.L., Amorphous molybdenum sulfides as hydrogen evolution catalysts. Acc. Chem. Res. 47 (2014), 2671–2681.
-
(2014)
Acc. Chem. Res.
, vol.47
, pp. 2671-2681
-
-
Morales-Guio, C.G.1
Hu, X.L.2
-
13
-
-
84904437446
-
High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures
-
13 Faber, M.S., Dziedzic, R., Lukowski, M.A., Kaiser, N.S., Ding, Q., Jin, S., High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J. Am. Chem. Soc. 136 (2014), 10053–10061.
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 10053-10061
-
-
Faber, M.S.1
Dziedzic, R.2
Lukowski, M.A.3
Kaiser, N.S.4
Ding, Q.5
Jin, S.6
-
14
-
-
84947870907
-
Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide
-
14 Caban-Acevedo, M., Stone, M.L., Schmidt, J.R., Thomas, J.G., Ding, Q., Chang, H.C., Tsai, M.L., He, J.H., Jin, S., Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Nat. Mater. 14 (2015), 1245–1251.
-
(2015)
Nat. Mater.
, vol.14
, pp. 1245-1251
-
-
Caban-Acevedo, M.1
Stone, M.L.2
Schmidt, J.R.3
Thomas, J.G.4
Ding, Q.5
Chang, H.C.6
Tsai, M.L.7
He, J.H.8
Jin, S.9
-
15
-
-
84925272524
-
Recent development in hydrogen evolution reaction catalysts and their practical implementation
-
15 Vesborg, P.C.K., Seger, B., Chorkendorff, I., Recent development in hydrogen evolution reaction catalysts and their practical implementation. J. Phys. Chem. Lett. 6 (2015), 951–957.
-
(2015)
J. Phys. Chem. Lett.
, vol.6
, pp. 951-957
-
-
Vesborg, P.C.K.1
Seger, B.2
Chorkendorff, I.3
-
16
-
-
84879511122
-
Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction
-
16 Popczun, E.J., McKone, J.R., Read, C.G., Biacchi, A.J., Wiltrout, A.M., Lewis, N.S., Schaak, R.E., Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 135 (2013), 9267–9270.
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 9267-9270
-
-
Popczun, E.J.1
McKone, J.R.2
Read, C.G.3
Biacchi, A.J.4
Wiltrout, A.M.5
Lewis, N.S.6
Schaak, R.E.7
-
17
-
-
84987623168
-
Synthesis, characterization, and properties of metal phosphide catalysts for the hydrogen-evolution reaction
-
17 Callejas, J.F., Read, C.G., Roske, C.W., Lewis, N.S., Schaak, R.E., Synthesis, characterization, and properties of metal phosphide catalysts for the hydrogen-evolution reaction. Chem. Mater. 28 (2016), 6027–6044.
-
(2016)
Chem. Mater.
, vol.28
, pp. 6027-6044
-
-
Callejas, J.F.1
Read, C.G.2
Roske, C.W.3
Lewis, N.S.4
Schaak, R.E.5
-
18
-
-
84875413255
-
The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets
-
18 Chhowalla, M., Shin, H.S., Eda, G., Li, L.J., Loh, K.P., Zhang, H., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5 (2013), 263–275.
-
(2013)
Nat. Chem.
, vol.5
, pp. 263-275
-
-
Chhowalla, M.1
Shin, H.S.2
Eda, G.3
Li, L.J.4
Loh, K.P.5
Zhang, H.6
-
19
-
-
84875825798
-
Graphene-like two-dimensional materials
-
19 Xu, M.S., Liang, T., Shi, M.M., Chen, H.Z., Graphene-like two-dimensional materials. Chem. Rev. 113 (2013), 3766–3798.
-
(2013)
Chem. Rev.
, vol.113
, pp. 3766-3798
-
-
Xu, M.S.1
Liang, T.2
Shi, M.M.3
Chen, H.Z.4
-
20
-
-
84869074729
-
Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
-
20 Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nano 7 (2012), 699–712.
-
(2012)
Nat. Nano
, vol.7
, pp. 699-712
-
-
Wang, Q.H.1
Kalantar-Zadeh, K.2
Kis, A.3
Coleman, J.N.4
Strano, M.S.5
-
21
-
-
78449297994
-
Solar energy supply and storage for the legacy and non legacy worlds
-
21 Cook, T.R., Dogutan, D.K., Reece, S.Y., Surendranath, Y., Teets, T.S., Nocera, D.G., Solar energy supply and storage for the legacy and non legacy worlds. Chem. Rev. 110 (2010), 6474–6502.
-
(2010)
Chem. Rev.
, vol.110
, pp. 6474-6502
-
-
Cook, T.R.1
Dogutan, D.K.2
Reece, S.Y.3
Surendranath, Y.4
Teets, T.S.5
Nocera, D.G.6
-
22
-
-
84916254139
-
The mechanism of the cathodic hydrogen evolution reaction
-
22 Bockris, J.O.M., Potter, E.C., The mechanism of the cathodic hydrogen evolution reaction. J. Electrochem. Soc. 99 (1952), 169–186.
-
(1952)
J. Electrochem. Soc.
, vol.99
, pp. 169-186
-
-
Bockris, J.O.M.1
Potter, E.C.2
-
23
-
-
15744396507
-
Trends in the exchange current for hydrogen evolution
-
23 Norskov, J.K., Bligaard, T., Logadottir, A., Kitchin, J.R., Chen, J.G., Pandelov, S., Norskov, J.K., Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152 (2005), J23–J26.
-
(2005)
J. Electrochem. Soc.
, vol.152
, pp. J23-J26
-
-
Norskov, J.K.1
Bligaard, T.2
Logadottir, A.3
Kitchin, J.R.4
Chen, J.G.5
Pandelov, S.6
Norskov, J.K.7
-
24
-
-
17644368513
-
Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution
-
24 Hinnemann, B., Moses, P.G., Bonde, J., Jorgensen, K.P., Nielsen, J.H., Horch, S., Chorkendorff, I., Norskov, J.K., Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127 (2005), 5308–5309.
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 5308-5309
-
-
Hinnemann, B.1
Moses, P.G.2
Bonde, J.3
Jorgensen, K.P.4
Nielsen, J.H.5
Horch, S.6
Chorkendorff, I.7
Norskov, J.K.8
-
25
-
-
33750453016
-
Computational high-throughput screening of electrocatalytic materials for hydrogen evolution
-
25 Greeley, J., Jaramillo, T.F., Bonde, J., Chorkendorff, I.B., Norskov, J.K., Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 5 (2006), 909–913.
-
(2006)
Nat. Mater.
, vol.5
, pp. 909-913
-
-
Greeley, J.1
Jaramillo, T.F.2
Bonde, J.3
Chorkendorff, I.B.4
Norskov, J.K.5
-
26
-
-
33644813745
-
Catalytic properties of single layers of transition metal sulfide catalytic materials
-
26 Chianelli, R.R., Siadati, M.H., De la Rosa, M.P., Berhault, G., Wilcoxon, J.P., Bearden, R., Abrams, B.L., Catalytic properties of single layers of transition metal sulfide catalytic materials. Catal. Rev. 48 (2006), 1–41.
-
(2006)
Catal. Rev.
, vol.48
, pp. 1-41
-
-
Chianelli, R.R.1
Siadati, M.H.2
De la Rosa, M.P.3
Berhault, G.4
Wilcoxon, J.P.5
Bearden, R.6
Abrams, B.L.7
-
27
-
-
35949013166
-
Structure of single-molecular-layer MoS2
-
27 Yang, D., Sandoval, S.J., Divigalpitiya, W.M.R., Irwin, J.C., Frindt, R.F., Structure of single-molecular-layer MoS2. Phys. Rev. B 43 (1991), 12053–12056.
-
(1991)
Phys. Rev. B
, vol.43
, pp. 12053-12056
-
-
Yang, D.1
Sandoval, S.J.2
Divigalpitiya, W.M.R.3
Irwin, J.C.4
Frindt, R.F.5
-
28
-
-
77957204738
-
Atomically thin MoS2: a new direct-gap semiconductor
-
28 Mak, K.F., Lee, C., Hone, J., Shan, J., Heinz, T.F., Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett., 105, 2010, 136805.
-
(2010)
Phys. Rev. Lett.
, vol.105
, pp. 136805
-
-
Mak, K.F.1
Lee, C.2
Hone, J.3
Shan, J.4
Heinz, T.F.5
-
29
-
-
84890376834
-
Tunable photoluminescence of monolayer MoS2 via chemical doping
-
29 Mouri, S., Miyauchi, Y., Matsuda, K., Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 13 (2013), 5944–5948.
-
(2013)
Nano Lett.
, vol.13
, pp. 5944-5948
-
-
Mouri, S.1
Miyauchi, Y.2
Matsuda, K.3
-
30
-
-
84856170872
-
Single-layer MoS2 phototransistors
-
30 Yin, Z.Y., Li, H., Li, H., Jiang, L., Shi, Y.M., Sun, Y.H., Lu, G., Zhang, Q., Chen, X.D., Zhang, H., Single-layer MoS2 phototransistors. ACS Nano 6 (2012), 74–80.
-
(2012)
ACS Nano
, vol.6
, pp. 74-80
-
-
Yin, Z.Y.1
Li, H.2
Li, H.3
Jiang, L.4
Shi, Y.M.5
Sun, Y.H.6
Lu, G.7
Zhang, Q.8
Chen, X.D.9
Zhang, H.10
-
31
-
-
84863834607
-
MoS2 nanosheet phototransistors with thickness-modulated optical energy gap
-
31 Lee, H.S., Min, S.W., Chang, Y.G., Park, M.K., Nam, T., Kim, H., Kim, J.H., Ryu, S., Im, S., MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 12 (2012), 3695–3700.
-
(2012)
Nano Lett.
, vol.12
, pp. 3695-3700
-
-
Lee, H.S.1
Min, S.W.2
Chang, Y.G.3
Park, M.K.4
Nam, T.5
Kim, H.6
Kim, J.H.7
Ryu, S.8
Im, S.9
-
32
-
-
84926328739
-
Monolayer semiconductor nanocavity lasers with ultralow thresholds
-
32 Wu, S.F., Buckley, S., Schaibley, J.R., Feng, L.F., Yan, J.Q., Mandrus, D.G., Hatami, F., Yao, W., Vuckovic, J., Majumdar, A., et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 520 (2015), 69–72.
-
(2015)
Nature
, vol.520
, pp. 69-72
-
-
Wu, S.F.1
Buckley, S.2
Schaibley, J.R.3
Feng, L.F.4
Yan, J.Q.5
Mandrus, D.G.6
Hatami, F.7
Yao, W.8
Vuckovic, J.9
Majumdar, A.10
-
33
-
-
0002115855
-
Electrochemistry and photochemistry of Mos2 layer crystals. 1
-
33 Tributsch, H., Bennett, J.C., Electrochemistry and photochemistry of Mos2 layer crystals. 1. J. Electroanal. Chem. 81 (1977), 97–111.
-
(1977)
J. Electroanal. Chem.
, vol.81
, pp. 97-111
-
-
Tributsch, H.1
Bennett, J.C.2
-
34
-
-
34447326950
-
Identification of active edge sites for electrochemical H-2 evolution from MoS2 nanocatalysts
-
34 Jaramillo, T.F., Jorgensen, K.P., Bonde, J., Nielsen, J.H., Horch, S., Chorkendorff, I., Identification of active edge sites for electrochemical H-2 evolution from MoS2 nanocatalysts. Science 317 (2007), 100–102.
-
(2007)
Science
, vol.317
, pp. 100-102
-
-
Jaramillo, T.F.1
Jorgensen, K.P.2
Bonde, J.3
Nielsen, J.H.4
Horch, S.5
Chorkendorff, I.6
-
35
-
-
84874965738
-
Synthesis of MoS2 and MoSe2 films with vertically aligned layers
-
35 Kong, D.S., Wang, H.T., Cha, J.J., Pasta, M., Koski, K.J., Yao, J., Cui, Y., Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 13 (2013), 1341–1347.
-
(2013)
Nano Lett.
, vol.13
, pp. 1341-1347
-
-
Kong, D.S.1
Wang, H.T.2
Cha, J.J.3
Pasta, M.4
Koski, K.J.5
Yao, J.6
Cui, Y.7
-
36
-
-
84880372807
-
Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets
-
36 Lukowski, M.A., Daniel, A.S., Meng, F., Forticaux, A., Li, L.S., Jin, S., Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 135 (2013), 10274–10277.
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 10274-10277
-
-
Lukowski, M.A.1
Daniel, A.S.2
Meng, F.3
Forticaux, A.4
Li, L.S.5
Jin, S.6
-
37
-
-
84934969817
-
Single-crystal atomic-layered molybdenum disulfide nanobelts with high surface activity
-
37 Yang, L., Hong, H., Fu, Q., Huang, Y.F., Zhang, J.Y., Cui, X.D., Fan, Z.Y., Liu, K.H., Xiang, B., Single-crystal atomic-layered molybdenum disulfide nanobelts with high surface activity. ACS Nano 9 (2015), 6478–6483.
-
(2015)
ACS Nano
, vol.9
, pp. 6478-6483
-
-
Yang, L.1
Hong, H.2
Fu, Q.3
Huang, Y.F.4
Zhang, J.Y.5
Cui, X.D.6
Fan, Z.Y.7
Liu, K.H.8
Xiang, B.9
-
38
-
-
84867840741
-
Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis
-
38 Kibsgaard, J., Chen, Z.B., Reinecke, B.N., Jaramillo, T.F., Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 11 (2012), 963–969.
-
(2012)
Nat. Mater.
, vol.11
, pp. 963-969
-
-
Kibsgaard, J.1
Chen, Z.B.2
Reinecke, B.N.3
Jaramillo, T.F.4
-
39
-
-
84886416670
-
Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution
-
39 Xie, J.F., Zhang, H., Li, S., Wang, R.X., Sun, X., Zhou, M., Zhou, J.F., Lou, X.W., Xie, Y., Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 25 (2013), 5807–5813.
-
(2013)
Adv. Mater.
, vol.25
, pp. 5807-5813
-
-
Xie, J.F.1
Zhang, H.2
Li, S.3
Wang, R.X.4
Sun, X.5
Zhou, M.6
Zhou, J.F.7
Lou, X.W.8
Xie, Y.9
-
40
-
-
84923379977
-
Exploring atomic defects in molybdenum disulphide monolayers
-
40 Hong, J.H., Hu, Z.X., Probert, M., Li, K., Lv, D.H., Yang, X.N., Gu, L., Mao, N.N., Feng, Q.L., Xie, L.M., et al. Exploring atomic defects in molybdenum disulphide monolayers. Nat. Commun., 6, 2015, 6293.
-
(2015)
Nat. Commun.
, vol.6
, pp. 6293
-
-
Hong, J.H.1
Hu, Z.X.2
Probert, M.3
Li, K.4
Lv, D.H.5
Yang, X.N.6
Gu, L.7
Mao, N.N.8
Feng, Q.L.9
Xie, L.M.10
-
41
-
-
84889245669
-
Hopping transport through defect-induced localized states in molybdenum disulphide
-
41 Qiu, H., Xu, T., Wang, Z.L., Ren, W., Nan, H.Y., Ni, Z.H., Chen, Q., Yuan, S.J., Miao, F., Song, F.Q., et al. Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun., 4, 2013, 2642.
-
(2013)
Nat. Commun.
, vol.4
, pp. 2642
-
-
Qiu, H.1
Xu, T.2
Wang, Z.L.3
Ren, W.4
Nan, H.Y.5
Ni, Z.H.6
Chen, Q.7
Yuan, S.J.8
Miao, F.9
Song, F.Q.10
-
42
-
-
84919367616
-
Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering
-
42 Yu, Z.H., Pan, Y.M., Shen, Y.T., Wang, Z.L., Ong, Z.Y., Xu, T., Xin, R., Pan, L.J., Wang, B.G., Sun, L.T., et al. Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat. Commun., 5, 2014, 5290.
-
(2014)
Nat. Commun.
, vol.5
, pp. 5290
-
-
Yu, Z.H.1
Pan, Y.M.2
Shen, Y.T.3
Wang, Z.L.4
Ong, Z.Y.5
Xu, T.6
Xin, R.7
Pan, L.J.8
Wang, B.G.9
Sun, L.T.10
-
43
-
-
84946088662
-
Activating and tuning basal planes of MoO2, MoS2, and MoSe2 for hydrogen evolution reaction
-
43 Lin, S.H., Kuo, J.L., Activating and tuning basal planes of MoO2, MoS2, and MoSe2 for hydrogen evolution reaction. Phys. Chem. Chem. Phys. 17 (2015), 29305–29310.
-
(2015)
Phys. Chem. Chem. Phys.
, vol.17
, pp. 29305-29310
-
-
Lin, S.H.1
Kuo, J.L.2
-
44
-
-
84949293665
-
Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies
-
44 Li, H., Tsai, C., Koh, A.L., Cai, L.L., Contryman, A.W., Fragapane, A.H., Zhao, J.H., Han, H.S., Manoharan, H.C., Abild-Pedersen, F., et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater., 15, 2016, 48.
-
(2016)
Nat. Mater.
, vol.15
, pp. 48
-
-
Li, H.1
Tsai, C.2
Koh, A.L.3
Cai, L.L.4
Contryman, A.W.5
Fragapane, A.H.6
Zhao, J.H.7
Han, H.S.8
Manoharan, H.C.9
Abild-Pedersen, F.10
-
45
-
-
84966312294
-
Kinetic study of hydrogen evolution reaction over strained MoS2 with sulfur vacancies using scanning electrochemical microscopy
-
45 Li, H., Du, M., Mleczko, M.J., Koh, A.L., Nishi, Y., Pop, E., Bard, A.J., Zheng, X.L., Kinetic study of hydrogen evolution reaction over strained MoS2 with sulfur vacancies using scanning electrochemical microscopy. J. Am. Chem. Soc. 138 (2016), 5123–5129.
-
(2016)
J. Am. Chem. Soc.
, vol.138
, pp. 5123-5129
-
-
Li, H.1
Du, M.2
Mleczko, M.J.3
Koh, A.L.4
Nishi, Y.5
Pop, E.6
Bard, A.J.7
Zheng, X.L.8
-
46
-
-
84976548448
-
Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets
-
46 Yin, Y., Han, J., Zhang, Y., Zhang, X., Xu, P., Yuan, Q., Samad, L., Wang, X., Wang, Y., Zhang, Z., et al. Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets. J. Am. Chem. Soc. 13 (2016), 7965–7972.
-
(2016)
J. Am. Chem. Soc.
, vol.13
, pp. 7965-7972
-
-
Yin, Y.1
Han, J.2
Zhang, Y.3
Zhang, X.4
Xu, P.5
Yuan, Q.6
Samad, L.7
Wang, X.8
Wang, Y.9
Zhang, Z.10
-
47
-
-
84889264336
-
Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution
-
47 Xie, J.F., Zhang, J.J., Li, S., Grote, F., Zhang, X.D., Zhang, H., Wang, R.X., Lei, Y., Pan, B.C., Xie, Y., Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 135 (2013), 17881–17888.
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 17881-17888
-
-
Xie, J.F.1
Zhang, J.J.2
Li, S.3
Grote, F.4
Zhang, X.D.5
Zhang, H.6
Wang, R.X.7
Lei, Y.8
Pan, B.C.9
Xie, Y.10
-
48
-
-
84862188112
-
Hydrogen evolution across nano-Schottky junctions at carbon supported MoS2 catalysts in biphasic liquid systems
-
48 Ge, P., Scanlon, M.D., Peljo, P., Bian, X., Vubrel, H., O'Neill, A., Coleman, J.N., Cantoni, M., Hu, X., Kontturi, K., et al. Hydrogen evolution across nano-Schottky junctions at carbon supported MoS2 catalysts in biphasic liquid systems. Chem. Commun. 48 (2012), 6484–6486.
-
(2012)
Chem. Commun.
, vol.48
, pp. 6484-6486
-
-
Ge, P.1
Scanlon, M.D.2
Peljo, P.3
Bian, X.4
Vubrel, H.5
O'Neill, A.6
Coleman, J.N.7
Cantoni, M.8
Hu, X.9
Kontturi, K.10
-
49
-
-
84890400622
-
Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction
-
49 Voiry, D., Salehi, M., Silva, R., Fujita, T., Chen, M.W., Asefa, T., Shenoy, V.B., Eda, G., Chhowalla, M., Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 13 (2013), 6222–6227.
-
(2013)
Nano Lett.
, vol.13
, pp. 6222-6227
-
-
Voiry, D.1
Salehi, M.2
Silva, R.3
Fujita, T.4
Chen, M.W.5
Asefa, T.6
Shenoy, V.B.7
Eda, G.8
Chhowalla, M.9
-
50
-
-
85028162262
-
Lithium intercalation compound dramatically influences the electrochemical properties of exfoliated MoS2
-
50 Ambrosi, A., Sofer, Z., Pumera, M., Lithium intercalation compound dramatically influences the electrochemical properties of exfoliated MoS2. Small 11 (2015), 605–612.
-
(2015)
Small
, vol.11
, pp. 605-612
-
-
Ambrosi, A.1
Sofer, Z.2
Pumera, M.3
-
51
-
-
84889664636
-
Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction
-
51 Wang, H.T., Lu, Z.Y., Xu, S.C., Kong, D.S., Cha, J.J., Zheng, G.Y., Hsu, P.C., Yan, K., Bradshaw, D., Prinz, F.B., et al. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl. Acad. Sci. USA 110 (2013), 19701–19706.
-
(2013)
Proc. Natl. Acad. Sci. USA
, vol.110
, pp. 19701-19706
-
-
Wang, H.T.1
Lu, Z.Y.2
Xu, S.C.3
Kong, D.S.4
Cha, J.J.5
Zheng, G.Y.6
Hsu, P.C.7
Yan, K.8
Bradshaw, D.9
Prinz, F.B.10
-
52
-
-
84883187888
-
2 nanosheets for hydrogen evolution
-
2 nanosheets for hydrogen evolution. Nat. Mater. 12 (2013), 850–855.
-
(2013)
Nat. Mater.
, vol.12
, pp. 850-855
-
-
Voiry, D.1
Yamaguchi, H.2
Li, J.3
Silva, R.4
Alves, D.C.B.5
Fujita, T.6
Chen, M.7
Asefa, T.8
Shenoy, V.B.9
Eda, G.10
-
53
-
-
84904542710
-
Highly active hydrogen evolution catalysis from metallic WS2 nanosheets
-
53 Lukowski, M.A., Daniel, A.S., English, C.R., Meng, F., Forticaux, A., Hamers, R.J., Jin, S., Highly active hydrogen evolution catalysis from metallic WS2 nanosheets. Energy Environ. Sci. 7 (2014), 2608–2613.
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 2608-2613
-
-
Lukowski, M.A.1
Daniel, A.S.2
English, C.R.3
Meng, F.4
Forticaux, A.5
Hamers, R.J.6
Jin, S.7
-
54
-
-
84919775422
-
Electrochemistry of transition metal dichalcogenides: strong dependence on the metal-to-chalcogen composition and exfoliation method
-
54 Eng, A.Y.S., Ambrosi, A., Sofer, Z., Simek, P., Pumera, M., Electrochemistry of transition metal dichalcogenides: strong dependence on the metal-to-chalcogen composition and exfoliation method. ACS Nano 8 (2014), 12185–12198.
-
(2014)
ACS Nano
, vol.8
, pp. 12185-12198
-
-
Eng, A.Y.S.1
Ambrosi, A.2
Sofer, Z.3
Simek, P.4
Pumera, M.5
-
55
-
-
84928963737
-
2H → 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition
-
55 Ambrosi, A., Sofer, Z., Pumera, M., 2H → 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition. Chem. Commun. 51 (2015), 8450–8453.
-
(2015)
Chem. Commun.
, vol.51
, pp. 8450-8453
-
-
Ambrosi, A.1
Sofer, Z.2
Pumera, M.3
-
56
-
-
84931291835
-
Charge mediated semiconducting-to-metallic phase transition in molybdenum disulfide monolayer and hydrogen evolution reaction in new 1T'Phase
-
56 Gao, G.P., Jiao, Y., Ma, F.X., Jiao, Y.L., Wacawik, E., Du, A.J., Charge mediated semiconducting-to-metallic phase transition in molybdenum disulfide monolayer and hydrogen evolution reaction in new 1T'Phase. J. Phys. Chem. C 119 (2015), 13124–13128.
-
(2015)
J. Phys. Chem. C
, vol.119
, pp. 13124-13128
-
-
Gao, G.P.1
Jiao, Y.2
Ma, F.X.3
Jiao, Y.L.4
Wacawik, E.5
Du, A.J.6
-
57
-
-
84939162330
-
A first-principles examination of conducting monolayer 1T′-MX2 (M = Mo, W; X = S, Se, Te): promising catalysts for hydrogen evolution reaction and its enhancement by strain
-
57 Putungan, D.B., Lin, S.H., Kuo, J.L., A first-principles examination of conducting monolayer 1T′-MX2 (M = Mo, W; X = S, Se, Te): promising catalysts for hydrogen evolution reaction and its enhancement by strain. Phys. Chem. Chem. Phys. 17 (2015), 21702–21708.
-
(2015)
Phys. Chem. Chem. Phys.
, vol.17
, pp. 21702-21708
-
-
Putungan, D.B.1
Lin, S.H.2
Kuo, J.L.3
-
58
-
-
84946496093
-
Theoretical insights into the hydrogen evolution activity of layered transition metal dichalcogenides
-
58 Tsai, C., Chan, K.R., Norskov, J.K., Abild-Pedersen, F., Theoretical insights into the hydrogen evolution activity of layered transition metal dichalcogenides. Surf. Sci. 640 (2015), 133–140.
-
(2015)
Surf. Sci.
, vol.640
, pp. 133-140
-
-
Tsai, C.1
Chan, K.R.2
Norskov, J.K.3
Abild-Pedersen, F.4
-
59
-
-
84981297842
-
Mechanism of hydrogen evolution reaction on 1T-MoS2 from first principles
-
59 Tang, Q., Jiang, D.-E., Mechanism of hydrogen evolution reaction on 1T-MoS2 from first principles. ACS Catal. 6 (2016), 4953–4961.
-
(2016)
ACS Catal.
, vol.6
, pp. 4953-4961
-
-
Tang, Q.1
Jiang, D.-E.2
-
60
-
-
84958190963
-
Defects engineered monolayer MoS2 for improved hydrogen evolution reaction
-
60 Ye, G., Gong, Y., Lin, J., Li, B., He, Y., Pantelides, S.T., Zhou, W., Vajtai, R., Ajayan, P.M., Defects engineered monolayer MoS2 for improved hydrogen evolution reaction. Nano Lett. 16 (2016), 1097–1103.
-
(2016)
Nano Lett.
, vol.16
, pp. 1097-1103
-
-
Ye, G.1
Gong, Y.2
Lin, J.3
Li, B.4
He, Y.5
Pantelides, S.T.6
Zhou, W.7
Vajtai, R.8
Ajayan, P.M.9
-
62
-
-
84887817940
-
MoS2 formed on mesoporous graphene as a highly active catalyst for hydrogen evolution
-
62 Liao, L., Zhu, J., Bian, X.J., Zhu, L.N., Scanlon, M.D., Girault, H.H., Liu, B.H., MoS2 formed on mesoporous graphene as a highly active catalyst for hydrogen evolution. Adv. Funct. Mater. 23 (2013), 5326–5333.
-
(2013)
Adv. Funct. Mater.
, vol.23
, pp. 5326-5333
-
-
Liao, L.1
Zhu, J.2
Bian, X.J.3
Zhu, L.N.4
Scanlon, M.D.5
Girault, H.H.6
Liu, B.H.7
-
63
-
-
84881524937
-
Facile synthesis of low crystalline MoS2 nanosheet-coated CNTs for enhanced hydrogen evolution reaction
-
63 Yan, Y., Ge, X.M., Liu, Z.L., Wang, J.Y., Lee, J.M., Wang, X., Facile synthesis of low crystalline MoS2 nanosheet-coated CNTs for enhanced hydrogen evolution reaction. Nanoscale 5 (2013), 7768–7771.
-
(2013)
Nanoscale
, vol.5
, pp. 7768-7771
-
-
Yan, Y.1
Ge, X.M.2
Liu, Z.L.3
Wang, J.Y.4
Lee, J.M.5
Wang, X.6
-
64
-
-
84873335713
-
Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams
-
64 Chang, Y.H., Lin, C.T., Chen, T.Y., Hsu, C.L., Lee, Y.H., Zhang, W.J., Wei, K.H., Li, L.J., Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams. Adv. Mater. 25 (2013), 756–760.
-
(2013)
Adv. Mater.
, vol.25
, pp. 756-760
-
-
Chang, Y.H.1
Lin, C.T.2
Chen, T.Y.3
Hsu, C.L.4
Lee, Y.H.5
Zhang, W.J.6
Wei, K.H.7
Li, L.J.8
-
65
-
-
79959454526
-
Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water
-
65 Merki, D., Fierro, S., Vrubel, H., Hu, X.L., Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2 (2011), 1262–1267.
-
(2011)
Chem. Sci.
, vol.2
, pp. 1262-1267
-
-
Merki, D.1
Fierro, S.2
Vrubel, H.3
Hu, X.L.4
-
66
-
-
84883886591
-
Growth and activation of an amorphous molybdenum sulfide hydrogen evolving catalyst
-
66 Vrubel, H., Hu, X.L., Growth and activation of an amorphous molybdenum sulfide hydrogen evolving catalyst. ACS Catal. 3 (2013), 2002–2011.
-
(2013)
ACS Catal.
, vol.3
, pp. 2002-2011
-
-
Vrubel, H.1
Hu, X.L.2
-
67
-
-
84866130770
-
Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution
-
67 Merki, D., Vrubel, H., Rovelli, L., Fierro, S., Hu, X.L., Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem. Sci. 3 (2012), 2515–2525.
-
(2012)
Chem. Sci.
, vol.3
, pp. 2515-2525
-
-
Merki, D.1
Vrubel, H.2
Rovelli, L.3
Fierro, S.4
Hu, X.L.5
-
68
-
-
84907780276
-
Operand synthesis of macroporous molybdenum diselenide films for electrocatalysis of the hydrogen-evolution reaction
-
68 Saadi, F.H., Carim, A.I., Velazquez, J.M., Baricuatro, J.H., McCrory, C.C.L., Soriaga, M.P., Lewis, N.S., Operand synthesis of macroporous molybdenum diselenide films for electrocatalysis of the hydrogen-evolution reaction. ACS Catal. 4 (2014), 2866–2873.
-
(2014)
ACS Catal.
, vol.4
, pp. 2866-2873
-
-
Saadi, F.H.1
Carim, A.I.2
Velazquez, J.M.3
Baricuatro, J.H.4
McCrory, C.C.L.5
Soriaga, M.P.6
Lewis, N.S.7
-
69
-
-
84866103921
-
Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: insights into the origin of their catalytic activity
-
69 Benck, J.D., Chen, Z.B., Kuritzky, L.Y., Forman, A.J., Jaramillo, T.F., Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: insights into the origin of their catalytic activity. ACS Catal. 2 (2012), 1916–1923.
-
(2012)
ACS Catal.
, vol.2
, pp. 1916-1923
-
-
Benck, J.D.1
Chen, Z.B.2
Kuritzky, L.Y.3
Forman, A.J.4
Jaramillo, T.F.5
-
70
-
-
84863279158
-
Hydrogen evolution catalyzed by MoS3 and MoS2 particles
-
70 Vrubel, H., Merki, D., Hu, X.L., Hydrogen evolution catalyzed by MoS3 and MoS2 particles. Energy Environ. Sci. 5 (2012), 6136–6144.
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 6136-6144
-
-
Vrubel, H.1
Merki, D.2
Hu, X.L.3
-
71
-
-
84930628446
-
The reaction mechanism with free energy barriers for electrochemical dihydrogen evolution on MoS2
-
71 Huang, Y.F., Nielsen, R.J., Goddard, W.A., Soriaga, M.P., The reaction mechanism with free energy barriers for electrochemical dihydrogen evolution on MoS2. J. Am. Chem. Soc. 137 (2015), 6692–6698.
-
(2015)
J. Am. Chem. Soc.
, vol.137
, pp. 6692-6698
-
-
Huang, Y.F.1
Nielsen, R.J.2
Goddard, W.A.3
Soriaga, M.P.4
-
72
-
-
84978322322
-
Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulfide
-
72 Tran, P.D., Tran, T.V., Orio, M., Torelli, S., Truong, Q.D., Nayuki, K., Sasaki, Y., Chiam, S.Y., Yi, R., Honma, I., et al. Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulfide. Nat. Mater., 15, 2016, 640.
-
(2016)
Nat. Mater.
, vol.15
, pp. 640
-
-
Tran, P.D.1
Tran, T.V.2
Orio, M.3
Torelli, S.4
Truong, Q.D.5
Nayuki, K.6
Sasaki, Y.7
Chiam, S.Y.8
Yi, R.9
Honma, I.10
-
73
-
-
84921047276
-
Evidence from in Situ X-ray absorption spectroscopy for the involvement of terminal disulfide in the reduction of protons by an amorphous molybdenum sulfide electrocatalyst
-
73 Lassalle-Kaiser, B., Merki, D., Vrubel, H., Gul, S., Yachandra, V.K., Hu, X.L., Yano, J., Evidence from in Situ X-ray absorption spectroscopy for the involvement of terminal disulfide in the reduction of protons by an amorphous molybdenum sulfide electrocatalyst. J. Am. Chem. Soc. 137 (2015), 314–321.
-
(2015)
J. Am. Chem. Soc.
, vol.137
, pp. 314-321
-
-
Lassalle-Kaiser, B.1
Merki, D.2
Vrubel, H.3
Gul, S.4
Yachandra, V.K.5
Hu, X.L.6
Yano, J.7
-
74
-
-
84863012270
-
A molecular MoS2 edge site mimic for catalytic hydrogen generation
-
74 Karunadasa, H.I., Montalvo, E., Sun, Y.J., Majda, M., Long, J.R., Chang, C.J., A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 335 (2012), 698–702.
-
(2012)
Science
, vol.335
, pp. 698-702
-
-
Karunadasa, H.I.1
Montalvo, E.2
Sun, Y.J.3
Majda, M.4
Long, J.R.5
Chang, C.J.6
-
75
-
-
84955204546
-
Dimeric [Mo2S12]2− cluster: a molecular analogue of MoS2 edges for superior hydrogen-evolution electrocatalysis
-
75 Huang, Z., Luo, W., Ma, L., Yu, M., Ren, X., He, M., Polen, S., Click, K., Garrett, B., Lu, J., et al. Dimeric [Mo2S12]2− cluster: a molecular analogue of MoS2 edges for superior hydrogen-evolution electrocatalysis. Angew. Chem. Int. Ed. Engl. 54 (2015), 15181–15185.
-
(2015)
Angew. Chem. Int. Ed. Engl.
, vol.54
, pp. 15181-15185
-
-
Huang, Z.1
Luo, W.2
Ma, L.3
Yu, M.4
Ren, X.5
He, M.6
Polen, S.7
Click, K.8
Garrett, B.9
Lu, J.10
-
76
-
-
84895106983
-
Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13](2−) clusters
-
76 Kibsgaard, J., Jaramillo, T.F., Besenbacher, F., Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13](2−) clusters. Nat. Chem. 6 (2014), 248–253.
-
(2014)
Nat. Chem.
, vol.6
, pp. 248-253
-
-
Kibsgaard, J.1
Jaramillo, T.F.2
Besenbacher, F.3
-
77
-
-
84924419531
-
Amorphous MoSxCly electrocatalyst supported by vertical graphene for efficient electrochemical and photoelectrochemical hydrogen generation
-
77 Zhang, X.W., Meng, F., Mao, S., Ding, Q., Shearer, M.J., Faber, M.S., Chen, J.H., Hamers, R.J., Jin, S., Amorphous MoSxCly electrocatalyst supported by vertical graphene for efficient electrochemical and photoelectrochemical hydrogen generation. Energy Environ. Sci. 8 (2015), 862–868.
-
(2015)
Energy Environ. Sci.
, vol.8
, pp. 862-868
-
-
Zhang, X.W.1
Meng, F.2
Mao, S.3
Ding, Q.4
Shearer, M.J.5
Faber, M.S.6
Chen, J.H.7
Hamers, R.J.8
Jin, S.9
-
78
-
-
84902687618
-
Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2
-
78 Ding, Q., Meng, F., English, C.R., Caban-Acevedo, M., Shearer, M.J., Liang, D., Daniel, A.S., Hamers, R.J., Jin, S., Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2. J. Am. Chem. Soc. 136 (2014), 8504–8507.
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 8504-8507
-
-
Ding, Q.1
Meng, F.2
English, C.R.3
Caban-Acevedo, M.4
Shearer, M.J.5
Liang, D.6
Daniel, A.S.7
Hamers, R.J.8
Jin, S.9
-
79
-
-
84926476164
-
Ultrathin MoS2(1–x)Se2x alloy nanoflakes for electrocatalytic hydrogen evolution reaction
-
79 Gong, Q., Cheng, L., Liu, C., Zhang, M., Feng, Q., Ye, H., Zeng, M., Xie, L., Liu, Z., Li, Y., Ultrathin MoS2(1–x)Se2x alloy nanoflakes for electrocatalytic hydrogen evolution reaction. ACS Catal. 5 (2015), 2213–2219.
-
(2015)
ACS Catal.
, vol.5
, pp. 2213-2219
-
-
Gong, Q.1
Cheng, L.2
Liu, C.3
Zhang, M.4
Feng, Q.5
Ye, H.6
Zeng, M.7
Xie, L.8
Liu, Z.9
Li, Y.10
-
80
-
-
84906690114
-
Component-controllable WS2(1–x)Se2x nanotubes for efficient hydrogen evolution reaction
-
80 Xu, K., Wang, F., Wang, Z., Zhan, X., Wang, Q., Cheng, Z., Safdar, M., He, J., Component-controllable WS2(1–x)Se2x nanotubes for efficient hydrogen evolution reaction. ACS Nano 8 (2014), 8468–8476.
-
(2014)
ACS Nano
, vol.8
, pp. 8468-8476
-
-
Xu, K.1
Wang, F.2
Wang, Z.3
Zhan, X.4
Wang, Q.5
Cheng, Z.6
Safdar, M.7
He, J.8
-
81
-
-
84928942576
-
Silicon decorated with amorphous cobalt molybdenum sulfide catalyst as an efficient photocathode for solar hydrogen generation
-
81 Chen, Y., Tran, P.D., Boix, P., Ren, Y., Chiam, S.Y., Li, Z., Fu, K., Wong, L.H., Barber, J., Silicon decorated with amorphous cobalt molybdenum sulfide catalyst as an efficient photocathode for solar hydrogen generation. ACS Nano 9 (2015), 3829–3836.
-
(2015)
ACS Nano
, vol.9
, pp. 3829-3836
-
-
Chen, Y.1
Tran, P.D.2
Boix, P.3
Ren, Y.4
Chiam, S.Y.5
Li, Z.6
Fu, K.7
Wong, L.H.8
Barber, J.9
-
82
-
-
84882626048
-
Novel cobalt/nickel-tungsten-sulfide catalysts for electrocatalytic hydrogen generation from water
-
82 Tran, P.D., Chiam, S.Y., Boix, P.P., Ren, Y., Pramana, S.S., Fize, J., Artero, V., Barber, J., Novel cobalt/nickel-tungsten-sulfide catalysts for electrocatalytic hydrogen generation from water. Energy Environ. Sci. 6 (2013), 2452–2459.
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 2452-2459
-
-
Tran, P.D.1
Chiam, S.Y.2
Boix, P.P.3
Ren, Y.4
Pramana, S.S.5
Fize, J.6
Artero, V.7
Barber, J.8
-
83
-
-
84955633311
-
Design of active and stable Co-Mo-Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction
-
83 Staszak-Jirkovsky, J., Malliakas, C.D., Lopes, P.P., Danilovic, N., Kota, S.S., Chang, K.C., Genorio, B., Strmcnik, D., Stamenkovic, V.R., Kanatzidis, M.G., et al. Design of active and stable Co-Mo-Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nat. Mater. 15 (2016), 197–203.
-
(2016)
Nat. Mater.
, vol.15
, pp. 197-203
-
-
Staszak-Jirkovsky, J.1
Malliakas, C.D.2
Lopes, P.P.3
Danilovic, N.4
Kota, S.S.5
Chang, K.C.6
Genorio, B.7
Strmcnik, D.8
Stamenkovic, V.R.9
Kanatzidis, M.G.10
-
84
-
-
84892734875
-
Silicon microwire arrays for solar energy-conversion applications
-
84 Warren, E.L., Atwater, H.A., Lewis, N.S., Silicon microwire arrays for solar energy-conversion applications. J. Phys. Chem. C 118 (2014), 747–759.
-
(2014)
J. Phys. Chem. C
, vol.118
, pp. 747-759
-
-
Warren, E.L.1
Atwater, H.A.2
Lewis, N.S.3
-
85
-
-
84892600394
-
Semiconductor nanowires for artificial photosynthesis
-
85 Liu, C., Dasgupta, N.P., Yang, P., Semiconductor nanowires for artificial photosynthesis. Chem. Mater. 26 (2014), 415–422.
-
(2014)
Chem. Mater.
, vol.26
, pp. 415-422
-
-
Liu, C.1
Dasgupta, N.P.2
Yang, P.3
-
86
-
-
84856953141
-
Facile solution synthesis of a-FeF3.3H2O nanowires and their conversion to a-Fe2O3 nanowires for photoelectrochemical application
-
86 Li, L., Yu, Y., Meng, F., Tan, Y., Hamers, R.J., Jin, S., Facile solution synthesis of a-FeF3.3H2O nanowires and their conversion to a-Fe2O3 nanowires for photoelectrochemical application. Nano Lett. 12 (2012), 724–731.
-
(2012)
Nano Lett.
, vol.12
, pp. 724-731
-
-
Li, L.1
Yu, Y.2
Meng, F.3
Tan, Y.4
Hamers, R.J.5
Jin, S.6
-
87
-
-
84886992706
-
Realizing high-efficiency omnidirectional n-type Si solar cells via the hierarchical architecture concept with radial junctions
-
87 Wang, H.P., Lin, T.Y., Hsu, C.W., Tsai, M.L., Huang, C.H., Wei, W.R., Huang, M.Y., Chien, Y.J., Yang, P.C., Liu, C.W., et al. Realizing high-efficiency omnidirectional n-type Si solar cells via the hierarchical architecture concept with radial junctions. ACS Nano 7 (2013), 9325–9335.
-
(2013)
ACS Nano
, vol.7
, pp. 9325-9335
-
-
Wang, H.P.1
Lin, T.Y.2
Hsu, C.W.3
Tsai, M.L.4
Huang, C.H.5
Wei, W.R.6
Huang, M.Y.7
Chien, Y.J.8
Yang, P.C.9
Liu, C.W.10
-
88
-
-
44949200319
-
Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation
-
88 Zong, X., Yan, H., Wu, G., Ma, G., Wen, F., Wang, L., Li, C., Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J. Am. Chem. Soc. 130 (2008), 7176–7177.
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 7176-7177
-
-
Zong, X.1
Yan, H.2
Wu, G.3
Ma, G.4
Wen, F.5
Wang, L.6
Li, C.7
-
89
-
-
80555150640
-
Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts
-
89 Reece, S.Y., Hamel, J.A., Sung, K., Jarvi, T.D., Esswein, A.J., Pijpers, J.J.H., Nocera, D.G., Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334 (2011), 645–648.
-
(2011)
Science
, vol.334
, pp. 645-648
-
-
Reece, S.Y.1
Hamel, J.A.2
Sung, K.3
Jarvi, T.D.4
Esswein, A.J.5
Pijpers, J.J.H.6
Nocera, D.G.7
-
90
-
-
74249091524
-
Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes
-
90 Boettcher, S.W., Spurgeon, J.M., Putnam, M.C., Warren, E.L., Turner-Evans, D.B., Kelzenberg, M.D., Maiolo, J.R., Atwater, H.A., Lewis, N.S., Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes. Science 327 (2010), 185–187.
-
(2010)
Science
, vol.327
, pp. 185-187
-
-
Boettcher, S.W.1
Spurgeon, J.M.2
Putnam, M.C.3
Warren, E.L.4
Turner-Evans, D.B.5
Kelzenberg, M.D.6
Maiolo, J.R.7
Atwater, H.A.8
Lewis, N.S.9
-
91
-
-
84907899778
-
Enabling silicon for solar-fuel production
-
91 Sun, K., Shen, S., Liang, Y., Burrows, P.E., Mao, S.S., Wang, D., Enabling silicon for solar-fuel production. Chem. Rev. 114 (2014), 8662–8719.
-
(2014)
Chem. Rev.
, vol.114
, pp. 8662-8719
-
-
Sun, K.1
Shen, S.2
Liang, Y.3
Burrows, P.E.4
Mao, S.S.5
Wang, D.6
-
92
-
-
79957528668
-
Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution
-
92 Hou, Y.D., Abrams, B.L., Vesborg, P.C.K., Bjorketun, M.E., Herbst, K., Bech, L., Setti, A.M., Damsgaard, C.D., Pedersen, T., Hansen, O., et al. Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. Nat. Mater. 10 (2011), 434–438.
-
(2011)
Nat. Mater.
, vol.10
, pp. 434-438
-
-
Hou, Y.D.1
Abrams, B.L.2
Vesborg, P.C.K.3
Bjorketun, M.E.4
Herbst, K.5
Bech, L.6
Setti, A.M.7
Damsgaard, C.D.8
Pedersen, T.9
Hansen, O.10
-
93
-
-
79551702472
-
Photoelectrochemical hydrogen evolution using Si microwire arrays
-
93 Boettcher, S.W., Warren, E.L., Putnam, M.C., Santori, E.A., Turner-Evans, D., Kelzenberg, M.D., Walter, M.G., McKone, J.R., Brunschwig, B.S., Atwater, H.A., et al. Photoelectrochemical hydrogen evolution using Si microwire arrays. J. Am. Chem. Soc. 133 (2011), 1216–1219.
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 1216-1219
-
-
Boettcher, S.W.1
Warren, E.L.2
Putnam, M.C.3
Santori, E.A.4
Turner-Evans, D.5
Kelzenberg, M.D.6
Walter, M.G.7
McKone, J.R.8
Brunschwig, B.S.9
Atwater, H.A.10
-
94
-
-
77249164255
-
Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications
-
94 Kelzenberg, M.D., Boettcher, S.W., Petykiewicz, J.A., Turner-Evans, D.B., Putnam, M.C., Warren, E.L., Spurgeon, J.M., Briggs, R.M., Lewis, N.S., Atwater, H.A., Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat. Mater., 9, 2010, 368.
-
(2010)
Nat. Mater.
, vol.9
, pp. 368
-
-
Kelzenberg, M.D.1
Boettcher, S.W.2
Petykiewicz, J.A.3
Turner-Evans, D.B.4
Putnam, M.C.5
Warren, E.L.6
Spurgeon, J.M.7
Briggs, R.M.8
Lewis, N.S.9
Atwater, H.A.10
-
95
-
-
80052203149
-
Evaluation of Pt, Ni, and Ni-Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes
-
95 McKone, J.R., Warren, E.L., Bierman, M.J., Boettcher, S.W., Brunschwig, B.S., Lewis, N.S., Gray, H.B., Evaluation of Pt, Ni, and Ni-Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes. Energy Environ. Sci. 4 (2011), 3573–3583.
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 3573-3583
-
-
McKone, J.R.1
Warren, E.L.2
Bierman, M.J.3
Boettcher, S.W.4
Brunschwig, B.S.5
Lewis, N.S.6
Gray, H.B.7
-
96
-
-
84867641530
-
Hydrogen-evolution characteristics of Ni-Mo-coated, radial junction, n(+)p-silicon microwire array photocathodes
-
96 Warren, E.L., McKone, J.R., Atwater, H.A., Gray, H.B., Lewis, N.S., Hydrogen-evolution characteristics of Ni-Mo-coated, radial junction, n(+)p-silicon microwire array photocathodes. Energy Environ. Sci. 5 (2012), 9653–9661.
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 9653-9661
-
-
Warren, E.L.1
McKone, J.R.2
Atwater, H.A.3
Gray, H.B.4
Lewis, N.S.5
-
97
-
-
84945973698
-
Designing efficient solar-driven hydrogen evolution photocathodes using semitransparent MoQ(x)Cl(y) (Q = S, Se) catalysts on Si micropyramids
-
97 Ding, Q., Zhai, J.Y., Caban-Acevedo, M., Shearer, M.J., Li, L.S., Chang, H.C., Tsai, M.L., Ma, D.W., Zhang, X.W., Hamers, R.J., et al. Designing efficient solar-driven hydrogen evolution photocathodes using semitransparent MoQ(x)Cl(y) (Q = S, Se) catalysts on Si micropyramids. Adv. Mater. 27 (2015), 6511–6518.
-
(2015)
Adv. Mater.
, vol.27
, pp. 6511-6518
-
-
Ding, Q.1
Zhai, J.Y.2
Caban-Acevedo, M.3
Shearer, M.J.4
Li, L.S.5
Chang, H.C.6
Tsai, M.L.7
Ma, D.W.8
Zhang, X.W.9
Hamers, R.J.10
-
98
-
-
84865852020
-
Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n plus p-silicon photocathode
-
98 Seger, B., Laursen, A.B., Vesborg, P.C.K., Pedersen, T., Hansen, O., Dahl, S., Chorkendorff, I., Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n plus p-silicon photocathode. Angew. Chem. Int. Ed. Engl. 51 (2012), 9128–9131.
-
(2012)
Angew. Chem. Int. Ed. Engl.
, vol.51
, pp. 9128-9131
-
-
Seger, B.1
Laursen, A.B.2
Vesborg, P.C.K.3
Pedersen, T.4
Hansen, O.5
Dahl, S.6
Chorkendorff, I.7
-
99
-
-
84921682522
-
Designing active and stable silicon photocathodes for solar hydrogen production using molybdenum sulfide nanomaterials
-
99 Benck, J.D., Lee, S.C., Fong, K.D., Kibsgaard, J., Sinclair, R., Jaramillo, T.F., Designing active and stable silicon photocathodes for solar hydrogen production using molybdenum sulfide nanomaterials. Adv. Energy Mater., 4, 2014, 1400739.
-
(2014)
Adv. Energy Mater.
, vol.4
, pp. 1400739
-
-
Benck, J.D.1
Lee, S.C.2
Fong, K.D.3
Kibsgaard, J.4
Sinclair, R.5
Jaramillo, T.F.6
-
100
-
-
84906568523
-
Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst
-
100 Morales-Guio, C.G., Tilley, S.D., Vrubel, H., Gratzel, M., Hu, X.L., Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst. Nat. Commun., 5, 2014, 3059.
-
(2014)
Nat. Commun.
, vol.5
, pp. 3059
-
-
Morales-Guio, C.G.1
Tilley, S.D.2
Vrubel, H.3
Gratzel, M.4
Hu, X.L.5
-
101
-
-
84922825153
-
Photoelectrochemical hydrogen production in alkaline solutions using Cu2O coated with earth-abundant hydrogen evolution catalysts
-
101 Morales-Guio, C.G., Liardet, L., Mayer, M.T., Tilley, S.D., Gratzel, M., Hu, X.L., Photoelectrochemical hydrogen production in alkaline solutions using Cu2O coated with earth-abundant hydrogen evolution catalysts. Angew. Chem. Int. Ed. Engl. 54 (2015), 664–667.
-
(2015)
Angew. Chem. Int. Ed. Engl.
, vol.54
, pp. 664-667
-
-
Morales-Guio, C.G.1
Liardet, L.2
Mayer, M.T.3
Tilley, S.D.4
Gratzel, M.5
Hu, X.L.6
-
102
-
-
84903973805
-
Photoelectrochemical hydrogen production on InP nanowire arrays with molybdenum sulfide electrocatalysts
-
102 Gao, L., Cui, Y.C., Wang, J., Cavalli, A., Standing, A., Vu, T.T.T., Verheijen, M.A., Haverkort, J.E.M., Bakkers, E.P.A.M., Notten, P.H.L., Photoelectrochemical hydrogen production on InP nanowire arrays with molybdenum sulfide electrocatalysts. Nano Lett. 14 (2014), 3715–3719.
-
(2014)
Nano Lett.
, vol.14
, pp. 3715-3719
-
-
Gao, L.1
Cui, Y.C.2
Wang, J.3
Cavalli, A.4
Standing, A.5
Vu, T.T.T.6
Verheijen, M.A.7
Haverkort, J.E.M.8
Bakkers, E.P.A.M.9
Notten, P.H.L.10
-
103
-
-
84937598298
-
Efficient water reduction with gallium phosphide nanowires
-
103 Standing, A., Assali, S., Gao, L., Verheijen, M.A., van Dam, D., Cui, Y.C., Notten, P.H.L., Haverkort, J.E.M., Bakkers, E.P.A.M., Efficient water reduction with gallium phosphide nanowires. Nat. Commun., 6, 2015, 7824.
-
(2015)
Nat. Commun.
, vol.6
, pp. 7824
-
-
Standing, A.1
Assali, S.2
Gao, L.3
Verheijen, M.A.4
van Dam, D.5
Cui, Y.C.6
Notten, P.H.L.7
Haverkort, J.E.M.8
Bakkers, E.P.A.M.9
-
104
-
-
84973525542
-
Molybdenum disulfide as a protection layer and catalyst for gallium indium phosphide solar water splitting photocathodes
-
104 Britto, R.J., Benck, J.D., Young, J.L., Hahn, C., Deutsch, T.G., Jaramillo, T.F., Molybdenum disulfide as a protection layer and catalyst for gallium indium phosphide solar water splitting photocathodes. J. Phys. Chem. Lett. 7 (2016), 2044–2049.
-
(2016)
J. Phys. Chem. Lett.
, vol.7
, pp. 2044-2049
-
-
Britto, R.J.1
Benck, J.D.2
Young, J.L.3
Hahn, C.4
Deutsch, T.G.5
Jaramillo, T.F.6
-
105
-
-
84990879550
-
p-Si/NiCoSex core/shell nanopillar array photocathode for enhanced photoelectrochemical hydrogen production
-
105 Zhang, H., Ding, Q., He, D., Liu, H., Liu, W., Li, Z., Yang, B., Zhang, X., Lei, L., Jin, S., p-Si/NiCoSex core/shell nanopillar array photocathode for enhanced photoelectrochemical hydrogen production. Energy Environ. Sci. 9 (2016), 3113–3119.
-
(2016)
Energy Environ. Sci.
, vol.9
, pp. 3113-3119
-
-
Zhang, H.1
Ding, Q.2
He, D.3
Liu, H.4
Liu, W.5
Li, Z.6
Yang, B.7
Zhang, X.8
Lei, L.9
Jin, S.10
-
106
-
-
79960138126
-
Nonconventional (non-silicon-based) photovoltaic materials
-
106 Unold, T., Schock, H.W., Nonconventional (non-silicon-based) photovoltaic materials. Annu. Rev. Mater. Res. 41 (2011), 297–321.
-
(2011)
Annu. Rev. Mater. Res.
, vol.41
, pp. 297-321
-
-
Unold, T.1
Schock, H.W.2
-
107
-
-
84918569819
-
Ionization of high-density deep donor defect states explains the low photovoltage of iron pyrite single crystals
-
107 Caban-Acevedo, M., Kaiser, N.S., English, C.R., Liang, D., Thompson, B.J., Chen, H.-E., Czech, K.J., Wright, J.C., Hamers, R.J., Jin, S., Ionization of high-density deep donor defect states explains the low photovoltage of iron pyrite single crystals. J. Am. Chem. Soc. 136 (2014), 17163–17179.
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 17163-17179
-
-
Caban-Acevedo, M.1
Kaiser, N.S.2
English, C.R.3
Liang, D.4
Thompson, B.J.5
Chen, H.-E.6
Czech, K.J.7
Wright, J.C.8
Hamers, R.J.9
Jin, S.10
|