메뉴 건너뛰기




Volumn 165, Issue , 2015, Pages 111-117

Deep learning with support vector data description

Author keywords

Deep learning; Generalization; Pattern recognition; Support vector data description

Indexed keywords

DATA DESCRIPTION; DEEP NEURAL NETWORKS; LEARNING SYSTEMS; PATTERN RECOGNITION; SUPPORT VECTOR MACHINES; VECTORS;

EID: 84929944640     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.09.086     Document Type: Article
Times cited : (101)

References (41)
  • 1
    • 77958488310 scopus 로고    scopus 로고
    • Deep machine learning-a new frontier in artificial intelligence research [research frontier]
    • Arel I., Rose D.C., Karnowski T.P. Deep machine learning-a new frontier in artificial intelligence research [research frontier]. Comput. Intell. Mag. IEEE 2010, 5:13-18.
    • (2010) Comput. Intell. Mag. IEEE , vol.5 , pp. 13-18
    • Arel, I.1    Rose, D.C.2    Karnowski, T.P.3
  • 2
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • ® Mach. Learn. 2009, 2:1-127.
    • (2009) ® Mach. Learn. , vol.2 , pp. 1-127
    • Bengio, Y.1
  • 3
    • 2542485629 scopus 로고
    • Practical issues in temporal difference learning
    • G. Tesauro, Practical issues in temporal difference learning, in: Reinforcement Learning, Springer, 1992, pp. 33-53.
    • (1992) Reinforcement Learning, Springer , pp. 33-53
    • Tesauro, G.1
  • 5
    • 0019152630 scopus 로고
    • Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • Fukushima K. Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 1980, 36:193-202.
    • (1980) Biol. Cybern. , vol.36 , pp. 193-202
    • Fukushima, K.1
  • 6
    • 0001578518 scopus 로고
    • A learning algorithm for Boltzmann machines
    • Ackley D.H., Hinton G.E., Sejnowski T.J. A learning algorithm for Boltzmann machines. Cogn. Sci. 1985, 9:147-169.
    • (1985) Cogn. Sci. , vol.9 , pp. 147-169
    • Ackley, D.H.1    Hinton, G.E.2    Sejnowski, T.J.3
  • 8
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton G.E., Osindero S., Teh Y.-W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18:1527-1554.
    • (2006) Neural Comput. , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 9
    • 45749110924 scopus 로고    scopus 로고
    • Representational power of restricted Boltzmann machines and deep belief networks
    • Le Roux N., Bengio Y. Representational power of restricted Boltzmann machines and deep belief networks. Neural Comput. 2008, 20:1631-1649.
    • (2008) Neural Comput. , vol.20 , pp. 1631-1649
    • Le Roux, N.1    Bengio, Y.2
  • 10
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
    • Vincent P., Larochelle H., Lajoie I., Bengio Y., Manzagol P.-A. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 2010, 11:3371-3408.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 11
    • 84861125212 scopus 로고    scopus 로고
    • A practical guide to training restricted Boltzmann machines
    • Hinton G. A practical guide to training restricted Boltzmann machines. Momentum 2010, 9:926.
    • (2010) Momentum , vol.9 , pp. 926
    • Hinton, G.1
  • 13
    • 32044449925 scopus 로고
    • Generalized cross-validation as a method for choosing a good ridge parameter
    • Golub G.H., Heath M., Wahba G. Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 1979, 21:215-223.
    • (1979) Technometrics , vol.21 , pp. 215-223
    • Golub, G.H.1    Heath, M.2    Wahba, G.3
  • 17
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C., Vapnik V. Support-vector networks. Mach. Learn. 1995, 20:273-297.
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 20
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • Tax D.M., Duin R.P. Support vector data description. Mach. Learn. 2004, 54:45-66.
    • (2004) Mach. Learn. , vol.54 , pp. 45-66
    • Tax, D.M.1    Duin, R.P.2
  • 21
    • 84893356604 scopus 로고    scopus 로고
    • Deep network with support vector machines
    • Springer, Berlin Heidelberg, M. Lee, A. Hirose, Z.-G. Hou, R. Kil (Eds.)
    • Kim S., Kavuri S., Lee M. Deep network with support vector machines. Neural Information Processing 2013, 458-465. Springer, Berlin Heidelberg. M. Lee, A. Hirose, Z.-G. Hou, R. Kil (Eds.).
    • (2013) Neural Information Processing , pp. 458-465
    • Kim, S.1    Kavuri, S.2    Lee, M.3
  • 23
    • 0013372968 scopus 로고    scopus 로고
    • Uniform object generation for optimizing one-class classifiers
    • Tax D.M., Duin R.P. Uniform object generation for optimizing one-class classifiers. J. Mach. Learn. Res. 2002, 2:155-173.
    • (2002) J. Mach. Learn. Res. , vol.2 , pp. 155-173
    • Tax, D.M.1    Duin, R.P.2
  • 24
    • 33744995034 scopus 로고    scopus 로고
    • Low resolution face recognition based on support vector data description
    • Lee S.-W., Park J., Lee S.-W. Low resolution face recognition based on support vector data description. Pattern Recognit. 2006, 39:1809-1812.
    • (2006) Pattern Recognit. , vol.39 , pp. 1809-1812
    • Lee, S.-W.1    Park, J.2    Lee, S.-W.3
  • 26
    • 79958136331 scopus 로고    scopus 로고
    • Batch process monitoring based on support vector data description method
    • Ge Z., Gao F., Song Z. Batch process monitoring based on support vector data description method. J. Process Control 2011, 21:949-959.
    • (2011) J. Process Control , vol.21 , pp. 949-959
    • Ge, Z.1    Gao, F.2    Song, Z.3
  • 29
    • 0002291365 scopus 로고
    • Generalization and network design strategies
    • Elsevier, Zurich, Switzerland, R. Pfeifer, Z. Schreter, F. Fogelman, L. Steels (Eds.)
    • LeCun Y. Generalization and network design strategies. Connections in Perspective 1989, Elsevier, Zurich, Switzerland. R. Pfeifer, Z. Schreter, F. Fogelman, L. Steels (Eds.).
    • (1989) Connections in Perspective
    • LeCun, Y.1
  • 30
    • 0001765492 scopus 로고
    • Simplifying neural networks by soft weight-sharing
    • Nowlan S.J., Hinton G.E. Simplifying neural networks by soft weight-sharing. Neural Comput. 1992, 4:473-493.
    • (1992) Neural Comput. , vol.4 , pp. 473-493
    • Nowlan, S.J.1    Hinton, G.E.2
  • 32
    • 34547975052 scopus 로고    scopus 로고
    • Scaling learning algorithms towards AI
    • Y. Bengio, Y. LeCun, Scaling learning algorithms towards AI, in: Large-Scale Kernel Machines, vol. no. 34, 2007, pp. 1-41.
    • (2007) Large-Scale Kernel Machines , vol.34 , pp. 1-41
    • Bengio, Y.1    LeCun, Y.2
  • 34
    • 0021518106 scopus 로고
    • A theory of the learnable
    • Valiant L.G. A theory of the learnable. Commun. ACM 1984, 27:1134-1142.
    • (1984) Commun. ACM , vol.27 , pp. 1134-1142
    • Valiant, L.G.1
  • 36
    • 0000684645 scopus 로고
    • Breast cancer diagnosis and prognosis via linear programming
    • Mangasarian O.L., Street W.N., Wolberg W.H. Breast cancer diagnosis and prognosis via linear programming. Oper. Res. 1995, 43:570-577.
    • (1995) Oper. Res. , vol.43 , pp. 570-577
    • Mangasarian, O.L.1    Street, W.N.2    Wolberg, W.H.3
  • 37
    • 0005977831 scopus 로고
    • The Johns Hopkins University Applied Physics Laboratory, Laurel, MD
    • Sigillito V. Pima Indians Diabetes Database 1990, 9. The Johns Hopkins University Applied Physics Laboratory, Laurel, MD.
    • (1990) Pima Indians Diabetes Database , vol.9
    • Sigillito, V.1
  • 41
    • 0003425673 scopus 로고    scopus 로고
    • Multi-Class Support Vector Machines
    • Technical Report CSD-TR-98-04, Department of Computer Science, Royal Holloway, University of London
    • J. Weston, C. Watkins, Multi-Class Support Vector Machines, Technical Report CSD-TR-98-04, Department of Computer Science, Royal Holloway, University of London, 1998.
    • (1998)
    • Weston, J.1    Watkins, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.