메뉴 건너뛰기




Volumn E96-D, Issue 7, 2013, Pages 1513-1524

Feature Selection via l1-Penalized Squared-Loss Mutual Information

Author keywords

Density ratio estimation; Dimensionality reduction; Feature selection; L1 regularization; Squared loss mutual information

Indexed keywords

FEATURE EXTRACTION; INVERSE PROBLEMS; REDUNDANCY;

EID: 84877698311     PISSN: 09168532     EISSN: 17451361     Source Type: Journal    
DOI: 10.1587/transinf.E96.D.1513     Document Type: Article
Times cited : (14)

References (39)
  • 1
    • 0001199215 scopus 로고
    • A general class of coefficients of divergence of one distribution from another
    • S.M. Ali and S.D. Silvey, "A general class of coefficients of divergence of one distribution from another," J. Royal Statistical Society (Series B), vol.28, no.1, pp.131-142, 1966.
    • (1966) J. Royal Statistical Society (Series B) , vol.28 , Issue.1 , pp. 131-142
    • Ali, S.M.1    Silvey, S.D.2
  • 3
    • 0003710380 scopus 로고    scopus 로고
    • Tech. Rep., Department of Computer Science, National Taiwan University
    • C.C. Chang and C.J. Lin, "LIBSVM: A library for support vector machines," Tech. Rep., Department of Computer Science, National Taiwan University, 2001. http://www.csie.ntu.edu.tw/?cjlin/libsvm/
    • (2001) LIBSVM: A Library for Support Vector Machines
    • Chang, C.C.1    Lin, C.J.2
  • 5
    • 0000489740 scopus 로고
    • Information-type measures of difference of probability distributions and indirect observation
    • I. Csisźar, "Information-type measures of difference of probability distributions and indirect observation," Studia Scientiarum Mathematicarum Hungarica, vol.2, pp.229-318, 1967.
    • (1967) Studia Scientiarum Mathematicarum Hungarica , vol.2 , pp. 229-318
    • Csisźar, I.1
  • 7
    • 4544371135 scopus 로고    scopus 로고
    • Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces
    • K. Fukumizu, F.R. Bach, and M.I. Jordan, "Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces," J. Machine Learning Research, vol.5, no.1, pp.73-99, 2004.
    • (2004) J. Machine Learning Research , vol.5 , Issue.1 , pp. 73-99
    • Fukumizu, K.1    Bach, F.R.2    Jordan, M.I.3
  • 8
    • 33646528415 scopus 로고    scopus 로고
    • Measuring statistical dependence with Hilbert-Schmidt norms
    • ed. S. Jain, H.U. Simon, and E. Tomita, Lecture Notes in Artificial Intelligence, Berlin, Germany, Springer-Verlag
    • A. Gretton, O. Bousquet, A. Smola, and B. Scholkopf, "Measuring statistical dependence with Hilbert-Schmidt norms," Algorithmic Learning Theory, ed. S. Jain, H.U. Simon, and E. Tomita, Lecture Notes in Artificial Intelligence, Berlin, Germany, pp.63-77, Springer-Verlag, 2005.
    • (2005) Algorithmic Learning Theory , pp. 63-77
    • Gretton, A.1    Bousquet, O.2    Smola, A.3    Scholkopf, B.4
  • 9
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," J.Machine Learning Research, vol.3, no.3, pp.1157-1182, 2003.
    • (2003) J.Machine Learning Research , vol.3 , Issue.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 11
    • 85065703189 scopus 로고    scopus 로고
    • Correlation-based feature selection for discrete and numeric class machine learning
    • San Francisco, CA, USA
    • M.A. Hall, "Correlation-based feature selection for discrete and numeric class machine learning," Proc. Seventeenth International Conference on Machine Learning, pp.359-366, San Francisco, CA, USA, 2000.
    • (2000) Proc. Seventeenth International Conference on Machine Learning , pp. 359-366
    • Hall, M.A.1
  • 12
    • 84864039505 scopus 로고    scopus 로고
    • Laplacian score for feature selection
    • ed. Y. Weiss, B. Scholkopf, and J. Platt, MIT Press, Cambridge, MA
    • X. He, D. Cai, and P. Niyogi, "Laplacian score for feature selection," in Advances in Neural Information Processing Systems 18, ed. Y. Weiss, B. Scholkopf, and J. Platt, pp.507-514, MIT Press, Cambridge, MA, 2006.
    • (2006) Advances in Neural Information Processing Systems , vol.18 , pp. 507-514
    • He, X.1    Cai, D.2    Niyogi, P.3
  • 14
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi and G.H. John, "Wrappers for feature subset selection," Artif. Intell., vol.97, no.1, pp.273-324, 1997.
    • (1997) Artif. Intell. , vol.97 , Issue.1 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 15
    • 84992726552 scopus 로고
    • Estimating attributes: Analysis and extensions of RELIEF
    • ed. F. Bergadano and L.D. Raedt, New York, NY, USA
    • I. Kononenko, "Estimating attributes: Analysis and extensions of RELIEF," European Conference on Machine Learning, ed. F. Bergadano and L.D. Raedt, pp.171-182, New York, NY, USA, 1994.
    • (1994) European Conference on Machine Learning , pp. 171-182
    • Kononenko, I.1
  • 17
    • 85061066913 scopus 로고
    • Selection of relevant features in machine learning
    • Menlo Park, CA, USA
    • P. Langley, "Selection of relevant features in machine learning," Proc. AAAI Fall Symposium on Relevance, pp.140-144, Menlo Park, CA, USA, 1994.
    • (1994) Proc. AAAI Fall Symposium on Relevance , pp. 140-144
    • Langley, P.1
  • 19
    • 67649142447 scopus 로고    scopus 로고
    • From lasso regression to feature vector machine
    • ed. Y.Weiss, B. Scholkopf, and J. Platt, MIT Press, Cambridge, MA
    • F. Li, Y. Yang, and E. Xing, "From lasso regression to feature vector machine," in Advances in Neural Information Processing Systems 18, ed. Y.Weiss, B. Scholkopf, and J. Platt, pp.779-786, MIT Press, Cambridge, MA, 2006.
    • (2006) Advances in Neural Information Processing Systems , vol.18 , pp. 779-786
    • Li, F.1    Yang, Y.2    Xing, E.3
  • 20
    • 33947426775 scopus 로고    scopus 로고
    • On divergences and informations in statistics and information theory
    • F. Liese and I. Vajda, "On divergences and informations in statistics and information theory," IEEE Trans. Inf. Theory, vol.52, no.10, pp.4394-4412, 2006.
    • (2006) IEEE Trans. Inf. Theory , vol.52 , Issue.10 , pp. 4394-4412
    • Liese, F.1    Vajda, I.2
  • 23
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and minredundancy
    • H. Peng, F. Long, and C. Ding, "Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and minredundancy," IEEE Trans. Pattern Anal. Mach. Intell., vol.27, no.8, pp.1226-1238, 2005.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 25
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Y. Saeys, I. Inza, and P. Larranaga, "A review of feature selection techniques in bioinformatics," Bioinformatics, vol.23, no.19, pp.2507-2517, 2007.
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 26
    • 38049108135 scopus 로고    scopus 로고
    • Fast optimization methods for L1 regularization: A comparative study and two new approaches
    • M.W. Schmidt, G. Fung, and R. Rosales, "Fast optimization methods for L1 regularization: A comparative study and two new approaches," European Conference on Machine Learning, pp.286-297, 2007.
    • (2007) European Conference on Machine Learning , pp. 286-297
    • Schmidt, M.W.1    Fung, G.2    Rosales, R.3
  • 29
    • 0010786475 scopus 로고    scopus 로고
    • On the influence of the kernel on the consistency of support vector machines
    • Nov
    • I. Steinwart, "On the influence of the kernel on the consistency of support vector machines," J. Machine Learning Research, vol.2, pp.67-93, Nov. 2001.
    • (2001) J. Machine Learning Research , vol.2 , pp. 67-93
    • Steinwart, I.1
  • 30
    • 84877714816 scopus 로고    scopus 로고
    • Sufficient dimension reduction via squared-loss mutual information estimation
    • T. Suzuki and M. Sugiyama, "Sufficient dimension reduction via squared-loss mutual information estimation," Neural Comput., vol.25, no.3, pp.725-758, 2013.
    • (2013) Neural Comput. , vol.25 , Issue.3 , pp. 725-758
    • Suzuki, T.1    Sugiyama, M.2
  • 32
    • 78650608280 scopus 로고    scopus 로고
    • Least-squares independent component analysis
    • T. Suzuki andM. Sugiyama, "Least-squares independent component analysis," Neural Comput., vol.23, no.1, pp.284-301, 2011.
    • (2011) Neural Comput. , vol.23 , Issue.1 , pp. 284-301
    • Suzuki, T.1    Sugiyama, M.2
  • 33
    • 60849121715 scopus 로고    scopus 로고
    • Mutual information estimation reveals global associations between stimuli and biological processes
    • T. Suzuki, M. Sugiyama, T. Kanamori, and J. Sese, "Mutual information estimation reveals global associations between stimuli and biological processes," BMC Bioinformatics, vol.10, no.S-1, p.S52, 2009.
    • (2009) BMC Bioinformatics , vol.10
    • Suzuki, T.1    Sugiyama, M.2    Kanamori, T.3    Sese, J.4
  • 34
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • R. Tibshirani, "Regression shrinkage and selection via the lasso," J. Royal Statistical Society (Series B), vol.58, no.1, pp.267-288, 1996.
    • (1996) J. Royal Statistical Society (Series B) , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 35
    • 1942450610 scopus 로고    scopus 로고
    • Feature extraction by non-parametric mutual information maximization
    • March
    • K. Torkkola, "Feature extraction by non-parametric mutual information maximization," J. Machine Learning Research, vol.3, no.3, pp.1415-1438, March 2003.
    • (2003) J. Machine Learning Research , vol.3 , Issue.3 , pp. 1415-1438
    • Torkkola, K.1
  • 36
    • 84890520049 scopus 로고    scopus 로고
    • Use of the zero norm with linear models and kernel methods
    • March
    • J. Weston, A. Elisseeff, B. Scholkopf, and M. Tipping, "Use of the zero norm with linear models and kernel methods," J. Machine Learning Research, vol.3, no.3, pp.1439-1461, March 2003.
    • (2003) J. Machine Learning Research , vol.3 , Issue.3 , pp. 1439-1461
    • Weston, J.1    Elisseeff, A.2    Scholkopf, B.3    Tipping, M.4
  • 37
    • 34547981441 scopus 로고    scopus 로고
    • Spectral feature selection for supervised and unsupervised learning
    • New York, NY, USA
    • Z. Zhao and H. Liu, "Spectral feature selection for supervised and unsupervised learning," Proc. 24th International Conference on Machine Learning, pp.1151-1157, New York, NY, USA, 2007.
    • (2007) Proc. 24th International Conference on Machine Learning , pp. 1151-1157
    • Zhao, Z.1    Liu, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.