메뉴 건너뛰기




Volumn 35, Issue 1-2, 2013, Pages 150-166

Roller element bearing fault diagnosis using singular spectrum analysis

Author keywords

Bearing fault; Induction motor; Neural network; Singular spectrum analysis; Vibration analysis

Indexed keywords

BEARING FAULT; BEARING FAULT DIAGNOSIS; COMPLEX ALGORITHMS; DATA SETS; FAULT FEATURE; MOTOR BEARINGS; NOISE IMMUNE; NOISE-TOLERANT; PRINCIPAL COMPONENTS; SAMPLE SIZES; SINGULAR SPECTRUM ANALYSIS; SINGULAR VALUES; TIME SERIES METHOD; VIBRATION DATA; VIBRATION SIGNAL;

EID: 84870442060     PISSN: 08883270     EISSN: 10961216     Source Type: Journal    
DOI: 10.1016/j.ymssp.2012.08.019     Document Type: Article
Times cited : (243)

References (26)
  • 1
    • 64949087144 scopus 로고    scopus 로고
    • Fault diagnosis of rolling element bearing using time-domain features and neural networks
    • Kharagpur, India, December
    • B. Sreejith, A.K. Verma, A. Srividya, Fault diagnosis of rolling element bearing using time-domain features and neural networks, Proc. Third ICIIS, Kharagpur, India, December 2008, 1-6.
    • (2008) Proc. Third ICIIS , pp. 1-6
    • Sreejith, B.1    Verma, A.K.2    Srividya, A.3
  • 2
    • 0029735184 scopus 로고
    • A comparison of autoregressive modeling techniques for fault diagnosis of rolling element bearings
    • D.C. Baillie, and J. Mathew A comparison of autoregressive modeling techniques for fault diagnosis of rolling element bearings Mech. Syst. Sig. Process. 10 1 1966 1 17
    • (1966) Mech. Syst. Sig. Process. , vol.10 , Issue.1 , pp. 1-17
    • Baillie, D.C.1    Mathew, J.2
  • 3
    • 27744580640 scopus 로고    scopus 로고
    • A fault diagnosis approach for roller bearings based on EMD method and AR model
    • C. Junsheng, Y. Dejie, and Y. Yu A fault diagnosis approach for roller bearings based on EMD method and AR model Mech. Syst. Sig. Process. 20 2 2006 350 362
    • (2006) Mech. Syst. Sig. Process. , vol.20 , Issue.2 , pp. 350-362
    • Junsheng, C.1    Dejie, Y.2    Yu, Y.3
  • 4
    • 34250862053 scopus 로고    scopus 로고
    • Bearing fault detection using higher-order statistics based ARMA
    • F. Li, L. Ye, G. Zhang, and G. Meng Bearing fault detection using higher-order statistics based ARMA Key Eng. Mater. 347 2007 271 276
    • (2007) Key Eng. Mater. , vol.347 , pp. 271-276
    • Li, F.1    Ye, L.2    Zhang, G.3    Meng, G.4
  • 5
    • 71749111101 scopus 로고    scopus 로고
    • Applications of fault diagnosis in rotating machinery by using time series analysis with neural network
    • C.C. Wanga, Y. Kang, P.C. Shen, Y.P. Chang, and Y.L. Chung Applications of fault diagnosis in rotating machinery by using time series analysis with neural network Expert Syst. Appl. 37 2 2010 1696 1702
    • (2010) Expert Syst. Appl. , vol.37 , Issue.2 , pp. 1696-1702
    • Wanga, C.C.1    Kang, Y.2    Shen, P.C.3    Chang, Y.P.4    Chung, Y.L.5
  • 6
    • 61849120773 scopus 로고    scopus 로고
    • Difference histograms: A new tool for time series analysis applied to bearing fault diagnosis
    • B.J.V. Wyk, M.A.V. Wyk, and G. Qi Difference histograms: a new tool for time series analysis applied to bearing fault diagnosis Pattern Recognit. Lett. 30 6 2009 595 599
    • (2009) Pattern Recognit. Lett. , vol.30 , Issue.6 , pp. 595-599
    • Wyk, B.J.V.1    Wyk, M.A.V.2    Qi, G.3
  • 7
    • 80052802541 scopus 로고    scopus 로고
    • Identification of bearing faults using time domain zero-crossings
    • P.E. William, and M.W. Hoffman Identification of bearing faults using time domain zero-crossings Mech. Syst. Sig. Process. 25 8 2011 3078 3088
    • (2011) Mech. Syst. Sig. Process. , vol.25 , Issue.8 , pp. 3078-3088
    • William, P.E.1    Hoffman, M.W.2
  • 8
    • 77952073671 scopus 로고    scopus 로고
    • A comparative study on ApEn, SampEn and their fuzzy counterparts in a multiscale framework for feature extraction
    • G. Xiong, L. Zhang, and H. Liu A comparative study on ApEn, SampEn and their fuzzy counterparts in a multiscale framework for feature extraction Zhejiang Univ. Sci. A (Appl. Phys. Eng.) 11 4 2010 270 279
    • (2010) Zhejiang Univ. Sci. A (Appl. Phys. Eng.) , vol.11 , Issue.4 , pp. 270-279
    • Xiong, G.1    Zhang, L.2    Liu, H.3
  • 9
    • 19044365964 scopus 로고
    • Singular spectrum analysis in nonlinear dynamics with applications to paleoclimatic time series
    • R. Vautard, and M. Ghil singular spectrum analysis in nonlinear dynamics with applications to paleoclimatic time series Physica D 35 3 1989 395 424
    • (1989) Physica D , vol.35 , Issue.3 , pp. 395-424
    • Vautard, R.1    Ghil, M.2
  • 10
    • 38149114090 scopus 로고    scopus 로고
    • Analysis of the structure of vibration signals for tool wear detection
    • F.J. Alonso, and D.R. Salgado Analysis of the structure of vibration signals for tool wear detection Mech. Syst. Sig. Process. 22 3 2008 735 748
    • (2008) Mech. Syst. Sig. Process. , vol.22 , Issue.3 , pp. 735-748
    • Alonso, F.J.1    Salgado, D.R.2
  • 11
    • 0035392024 scopus 로고    scopus 로고
    • The application of some non-linear methods in rotating machinery fault diagnosis
    • W.J. Wang, J. Chen, X.K. Wu, and Z.T. Wu The application of some non-linear methods in rotating machinery fault diagnosis Mech. Syst. Sig. Process. 15 4 2001 697 705
    • (2001) Mech. Syst. Sig. Process. , vol.15 , Issue.4 , pp. 697-705
    • Wang, W.J.1    Chen, J.2    Wu, X.K.3    Wu, Z.T.4
  • 13
    • 82155166932 scopus 로고    scopus 로고
    • Singular spectrum analysis for bearing defect detection
    • 051007-1-051007-7
    • B. Kilundu, X. Chiementin, and P. Dehombreux Singular spectrum analysis for bearing defect detection J. Vib. Acoust. 133 5 2011 051007-1-051007-7
    • (2011) J. Vib. Acoust. , vol.133 , Issue.5
    • Kilundu, B.1    Chiementin, X.2    Dehombreux, P.3
  • 14
    • 0034297837 scopus 로고    scopus 로고
    • Neural-network-based motor rolling bearing fault diagnosis
    • B. Li, M.Y. Chow, Y. Tipsuwan, and J.C. Hung Neural-network-based motor rolling bearing fault diagnosis IEEE Trans. Ind. Electron. 47 5 2000 1060 1069
    • (2000) IEEE Trans. Ind. Electron. , vol.47 , Issue.5 , pp. 1060-1069
    • Li, B.1    Chow, M.Y.2    Tipsuwan, Y.3    Hung, J.C.4
  • 16
    • 84870464188 scopus 로고    scopus 로고
    • Case Western Reserve University
    • Bearing data Centre, Case Western Reserve University, Available: 〈http://csegroups.case.edu/bearingdatacenter/home〉.
    • Bearing Data Centre
  • 17
    • 47649115191 scopus 로고    scopus 로고
    • Simulating gear and bearing interactions in the presence of faults Part I. The combined gear bearing dynamic model and the simulation of localised bearing faults
    • N. Sawalhi, and R.B. Randall Simulating gear and bearing interactions in the presence of faults Part I. The combined gear bearing dynamic model and the simulation of localised bearing faults Mech. Syst. Sig. Process. 22 8 2008 1924 1951
    • (2008) Mech. Syst. Sig. Process. , vol.22 , Issue.8 , pp. 1924-1951
    • Sawalhi, N.1    Randall, R.B.2
  • 19
    • 0027855067 scopus 로고
    • A study of the generalization capability versus training in back propagation neural networks
    • P.J. Dalianis, S.G. Tzafestas, and G. Anthopoulos A study of the generalization capability versus training in back propagation neural networks Proc. Syst. Man Cybern. 4 1993 485 490
    • (1993) Proc. Syst. Man Cybern. , vol.4 , pp. 485-490
    • Dalianis, P.J.1    Tzafestas, S.G.2    Anthopoulos, G.3
  • 20
    • 33646519024 scopus 로고    scopus 로고
    • A roller bearing fault diagnosis method based on EMD energy entropy and BPNN
    • Y. Yu, Y. Dejie, and C. Junsheng A roller bearing fault diagnosis method based on EMD energy entropy and BPNN J. Sound Vib. 294 1-2 2006 269 277
    • (2006) J. Sound Vib. , vol.294 , Issue.12 , pp. 269-277
    • Yu, Y.1    Dejie, Y.2    Junsheng, C.3
  • 21
    • 34548035641 scopus 로고    scopus 로고
    • Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine
    • S. Abbasion, A. Rafsanjani, A. Farshidianfar, and N. Irani Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine Mech. Syst. Sig. Process. 21 7 2007 2933 2945
    • (2007) Mech. Syst. Sig. Process. , vol.21 , Issue.7 , pp. 2933-2945
    • Abbasion, S.1    Rafsanjani, A.2    Farshidianfar, A.3    Irani, N.4
  • 22
    • 34748819869 scopus 로고    scopus 로고
    • Early classifications of bearing faults using hidden Markov models, Gaussian mixture models mel-frequency cepstral coefficients and fractals
    • F.V. Nelwamondo, T. Marwala, and U. Mahola Early classifications of bearing faults using hidden Markov models, Gaussian mixture models mel-frequency cepstral coefficients and fractals, Int. J. Innovative Comput. Appl., Inf. Control 2 6 2006 1281 1299
    • (2006) Int. J. Innovative Comput. Appl., Inf. Control , vol.2 , Issue.6 , pp. 1281-1299
    • Nelwamondo, F.V.1    Marwala, T.2    Mahola, U.3
  • 23
    • 67349184331 scopus 로고    scopus 로고
    • Fault classification of rolling bearing based on reconstructed phase space and Gaussian mixture model
    • G.F. Wang, Y.B. Li, and Z.G. Luo Fault classification of rolling bearing based on reconstructed phase space and Gaussian mixture model J. Sound Vib. 323 3-5 2009 1077 1089
    • (2009) J. Sound Vib. , vol.323 , Issue.35 , pp. 1077-1089
    • Wang, G.F.1    Li, Y.B.2    Luo, Z.G.3
  • 24
    • 79957439082 scopus 로고    scopus 로고
    • Detection and diagnosis of bearing and cutting tool faults using hidden Markov models
    • Tony Boutros, and Ming Liang Detection and diagnosis of bearing and cutting tool faults using hidden Markov models Mech. Syst. Sig. Process. 25 6 2011 2102 2124
    • (2011) Mech. Syst. Sig. Process. , vol.25 , Issue.6 , pp. 2102-2124
    • Boutros, T.1    Liang, M.2
  • 25
    • 0035247059 scopus 로고    scopus 로고
    • An introduction to hidden Markov models and Bayesian networks
    • Z. Garamani An introduction to hidden Markov models and Bayesian networks Int. J. Pattern Recognit Artif Intell. 15 1 2001 9 42
    • (2001) Int. J. Pattern Recognit Artif Intell. , vol.15 , Issue.1 , pp. 9-42
    • Garamani, Z.1
  • 26
    • 80052802741 scopus 로고    scopus 로고
    • Supervised locally linear embedding projection (SLLEP) for machinery fault diagnosis
    • B. Li, and Y. Zhang Supervised locally linear embedding projection (SLLEP) for machinery fault diagnosis Mech. Syst. Sig. Process. 25 8 2011 3125 3134
    • (2011) Mech. Syst. Sig. Process. , vol.25 , Issue.8 , pp. 3125-3134
    • Li, B.1    Zhang, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.