메뉴 건너뛰기




Volumn 7, Issue 2, 2013, Pages 99-111

Direct divergence approximation between probability distributions and its applications in machine learning

Author keywords

Kullback Leibler divergence; Machine learning; Pearson divergence; Probability distributions

Indexed keywords

ESTIMATION; INDEPENDENT COMPONENT ANALYSIS; LEARNING SYSTEMS;

EID: 85008254198     PISSN: 19764677     EISSN: 20938020     Source Type: Journal    
DOI: 10.5626/JCSE.2013.7.2.99     Document Type: Article
Times cited : (36)

References (52)
  • 2
    • 84863126130 scopus 로고    scopus 로고
    • f-divergence estimation and two-sample homogeneity test under semiparametric density-ratio models
    • T. Kanamori, T. Suzuki, and M. Sugiyama, "f-divergence estimation and two-sample homogeneity test under semiparametric density-ratio models," IEEE Transactions on Information Theory, vol. 58, no. 2, pp. 708-720, 2012.
    • (2012) IEEE Transactions on Information Theory , vol.58 , Issue.2 , pp. 708-720
    • Kanamori, T.1    Suzuki, T.2    Sugiyama, M.3
  • 3
    • 84858312965 scopus 로고    scopus 로고
    • Sequential change-point detection based on direct density-ratio estimation
    • Y. Kawahara and M. Sugiyama, "Sequential change-point detection based on direct density-ratio estimation," Statistical Analysis and Data Mining, vol. 5, no. 2, pp. 114-127, 2012.
    • (2012) Statistical Analysis and Data Mining , vol.5 , Issue.2 , pp. 114-127
    • Kawahara, Y.1    Sugiyama, M.2
  • 4
    • 84867122342 scopus 로고    scopus 로고
    • Semi-supervised learning of class balance under class-prior change by distribution matching
    • in Proceedings of the 29th International Conference on Machine Learning, Edinburgh, Scotland
    • M. C. du Plessis and M. Sugiyama, "Semi-supervised learning of class balance under class-prior change by distribution matching," in Proceedings of the 29th International Conference on Machine Learning, Edinburgh, Scotland, 2012, pp. 823-830.
    • (2012) , pp. 823-830
    • du Plessis, M.C.1    Sugiyama, M.2
  • 7
    • 84875257444 scopus 로고    scopus 로고
    • Changepoint detection in time-series data by relative density-ratio estimation
    • S. Liu, M. Yamada, N. Collier, and M. Sugiyama, "Changepoint detection in time-series data by relative density-ratio estimation," Neural Networks, vol. 43,, pp. 72-83, 2013.
    • (2013) Neural Networks , vol.43 , pp. 72-83
    • Liu, S.1    Yamada, M.2    Collier, N.3    Sugiyama, M.4
  • 8
    • 84873194326 scopus 로고    scopus 로고
    • Machine learning with squared-loss mutual information
    • M. Sugiyama, "Machine learning with squared-loss mutual information," Entropy, vol. 15, no. 1, pp. 80-112, 2013.
    • (2013) Entropy , vol.15 , Issue.1 , pp. 80-112
    • Sugiyama, M.1
  • 10
    • 60849121715 scopus 로고    scopus 로고
    • Mutual information estimation reveals global associations between stimuli and biological processes
    • T. Suzuki, M. Sugiyama, T. Kanamori, and J. Sese, "Mutual information estimation reveals global associations between stimuli and biological processes," BMC Bioinformatics, vol. 10, no. 1, p. S52, 2009.
    • (2009) BMC Bioinformatics , vol.10 , Issue.1
    • Suzuki, T.1    Sugiyama, M.2    Kanamori, T.3    Sese, J.4
  • 12
    • 84877714816 scopus 로고    scopus 로고
    • Sufficient dimension reduction via squared-loss mutual information estimation
    • T. Suzuki and M. Sugiyama, "Sufficient dimension reduction via squared-loss mutual information estimation," Neural Computation, vol. 25, no. 3, pp. 725-758, 2013.
    • (2013) Neural Computation , vol.25 , Issue.3 , pp. 725-758
    • Suzuki, T.1    Sugiyama, M.2
  • 13
    • 84876840196 scopus 로고    scopus 로고
    • Computationally efficient sufficient dimension reduction via squaredloss mutual information
    • M. Yamada, G. Niu, J. Takagi, and M. Sugiyama, "Computationally efficient sufficient dimension reduction via squaredloss mutual information," JMLR Workshop and Conference Proceedings, vol. 20, pp. 247-262, 2011.
    • (2011) JMLR Workshop and Conference Proceedings , vol.20 , pp. 247-262
    • Yamada, M.1    Niu, G.2    Takagi, J.3    Sugiyama, M.4
  • 14
    • 84865419682 scopus 로고    scopus 로고
    • Canonical dependency analysis based on squared-loss mutual information
    • M. Karasuyama and Sugiyama, "Canonical dependency analysis based on squared-loss mutual information," Neural Networks, vol. 34, pp. 46-55, 2012.
    • (2012) Neural Networks , vol.34 , pp. 46-55
    • Karasuyama, M.1    Sugiyama2
  • 16
    • 78650608280 scopus 로고    scopus 로고
    • Least-squares independent component analysis
    • T. Suzuki and M. Sugiyama, "Least-squares independent component analysis," Neural Computation, vol. 23, no. 1, pp. 284-301, 2011.
    • (2011) Neural Computation , vol.23 , Issue.1 , pp. 284-301
    • Suzuki, T.1    Sugiyama, M.2
  • 17
    • 80053451905 scopus 로고    scopus 로고
    • On information-maximization clustering: tuning parameter selection and analytic solution
    • in Proceedings of the 28th International Conference on Machine Learning, Washington, DC
    • M. Sugiyama, M. Yamada, M. Kimura, and H. Hachiya, "On information-maximization clustering: tuning parameter selection and analytic solution," in Proceedings of the 28th International Conference on Machine Learning, Washington, DC, 2011, pp. 65-72.
    • (2011) , pp. 65-72
    • Sugiyama, M.1    Yamada, M.2    Kimura, M.3    Hachiya, H.4
  • 19
    • 77958598373 scopus 로고    scopus 로고
    • Dependence minimizing regression with model selection for nonlinear causal inference under non-Gaussian noise
    • in Proceedings of the 24th AAAI Conference on Artificial Intelligence, Atlanta, GA
    • M. Yamada and M. Sugiyama, "Dependence minimizing regression with model selection for nonlinear causal inference under non-Gaussian noise," in Proceedings of the 24th AAAI Conference on Artificial Intelligence, Atlanta, GA, 2010, pp. 643-648.
    • (2010) , pp. 643-648
    • Yamada, M.1    Sugiyama, M.2
  • 20
    • 85008249920 scopus 로고    scopus 로고
    • Statistical Learning Theory
    • New York, NY: Wiley
    • V. N. Vapnik, Statistical Learning Theory, New York, NY: Wiley, 1998.
    • (1998)
    • Vapnik, V.N.1
  • 22
    • 77958588617 scopus 로고    scopus 로고
    • Estimating divergence functionals and the likelihood ratio by convex risk minimization
    • X. Nguyen, M. J. Wainwright, and M. I. Jordan, "Estimating divergence functionals and the likelihood ratio by convex risk minimization," IEEE Transactions on Information Theory, vol. 56, no. 11, pp. 5847-5861, 2010.
    • (2010) IEEE Transactions on Information Theory , vol.56 , Issue.11 , pp. 5847-5861
    • Nguyen, X.1    Wainwright, M.J.2    Jordan, M.I.3
  • 24
    • 84877704150 scopus 로고    scopus 로고
    • Relative density-ratio estimation for robust distribution comparison
    • M. Yamada, T. Suzuki, T. Kanamori, H. Hachiya, and M. Sugiyama, "Relative density-ratio estimation for robust distribution comparison," Neural Computation, vol. 25, no. 5, pp. 1324-1370, 2013.
    • (2013) Neural Computation , vol.25 , Issue.5 , pp. 1324-1370
    • Yamada, M.1    Suzuki, T.2    Kanamori, T.3    Hachiya, H.4    Sugiyama, M.5
  • 27
    • 0003530945 scopus 로고    scopus 로고
    • Methods of Information Geometry
    • Providence, RI: American Mathematical Society
    • S. Amari and H. Nagaoka, Methods of Information Geometry, Providence, RI: American Mathematical Society, 2000.
    • (2000)
    • Amari, S.1    Nagaoka, H.2
  • 28
    • 84926087908 scopus 로고    scopus 로고
    • Density Ratio Estimation in Machine Learning
    • New York, NY: Cambridge University Press
    • M. Sugiyama, T. Suzuki, and T. Kanamori, Density Ratio Estimation in Machine Learning, New York, NY: Cambridge University Press, 2012.
    • (2012)
    • Sugiyama, M.1    Suzuki, T.2    Kanamori, T.3
  • 29
    • 84855232807 scopus 로고    scopus 로고
    • Learning bounds for importance weighting
    • in Advances in Neural Information Processing Systems 23, J. Lafferty, C. K. I. Williams, R. Zemel, J. Shawe-Taylor, and A. Culotta, Eds., La Jolla, CA: Neural Information Processing Systems
    • C. Cortes, Y. Mansour, and M. Mohri, "Learning bounds for importance weighting," in Advances in Neural Information Processing Systems 23, J. Lafferty, C. K. I. Williams, R. Zemel, J. Shawe-Taylor, and A. Culotta, Eds., La Jolla, CA: Neural Information Processing Systems, 2010, pp. 442-450.
    • (2010) , pp. 442-450
    • Cortes, C.1    Mansour, Y.2    Mohri, M.3
  • 30
    • 0001454867 scopus 로고
    • On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling
    • K. Pearson, "On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling," Philosophical Magazine, vol. 50, no. 302, pp. 157-175, 1900.
    • (1900) Philosophical Magazine , vol.50 , Issue.302 , pp. 157-175
    • Pearson, K.1
  • 31
    • 0001199215 scopus 로고
    • A general class of coefficients of divergence of one distribution from another
    • S. M. Ali and S. D. Silvey, "A general class of coefficients of divergence of one distribution from another," Journal of the Royal Statistical Society B, vol. 28, no. 1, pp. 131-142, 1966.
    • (1966) Journal of the Royal Statistical Society B , vol.28 , Issue.1 , pp. 131-142
    • Ali, S.M.1    Silvey, S.D.2
  • 32
    • 0000489740 scopus 로고
    • Information-type measures of difference of probability distributions and indirect observation
    • I. Csiszar, "Information-type measures of difference of probability distributions and indirect observation," Studia Scientiarum Mathematicarum Hungarica, vol. 2, pp. 299-318, 1967.
    • (1967) Studia Scientiarum Mathematicarum Hungarica , vol.2 , pp. 299-318
    • Csiszar, I.1
  • 33
    • 84865400174 scopus 로고    scopus 로고
    • Density ratio matching under the Bregman divergence: a unified framework of density ratio estimation
    • M. Sugiyama, T. Suzuki, and T. Kanamori, "Density ratio matching under the Bregman divergence: a unified framework of density ratio estimation," Annals of the Institute of Statistical Mathematics, vol. 64, no. 5, pp. 1009-1044, 2012.
    • (2012) Annals of the Institute of Statistical Mathematics , vol.64 , Issue.5 , pp. 1009-1044
    • Sugiyama, M.1    Suzuki, T.2    Kanamori, T.3
  • 34
  • 35
    • 77950219238 scopus 로고    scopus 로고
    • Direct importance estima tion with Gaussian mixture models
    • M. Yamada and M. Sugiyama, "Direct importance estima tion with Gaussian mixture models," IEICE Transactions on Information and Systems, vol. 92, no. 10, pp. 2159-2162, 2009.
    • (2009) IEICE Transactions on Information and Systems , vol.92 , Issue.10 , pp. 2159-2162
    • Yamada, M.1    Sugiyama, M.2
  • 36
    • 77957852509 scopus 로고    scopus 로고
    • Direct importance estimation with a mixture of probabilistic principal component analyzers
    • M. Yamada, M. Sugiyama, G. Wichern, and J. Simm, "Direct importance estimation with a mixture of probabilistic principal component analyzers," IEICE Transactions on Information and Systems, vol. 93, no. 10, pp. 2846-2849, 2010.
    • (2010) IEICE Transactions on Information and Systems , vol.93 , Issue.10 , pp. 2846-2849
    • Yamada, M.1    Sugiyama, M.2    Wichern, G.3    Simm, J.4
  • 37
    • 0038236399 scopus 로고    scopus 로고
    • Dual representation of f-divergences and applications
    • A. Keziou, "Dual representation of f-divergences and applications," Comptes Rendus Mathematique, vol. 336, no. 10, pp. 857-862, 2003.
    • (2003) Comptes Rendus Mathematique , vol.336 , Issue.10 , pp. 857-862
    • Keziou, A.1
  • 38
    • 85008252316 scopus 로고
    • Convex Analysis. Princeton, NJ: Princeton University Press
    • R. T. Rockafellar, Convex Analysis. Princeton, NJ: Princeton University Press, 1970.
    • (1970)
    • Rockafellar, R.T.1
  • 39
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and subset selection with the lasso
    • R. Tibshirani, "Regression shrinkage and subset selection with the lasso," Journal of the Royal Statistical Society B, vol. 58, no. 1, pp. 267-288, 1996.
    • (1996) Journal of the Royal Statistical Society B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 40
    • 79960148097 scopus 로고    scopus 로고
    • Super-linear convergence of dual augmented Lagrangian algorithm for sparsity regularized estimation
    • R. Tomioka, T. Suzuki, and M. Sugiyama, "Super-linear convergence of dual augmented Lagrangian algorithm for sparsity regularized estimation," Journal of Machine Learning Research, vol. 12, pp. 1537-1586, 2011.
    • (2011) Journal of Machine Learning Research , vol.12 , pp. 1537-1586
    • Tomioka, R.1    Suzuki, T.2    Sugiyama, M.3
  • 42
    • 33749252873 scopus 로고    scopus 로고
    • Semi-Supervised Learning
    • Cambridge, MA: MIT Press
    • O. Chapelle, B. Scholkopf, and A. Zien, Semi-Supervised Learning. Cambridge, MA: MIT Press, 2006.
    • (2006)
    • Chapelle, O.1    Scholkopf, B.2    Zien, A.3
  • 43
    • 9444250658 scopus 로고    scopus 로고
    • Regularized least-squares classification
    • in Advances in Learning Theory: Methods, Models and Applications, J. A. K. Suykens, G. Horvath, S. Basu, C. Micchelli, and J. Vandewalle, Eds. Amsterdam, the Netherlands: IOS Press
    • R. Rifkin, G. Yeo, and T. Poggio, "Regularized least-squares classification," in Advances in Learning Theory: Methods, Models and Applications, J. A. K. Suykens, G. Horvath, S. Basu, C. Micchelli, and J. Vandewalle, Eds. Amsterdam, the Netherlands: IOS Press, 2003, pp. 131-154.
    • (2003) , pp. 131-154
    • Rifkin, R.1    Yeo, G.2    Poggio, T.3
  • 44
  • 46
    • 84940644968 scopus 로고
    • A mathematical theory of communication
    • C. E. Shannon, "A mathematical theory of communication," Bell Systems Technical Journal, vol. 27, pp. 379-423, 1948.
    • (1948) Bell Systems Technical Journal , vol.27 , pp. 379-423
    • Shannon, C.E.1
  • 47
    • 84889281816 scopus 로고    scopus 로고
    • Elements of Information Theory
    • 2nd ed., Hoboken, NJ: John Wiley & Sons Inc.
    • T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed., Hoboken, NJ: John Wiley & Sons Inc., 2006.
    • (2006)
    • Cover, T.M.1    Thomas, J.A.2
  • 48
    • 1942450610 scopus 로고    scopus 로고
    • Feature extraction by non-parametric mutual information maximization
    • K. Torkkola, "Feature extraction by non-parametric mutual information maximization," Journal of Machine Learning Research, vol. 3, pp. 1415-1438, 2003.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1415-1438
    • Torkkola, K.1
  • 49
    • 84885047407 scopus 로고    scopus 로고
    • Direct approximation of quadratic mutual information and its application to dependencemaximization clustering
    • submitted for publication
    • J. Sainui and M. Sugiyama, "Direct approximation of quadratic mutual information and its application to dependencemaximization clustering," IEICE Transactions on Information and Systems, 2013, submitted for publication.
    • (2013) IEICE Transactions on Information and Systems
    • Sainui, J.1    Sugiyama, M.2
  • 50
    • 70649085072 scopus 로고    scopus 로고
    • Dimensionality reduction for density ratio estimation in high-dimensional spaces
    • M. Sugiyama, M. Kawanabe, and P. L. Chui, "Dimensionality reduction for density ratio estimation in high-dimensional spaces," Neural Networks, vol. 23, no. 1, pp. 44-59, 2010.
    • (2010) Neural Networks , vol.23 , Issue.1 , pp. 44-59
    • Sugiyama, M.1    Kawanabe, M.2    Chui, P.L.3
  • 51
    • 79251612332 scopus 로고    scopus 로고
    • Direct density-ratio estimation with dimensionality reduction via least-squares hetero-distributional subspace search
    • M. Sugiyama, M. Yamada, P. von Bunau, T. Suzuki, T. Kanamori, and M. Kawanabe, "Direct density-ratio estimation with dimensionality reduction via least-squares hetero-distributional subspace search," Neural Networks, vol. 24, no. 2, pp. 183-198, 2011.
    • (2011) Neural Networks , vol.24 , Issue.2 , pp. 183-198
    • Sugiyama, M.1    Yamada, M.2    von Bunau, P.3    Suzuki, T.4    Kanamori, T.5    Kawanabe, M.6
  • 52
    • 80055057089 scopus 로고    scopus 로고
    • Direct density-ratio estimation with dimensionality reduction via hetero-distributional subspace analysis
    • San Francisco, CA
    • M. Yamada and M. Sugiyama, "Direct density-ratio estimation with dimensionality reduction via hetero-distributional subspace analysis," in Proceedings of the 25th AAAI Conference on Artificial Intelligence, San Francisco, CA, 2011, pp. 549-554.
    • (2011) in Proceedings of the 25th AAAI Conference on Artificial Intelligence , pp. 549-554
    • Yamada, M.1    Sugiyama, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.