메뉴 건너뛰기




Volumn 105, Issue , 2016, Pages 107-118

Multiple empirical kernel learning with locality preserving constraint

Author keywords

Empirical kernel mapping; Locality preserving projection; Machine learning; Multiple kernel learning; Pattern recognition

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; ERRORS; LEARNING SYSTEMS; MAPPING; PATTERN RECOGNITION; VECTOR SPACES;

EID: 84967211780     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2016.05.008     Document Type: Article
Times cited : (15)

References (47)
  • 1
    • 84893703288 scopus 로고    scopus 로고
    • Human activity recognition using multi-features and multiple kernel learning
    • S. Althloothi, M. Mahoor, Zhang X., and R. Voyles Human activity recognition using multi-features and multiple kernel learning Pattern Recognit. 47 2014 1800 1812
    • (2014) Pattern Recognit. , vol.47 , pp. 1800-1812
    • Althloothi, S.1    Mahoor, M.2    Zhang, X.3    Voyles, R.4
  • 2
    • 84893704508 scopus 로고    scopus 로고
    • Imbalanced data classification using second-order cone programming support vector machines
    • S. Maldonado, and J. López Imbalanced data classification using second-order cone programming support vector machines Pattern Recognit. 47 5 2014 2070 2079
    • (2014) Pattern Recognit. , vol.47 , Issue.5 , pp. 2070-2079
    • Maldonado, S.1    López, J.2
  • 3
    • 84903197687 scopus 로고    scopus 로고
    • Multiple kernel learning for visual object recognition: A review
    • S. Bucak, Jin R., and A. Jain Multiple kernel learning for visual object recognition: a review IEEE Trans. Pattern Anal. Mach. Intell. 36 7 2014 1354 1369
    • (2014) IEEE Trans. Pattern Anal. Mach. Intell. , vol.36 , Issue.7 , pp. 1354-1369
    • Bucak, S.1    Jin, R.2    Jain, A.3
  • 4
    • 84921627833 scopus 로고    scopus 로고
    • Two-stage multiple kernel learning for supervised dimensionality reduction
    • A. Nazarpour, and P. Adibi Two-stage multiple kernel learning for supervised dimensionality reduction Pattern Recognit. 48 5 2014 1854 1862
    • (2014) Pattern Recognit. , vol.48 , Issue.5 , pp. 1854-1862
    • Nazarpour, A.1    Adibi, P.2
  • 8
    • 79953713204 scopus 로고    scopus 로고
    • Design of a multiple kernel learning algorithm for LS-SVM by convex programming
    • Jian L., Xia Z., Liang X., and Gao C. Design of a multiple kernel learning algorithm for LS-SVM by convex programming Neural Networks 24 5 2011 476 483
    • (2011) Neural Networks , vol.24 , Issue.5 , pp. 476-483
    • Jian, L.1    Xia, Z.2    Liang, X.3    Gao, C.4
  • 10
    • 77949784467 scopus 로고    scopus 로고
    • Sparse multiple kernel learning for signal processing applications
    • N. Subrahmanya, and Shi Y. Sparse multiple kernel learning for signal processing applications IEEE Trans. Pattern Anal. Mach. Intell. 32 2010 788 798
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , pp. 788-798
    • Subrahmanya, N.1    Shi, Y.2
  • 12
    • 84870238770 scopus 로고    scopus 로고
    • Localized algorithms for multiple kernel learning
    • M. Gönen, and E. AlpaydIn Localized algorithms for multiple kernel learning Pattern Recognit. 46 3 2013 795 807
    • (2013) Pattern Recognit. , vol.46 , Issue.3 , pp. 795-807
    • Gönen, M.1    Alpaydin, E.2
  • 13
    • 84938202759 scopus 로고    scopus 로고
    • EasyMKL: A scalable multiple kernel learning algorithm
    • F. Aiolli, and M. Donini EasyMKL: a scalable multiple kernel learning algorithm Neurocomputing 169 2015 215 224
    • (2015) Neurocomputing , vol.169 , pp. 215-224
    • Aiolli, F.1    Donini, M.2
  • 14
    • 84929963662 scopus 로고    scopus 로고
    • A pre-selecting base kernel method in multiple kernel learning
    • Wu P., Duan F., and Guo P. A pre-selecting base kernel method in multiple kernel learning Neurocomputing 165 2015 46 53
    • (2015) Neurocomputing , vol.165 , pp. 46-53
    • Wu, P.1    Duan, F.2    Guo, P.3
  • 15
    • 0037276932 scopus 로고    scopus 로고
    • Face recognition using kernel direct discriminant analysis algorithms
    • Lu J., K. Plataniotis, and A. Venetsanopoulos Face recognition using kernel direct discriminant analysis algorithms IEEE Trans. Neural Netw. 14 1 2003 117 126
    • (2003) IEEE Trans. Neural Netw. , vol.14 , Issue.1 , pp. 117-126
    • Lu, J.1    Plataniotis, K.2    Venetsanopoulos, A.3
  • 16
    • 21844447839 scopus 로고    scopus 로고
    • Characterization of a family of algorithms for generalized discriminant analysis on undersampled problems
    • Ye J. Characterization of a family of algorithms for generalized discriminant analysis on undersampled problems J. Mach. Learn. Res. 6 2005 483 502
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 483-502
    • Ye, J.1
  • 17
    • 14744274588 scopus 로고    scopus 로고
    • Using uncorrelated discriminant analysis for tissue classification with gene expression data
    • Ye J., Li T., Xiong T., and R. Janardan Using uncorrelated discriminant analysis for tissue classification with gene expression data IEEE Trans. Comput. Biol. Bioinform. 1 4 2004 181 190
    • (2004) IEEE Trans. Comput. Biol. Bioinform. , vol.1 , Issue.4 , pp. 181-190
    • Ye, J.1    Li, T.2    Xiong, T.3    Janardan, R.4
  • 18
    • 15344339935 scopus 로고    scopus 로고
    • Optimizing the kernel in the empirical feature space
    • Xiong H., M. Swamy, and M.O. Ahmad Optimizing the kernel in the empirical feature space IEEE Trans. Neural Netw. 16 2 2005 460 474
    • (2005) IEEE Trans. Neural Netw. , vol.16 , Issue.2 , pp. 460-474
    • Xiong, H.1    Swamy, M.2    Ahmad, M.O.3
  • 19
    • 37549013404 scopus 로고    scopus 로고
    • MultiK-MHKS: A novel multiple kernel learning algorithm
    • Wang Z., Chen S., and Sun T. MultiK-MHKS: a novel multiple kernel learning algorithm IEEE Trans. Pattern Anal. Mach. Intell. 30 2 2008 348 353
    • (2008) IEEE Trans. Pattern Anal. Mach. Intell. , vol.30 , Issue.2 , pp. 348-353
    • Wang, Z.1    Chen, S.2    Sun, T.3
  • 22
    • 33745655665 scopus 로고    scopus 로고
    • Learning theory: Stability is sufficient for generalization and necessary and sufficient for consistency of empirical risk minimization
    • S. Mukherjee, P. Niyogi, T. Poggio, and R. Rifkin Learning theory: stability is sufficient for generalization and necessary and sufficient for consistency of empirical risk minimization Adv. Comput. Math. 25 2006 161 193
    • (2006) Adv. Comput. Math. , vol.25 , pp. 161-193
    • Mukherjee, S.1    Niyogi, P.2    Poggio, T.3    Rifkin, R.4
  • 23
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • M. Belkin, and P. Niyogi Laplacian eigenmaps for dimensionality reduction and data representation Neural Comput. 15 6 2003 1373 1396
    • (2003) Neural Comput. , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 25
    • 33644903839 scopus 로고    scopus 로고
    • Face recognition using discriminant locality preserving projections
    • Yu W., Teng X., and Liu C. Face recognition using discriminant locality preserving projections Image Vis. Comput. 24 3 2006 239 248
    • (2006) Image Vis. Comput. , vol.24 , Issue.3 , pp. 239-248
    • Yu, W.1    Teng, X.2    Liu, C.3
  • 26
    • 77955321700 scopus 로고    scopus 로고
    • Locality preserving discriminant projections for face and palmprint recognition
    • Gui J., Jia W., Zhu L., Wang S., and Huang D. Locality preserving discriminant projections for face and palmprint recognition Neurocomputing 73 2010 2696 2707
    • (2010) Neurocomputing , vol.73 , pp. 2696-2707
    • Gui, J.1    Jia, W.2    Zhu, L.3    Wang, S.4    Huang, D.5
  • 27
    • 84870284479 scopus 로고    scopus 로고
    • Generalized locality preserving Maxi-Min margin machine
    • Zhang Z., Choi K., Lou X., and Wang S. Generalized locality preserving Maxi-Min margin machine Neural Netw. 36 2012 18 24
    • (2012) Neural Netw. , vol.36 , pp. 18-24
    • Zhang, Z.1    Choi, K.2    Lou, X.3    Wang, S.4
  • 28
    • 33750230319 scopus 로고    scopus 로고
    • Gabor feature based face recognition using supervised locality preserving projection
    • Zheng Z., Zhao J., and Yang J. Gabor feature based face recognition using supervised locality preserving projection Advanced Concepts for Intelligent Vision Systems 2006 644 653
    • (2006) Advanced Concepts for Intelligent Vision Systems , pp. 644-653
    • Zheng, Z.1    Zhao, J.2    Yang, J.3
  • 30
    • 77952586109 scopus 로고    scopus 로고
    • Regularized locality preserving projections and its extensions for face recognition
    • Lu J., and Tan Y. Regularized locality preserving projections and its extensions for face recognition IEEE Trans. Syst. Man. Cybern. Part B 40 2010 958 963
    • (2010) IEEE Trans. Syst. Man. Cybern. Part B , vol.40 , pp. 958-963
    • Lu, J.1    Tan, Y.2
  • 31
    • 84867881228 scopus 로고    scopus 로고
    • Enhanced and parameterless locality preserving projections for face recognition
    • F. Dornaika, and A. Assoum enhanced and parameterless locality preserving projections for face recognition Neurocomputing 99 2013 448 457
    • (2013) Neurocomputing , vol.99 , pp. 448-457
    • Dornaika, F.1    Assoum, A.2
  • 32
    • 84893654461 scopus 로고    scopus 로고
    • Locality and similarity preserving embedding for feature selection
    • Fang X., Xu Y., Li X., Fan Z., Liu H., and Chen Y. Locality and similarity preserving embedding for feature selection Neurocomputing 128 2014 304 315
    • (2014) Neurocomputing , vol.128 , pp. 304-315
    • Fang, X.1    Xu, Y.2    Li, X.3    Fan, Z.4    Liu, H.5    Chen, Y.6
  • 33
    • 84879556490 scopus 로고    scopus 로고
    • Training lp-norm multiple kernel learning in the primal
    • Liang Z., Xia S., Zhou Y., and Zhang L. Training lp-norm multiple kernel learning in the primal Neural Netw. 46 2013 172 182
    • (2013) Neural Netw. , vol.46 , pp. 172-182
    • Liang, Z.1    Xia, S.2    Zhou, Y.3    Zhang, L.4
  • 34
    • 0042842443 scopus 로고    scopus 로고
    • Ho-Kashyap classifier with generalization control
    • J. Łkeski Ho-Kashyap classifier with generalization control Pattern Recognit. Lett. 24 14 2003 2281 2290
    • (2003) Pattern Recognit. Lett. , vol.24 , Issue.14 , pp. 2281-2290
    • Łkeski, J.1
  • 37
    • 84903184768 scopus 로고    scopus 로고
    • Multiple kernel learning for sparse representation-based classification
    • S. Ashish, V. Patel, and C. Rama Multiple kernel learning for sparse representation-based classification IEEE Trans. Image Process. 23 7 2014 3013 3024
    • (2014) IEEE Trans. Image Process. , vol.23 , Issue.7 , pp. 3013-3024
    • Ashish, S.1    Patel, V.2    Rama, C.3
  • 38
    • 33846294051 scopus 로고    scopus 로고
    • Kernel Ho-Kashyap classifier with generalization control
    • J. Leski Kernel Ho-Kashyap classifier with generalization control Int. J. Appl. Math. Comput. Sci. 14 1 2004 53 62
    • (2004) Int. J. Appl. Math. Comput. Sci. , vol.14 , Issue.1 , pp. 53-62
    • Leski, J.1
  • 39
    • 84886567160 scopus 로고    scopus 로고
    • University of California, Irvine, School of Information and Computer Sciences
    • K. Bache, and M. Lichman UCI Machine Learning Repository 2013 University of California, Irvine, School of Information and Computer Sciences http://archive.ics.uci.edu/ml
    • (2013) UCI Machine Learning Repository
    • Bache, K.1    Lichman, M.2
  • 40
    • 84929503174 scopus 로고    scopus 로고
    • Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation
    • Wong T. Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation Pattern Recognit. 48 9 2015 2839 2846
    • (2015) Pattern Recognit. , vol.48 , Issue.9 , pp. 2839-2846
    • Wong, T.1
  • 41
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demšar Statistical comparisons of classifiers over multiple data sets J. Mach. Learn. Res. 7 2006 1 30
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demšar, J.1
  • 43
    • 0035419334 scopus 로고    scopus 로고
    • Support vector machines for face recognition
    • Guo G., Li S.Z., and Chan K. Support vector machines for face recognition Image Vis. Comput. 19 9-10 2001 631 638
    • (2001) Image Vis. Comput. , vol.19 , Issue.9-10 , pp. 631-638
    • Guo, G.1    Li, S.Z.2    Chan, K.3
  • 45
    • 0035397715 scopus 로고    scopus 로고
    • Rademacher penalties and structural risk minimization
    • V. Koltchinskii Rademacher penalties and structural risk minimization IEEE Trans. Inf. Theory 47 5 2001 1902 1914
    • (2001) IEEE Trans. Inf. Theory , vol.47 , Issue.5 , pp. 1902-1914
    • Koltchinskii, V.1
  • 46
    • 0001024505 scopus 로고
    • On the uniform convergence of relative frequencies of events to their probabilities
    • V. Vapnik, and A. Chervonenkis On the uniform convergence of relative frequencies of events to their probabilities Theory Probab. Appl. 16 2 1971 264 280
    • (1971) Theory Probab. Appl. , vol.16 , Issue.2 , pp. 264-280
    • Vapnik, V.1    Chervonenkis, A.2
  • 47
    • 0036104545 scopus 로고    scopus 로고
    • Empirical margin distributions and bounding the generalization error of combined classifiers
    • V. Koltchinskii, and D. Panchenko Empirical margin distributions and bounding the generalization error of combined classifiers Ann. Stat. 30 1 2002 1 50
    • (2002) Ann. Stat. , vol.30 , Issue.1 , pp. 1-50
    • Koltchinskii, V.1    Panchenko, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.