-
1
-
-
77958488310
-
Deep machine learning-a new frontier in artificial intelligence research [research frontier]
-
Arel I., Rose D.C., Karnowski T.P. Deep machine learning-a new frontier in artificial intelligence research [research frontier]. Comput. Intell. Mag. IEEE 2010, 5:13-18.
-
(2010)
Comput. Intell. Mag. IEEE
, vol.5
, pp. 13-18
-
-
Arel, I.1
Rose, D.C.2
Karnowski, T.P.3
-
2
-
-
69349090197
-
Learning deep architectures for AI
-
® Mach. Learn. 2009, 2:1-127.
-
(2009)
® Mach. Learn.
, vol.2
, pp. 1-127
-
-
Bengio, Y.1
-
3
-
-
2542485629
-
Practical issues in temporal difference learning
-
G. Tesauro, Practical issues in temporal difference learning, in: Reinforcement Learning, Springer, 1992, pp. 33-53.
-
(1992)
Reinforcement Learning, Springer
, pp. 33-53
-
-
Tesauro, G.1
-
5
-
-
0019152630
-
Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
-
Fukushima K. Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 1980, 36:193-202.
-
(1980)
Biol. Cybern.
, vol.36
, pp. 193-202
-
-
Fukushima, K.1
-
8
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton G.E., Osindero S., Teh Y.-W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18:1527-1554.
-
(2006)
Neural Comput.
, vol.18
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
9
-
-
45749110924
-
Representational power of restricted Boltzmann machines and deep belief networks
-
Le Roux N., Bengio Y. Representational power of restricted Boltzmann machines and deep belief networks. Neural Comput. 2008, 20:1631-1649.
-
(2008)
Neural Comput.
, vol.20
, pp. 1631-1649
-
-
Le Roux, N.1
Bengio, Y.2
-
10
-
-
79551480483
-
Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
-
Vincent P., Larochelle H., Lajoie I., Bengio Y., Manzagol P.-A. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 2010, 11:3371-3408.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.-A.5
-
11
-
-
84861125212
-
A practical guide to training restricted Boltzmann machines
-
Hinton G. A practical guide to training restricted Boltzmann machines. Momentum 2010, 9:926.
-
(2010)
Momentum
, vol.9
, pp. 926
-
-
Hinton, G.1
-
12
-
-
0002263996
-
Convolutional networks for images, speech, and time series
-
Y. LeCun, Y. Bengio, Convolutional networks for images, speech, and time series, in: The Handbook of Brain Theory and Neural Networks, 3361, 1995.
-
(1995)
The Handbook of Brain Theory and Neural Networks
, vol.3361
-
-
LeCun, Y.1
Bengio, Y.2
-
13
-
-
32044449925
-
Generalized cross-validation as a method for choosing a good ridge parameter
-
Golub G.H., Heath M., Wahba G. Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 1979, 21:215-223.
-
(1979)
Technometrics
, vol.21
, pp. 215-223
-
-
Golub, G.H.1
Heath, M.2
Wahba, G.3
-
14
-
-
84867720412
-
-
arXiv preprint
-
G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, R.R. Salakhutdinov, Improving neural networks by preventing co-adaptation of feature detectors, arXiv preprint, 2012. arxiv:1207.0580.
-
(2012)
Improving neural networks by preventing co-adaptation of feature detectors
-
-
Hinton, G.E.1
Srivastava, N.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.R.5
-
15
-
-
84892421248
-
-
arXiv preprint
-
I.J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, Y. Bengio, Maxout networks, arXiv preprint, 2013. arxiv:1302.4389.
-
(2013)
Maxout networks
-
-
Goodfellow, I.J.1
Warde-Farley, M.2
Mirza, M.3
Courville, A.4
Bengio, Y.5
-
16
-
-
84897550107
-
Regularization of neural networks using dropconnect
-
L. Wan, M. Zeiler, S. Zhang, Y.L. Cun, R. Fergus, Regularization of neural networks using dropconnect, in: Proceedings of the 30th International Conference on Machine Learning (ICML-13), 2013, pp. 1058-1066.
-
(2013)
Proceedings of the 30th International Conference on Machine Learning (ICML-13)
, pp. 1058-1066
-
-
Wan, L.1
Zeiler, M.2
Zhang, S.3
Cun, Y.L.4
Fergus, R.5
-
17
-
-
34249753618
-
Support-vector networks
-
Cortes C., Vapnik V. Support-vector networks. Mach. Learn. 1995, 20:273-297.
-
(1995)
Mach. Learn.
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
19
-
-
0032166068
-
Structural risk minimization over data-dependent hierarchies
-
Shawe-Taylor J., Bartlett P.L., Williamson R.C., Anthony M. Structural risk minimization over data-dependent hierarchies. Inf. Theory IEEE Trans. 1998, 44:1926-1940.
-
(1998)
Inf. Theory IEEE Trans.
, vol.44
, pp. 1926-1940
-
-
Shawe-Taylor, J.1
Bartlett, P.L.2
Williamson, R.C.3
Anthony, M.4
-
20
-
-
0942266514
-
Support vector data description
-
Tax D.M., Duin R.P. Support vector data description. Mach. Learn. 2004, 54:45-66.
-
(2004)
Mach. Learn.
, vol.54
, pp. 45-66
-
-
Tax, D.M.1
Duin, R.P.2
-
21
-
-
84893356604
-
Deep network with support vector machines
-
Springer, Berlin Heidelberg, M. Lee, A. Hirose, Z.-G. Hou, R. Kil (Eds.)
-
Kim S., Kavuri S., Lee M. Deep network with support vector machines. Neural Information Processing 2013, 458-465. Springer, Berlin Heidelberg. M. Lee, A. Hirose, Z.-G. Hou, R. Kil (Eds.).
-
(2013)
Neural Information Processing
, pp. 458-465
-
-
Kim, S.1
Kavuri, S.2
Lee, M.3
-
22
-
-
84929946296
-
-
AAAI Press, Menlo Park, CA
-
Schölkopf B., Burgest C., Vapnik V. Extracting support data for a given task, Proceedings, First International Conference on Knowledge Discovery & Data Mining 1995, AAAI Press, Menlo Park, CA.
-
(1995)
Extracting support data for a given task, Proceedings, First International Conference on Knowledge Discovery & Data Mining
-
-
Schölkopf, B.1
Burgest, C.2
Vapnik, V.3
-
23
-
-
0013372968
-
Uniform object generation for optimizing one-class classifiers
-
Tax D.M., Duin R.P. Uniform object generation for optimizing one-class classifiers. J. Mach. Learn. Res. 2002, 2:155-173.
-
(2002)
J. Mach. Learn. Res.
, vol.2
, pp. 155-173
-
-
Tax, D.M.1
Duin, R.P.2
-
24
-
-
33744995034
-
Low resolution face recognition based on support vector data description
-
Lee S.-W., Park J., Lee S.-W. Low resolution face recognition based on support vector data description. Pattern Recognit. 2006, 39:1809-1812.
-
(2006)
Pattern Recognit.
, vol.39
, pp. 1809-1812
-
-
Lee, S.-W.1
Park, J.2
Lee, S.-W.3
-
25
-
-
48149115534
-
Fast hyperspectral anomaly detection via SVDD
-
IV-101-IV-104.
-
A. Banerjee, P. Burlina, R. Meth, Fast hyperspectral anomaly detection via SVDD, in: Proceedings of the IEEE International Conference on Image Processing, ICIP, 2007, pp. IV-101-IV-104.
-
(2007)
Proceedings of the IEEE International Conference on Image Processing, ICIP
-
-
Banerjee, A.1
Burlina, P.2
Meth, R.3
-
26
-
-
79958136331
-
Batch process monitoring based on support vector data description method
-
Ge Z., Gao F., Song Z. Batch process monitoring based on support vector data description method. J. Process Control 2011, 21:949-959.
-
(2011)
J. Process Control
, vol.21
, pp. 949-959
-
-
Ge, Z.1
Gao, F.2
Song, Z.3
-
28
-
-
0000029122
-
A simple weight decay can improve generalization
-
Moody J., Hanson S., Krogh A., Hertz J.A. A simple weight decay can improve generalization. Advan. Neural Inf. Process. Syst. 1995, 4:950-957.
-
(1995)
Advan. Neural Inf. Process. Syst.
, vol.4
, pp. 950-957
-
-
Moody, J.1
Hanson, S.2
Krogh, A.3
Hertz, J.A.4
-
29
-
-
0002291365
-
Generalization and network design strategies
-
Elsevier, Zurich, Switzerland, R. Pfeifer, Z. Schreter, F. Fogelman, L. Steels (Eds.)
-
LeCun Y. Generalization and network design strategies. Connections in Perspective 1989, Elsevier, Zurich, Switzerland. R. Pfeifer, Z. Schreter, F. Fogelman, L. Steels (Eds.).
-
(1989)
Connections in Perspective
-
-
LeCun, Y.1
-
30
-
-
0001765492
-
Simplifying neural networks by soft weight-sharing
-
Nowlan S.J., Hinton G.E. Simplifying neural networks by soft weight-sharing. Neural Comput. 1992, 4:473-493.
-
(1992)
Neural Comput.
, vol.4
, pp. 473-493
-
-
Nowlan, S.J.1
Hinton, G.E.2
-
31
-
-
0031236925
-
Asymptotic statistical theory of overtraining and cross-validation
-
Amari S.-I., Murata N., Muller K.-R., Finke M., Yang H.H. Asymptotic statistical theory of overtraining and cross-validation. Neural Netw. IEEE Trans. 1997, 8:985-996.
-
(1997)
Neural Netw. IEEE Trans.
, vol.8
, pp. 985-996
-
-
Amari, S.-I.1
Murata, N.2
Muller, K.-R.3
Finke, M.4
Yang, H.H.5
-
32
-
-
34547975052
-
Scaling learning algorithms towards AI
-
Y. Bengio, Y. LeCun, Scaling learning algorithms towards AI, in: Large-Scale Kernel Machines, vol. no. 34, 2007, pp. 1-41.
-
(2007)
Large-Scale Kernel Machines
, vol.34
, pp. 1-41
-
-
Bengio, Y.1
LeCun, Y.2
-
33
-
-
77949522811
-
Why does unsupervised pre-training help deep learning?
-
Erhan D., Bengio Y., Courville A., Manzagol P.-A., Vincent P., Bengio S. Why does unsupervised pre-training help deep learning?. J. Mach. Learn. Res. 2010, 11:625-660.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 625-660
-
-
Erhan, D.1
Bengio, Y.2
Courville, A.3
Manzagol, P.-A.4
Vincent, P.5
Bengio, S.6
-
34
-
-
0021518106
-
A theory of the learnable
-
Valiant L.G. A theory of the learnable. Commun. ACM 1984, 27:1134-1142.
-
(1984)
Commun. ACM
, vol.27
, pp. 1134-1142
-
-
Valiant, L.G.1
-
36
-
-
0000684645
-
Breast cancer diagnosis and prognosis via linear programming
-
Mangasarian O.L., Street W.N., Wolberg W.H. Breast cancer diagnosis and prognosis via linear programming. Oper. Res. 1995, 43:570-577.
-
(1995)
Oper. Res.
, vol.43
, pp. 570-577
-
-
Mangasarian, O.L.1
Street, W.N.2
Wolberg, W.H.3
-
37
-
-
0005977831
-
-
The Johns Hopkins University Applied Physics Laboratory, Laurel, MD
-
Sigillito V. Pima Indians Diabetes Database 1990, 9. The Johns Hopkins University Applied Physics Laboratory, Laurel, MD.
-
(1990)
Pima Indians Diabetes Database
, vol.9
-
-
Sigillito, V.1
-
38
-
-
84925046417
-
Failure analysis of parameter-induced simulation crashes in climate models
-
Lucas D., Klein R., Tannahill J., Ivanova D., Brandon S., Domyancic D., Zhang Y. Failure analysis of parameter-induced simulation crashes in climate models. Geosci. Model Dev. Discuss. 2013, 6:1157-1171.
-
(2013)
Geosci. Model Dev. Discuss.
, vol.6
, pp. 1157-1171
-
-
Lucas, D.1
Klein, R.2
Tannahill, J.3
Ivanova, D.4
Brandon, S.5
Domyancic, D.6
Zhang, Y.7
-
41
-
-
0003425673
-
Multi-Class Support Vector Machines
-
Technical Report CSD-TR-98-04, Department of Computer Science, Royal Holloway, University of London
-
J. Weston, C. Watkins, Multi-Class Support Vector Machines, Technical Report CSD-TR-98-04, Department of Computer Science, Royal Holloway, University of London, 1998.
-
(1998)
-
-
Weston, J.1
Watkins, C.2
|