-
1
-
-
84941308478
-
Cyclosporine before PCI in patients with acute myocardial infarction
-
Cung TT, Morel O, Cayla G, Rioufol G, Garcia-Dorado D, Angoulvant D, Bonnefoy- Cudraz E, Guérin P, Elbaz M, Delarche N, Coste P, Vanzetto G, Metge M, Aupetit JF, Jouve B, Motreff P, Tron C, Labeque JN, Steg PG, Cottin Y, Range G, Clerc J, Claeys MJ, Coussement P, Prunier F, Moulin F, Roth O, Belle L, Dubois P, Barragan P, Gilard M, Piot C, Colin P, De Poli F, Morice MC, Ider O, Dubois-Randé JL, Unterseeh T, Le Breton H, Béard T, Blanchard D, Grollier G, Malquarti V, Staat P, Sudre A, Elmer E, Hansson MJ, Bergerot C, Boussaha I, Jossan C, Derumeaux G, Mewton N, Ovize M. Cyclosporine before PCI in patients with acute myocardial infarction. N Engl J Med 2015;373:1021-1031.
-
(2015)
N Engl J Med
, vol.373
, pp. 1021-1031
-
-
Cung, T.T.1
Morel, O.2
Cayla, G.3
Rioufol, G.4
Garcia-Dorado, D.5
Angoulvant, D.6
Bonnefoy-Cudraz, E.7
Guérin, P.8
Elbaz, M.9
Delarche, N.10
Coste, P.11
Vanzetto, G.12
Metge, M.13
Aupetit, J.F.14
Jouve, B.15
Motreff, P.16
Tron, C.17
Labeque, J.N.18
Steg, P.G.19
Cottin, Y.20
Range, G.21
Clerc, J.22
Claeys, M.J.23
Coussement, P.24
Prunier, F.25
Moulin, F.26
Roth, O.27
Belle, L.28
Dubois, P.29
Barragan, P.30
Gilard, M.31
Piot, C.32
Colin, P.33
De Poli, F.34
Morice, M.C.35
Ider, O.36
Dubois-Randé, J.L.37
Unterseeh, T.38
Le Breton, H.39
Béard, T.40
Blanchard, D.41
Grollier, G.42
Malquarti, V.43
Staat, P.44
Sudre, A.45
Elmer, E.46
Hansson, M.J.47
Bergerot, C.48
Boussaha, I.49
Jossan, C.50
Derumeaux, G.51
Mewton, N.52
Ovize, M.53
more..
-
2
-
-
84873848690
-
Myocardial ischemia-reperfusion injury: A neglected therapeutic target
-
Hausenloy DJ, Yellon DM. Myocardial ischemia-reperfusion injury: A neglected therapeutic target. J Clin Invest 2013;123:92-100.
-
(2013)
J Clin Invest
, vol.123
, pp. 92-100
-
-
Hausenloy, D.J.1
Yellon, D.M.2
-
3
-
-
34548746306
-
Myocardial reperfusion injury
-
Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med 2007;357: 1121-1135.
-
(2007)
N Engl J Med
, vol.357
, pp. 1121-1135
-
-
Yellon, D.M.1
Hausenloy, D.J.2
-
4
-
-
0035890319
-
The Na+/H+ exchange inhibitor eniporide as an adjunct to early reperfusion therapy for acute myocardial infarction. Results of the Evaluation of the Safety and Cardioprotective Effects of Eniporide in Acute Myocardial Infarction (ESCAMI) Trial
-
Zeymer U, Suryapranata H, Monassier JP, Opolski G, Davies J, Rasmanis G, Linssen G, Tebbe U, Tiemann R, Machnig T, Neuhaus K-L. The Na+/H+ exchange inhibitor eniporide as an adjunct to early reperfusion therapy for acute myocardial infarction. Results of the Evaluation of the Safety and Cardioprotective Effects of Eniporide in Acute Myocardial Infarction (ESCAMI) Trial. J Am Coll Cardiol 2001;38:1645-1650.
-
(2001)
J Am Coll Cardiol
, vol.38
, pp. 1645-1650
-
-
Zeymer, U.1
Suryapranata, H.2
Monassier, J.P.3
Opolski, G.4
Davies, J.5
Rasmanis, G.6
Linssen, G.7
Tebbe, U.8
Tiemann, R.9
Machnig, T.10
Neuhaus, K.-L.11
-
5
-
-
56149111693
-
Vitamins E and C in the prevention of cardiovascular disease in men
-
Sesso HD, Buring JE, Christen WG, Kurth T, Belanger C, Macfadyen J, Manson JE, Glynn RJ, Gaziano JM. Vitamins E and C in the prevention of cardiovascular disease in men. JAMA 2008;300:2123-2133.
-
(2008)
JAMA
, vol.300
, pp. 2123-2133
-
-
Sesso, H.D.1
Buring, J.E.2
Christen, W.G.3
Kurth, T.4
Belanger, C.5
Macfadyen, J.6
Manson, J.E.7
Glynn, R.J.8
Gaziano, J.M.9
-
6
-
-
79955877895
-
Intravenous erythropoietin in patients with ST-segment elevation myocardial infarction: REVEAL: A randomized controlled trial
-
Najjar SS, Rao SV, Melloni C, Raman SV, Povsic TJ, Melton L, Barsness GW, Prather K, Heitner JF, Kilaru R, Gruberg L, Hasselblad V, Greenbaum AB, Patel M, Kim RJ, Talan M, Ferrucci L, Longo DL, Lakatta EG, Harrington RA. Intravenous erythropoietin in patients with ST-segment elevation myocardial infarction: REVEAL: A randomized controlled trial. JAMA 2011;305:1863-1872.
-
(2011)
JAMA
, vol.305
, pp. 1863-1872
-
-
Najjar, S.S.1
Rao, S.V.2
Melloni, C.3
Raman, S.V.4
Povsic, T.J.5
Melton, L.6
Barsness, G.W.7
Prather, K.8
Heitner, J.F.9
Kilaru, R.10
Gruberg, L.11
Hasselblad, V.12
Greenbaum, A.B.13
Patel, M.14
Kim, R.J.15
Talan, M.16
Ferrucci, L.17
Longo, D.L.18
Lakatta, E.G.19
Harrington, R.A.20
more..
-
8
-
-
42049108814
-
Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury
-
Murphy E, Steenbergen C. Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 2008;88:581-609.
-
(2008)
Physiol Rev
, vol.88
, pp. 581-609
-
-
Murphy, E.1
Steenbergen, C.2
-
9
-
-
21244492310
-
Myocardial substrate metabolism in the normal and failing heart
-
Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 2005;85:1093-1129.
-
(2005)
Physiol Rev
, vol.85
, pp. 1093-1129
-
-
Stanley, W.C.1
Recchia, F.A.2
Lopaschuk, G.D.3
-
10
-
-
0014982432
-
Acute metabolic response in myocardial infarction
-
Opie LH. Acute metabolic response in myocardial infarction. Br Heart J 1971;33(Suppl): 129-137.
-
(1971)
Br Heart J
, vol.33
, pp. 129-137
-
-
Opie, L.H.1
-
11
-
-
0028968606
-
Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion
-
Griffiths EJ, Halestrap AP. Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J 1995;307:93-98.
-
(1995)
Biochem J
, vol.307
, pp. 93-98
-
-
Griffiths, E.J.1
Halestrap, A.P.2
-
12
-
-
0031902064
-
The role of the myocardial sodium-hydrogen exchanger (NHE) and its role in mediating ischemic and reperfusion injury
-
Karmazyn M. The role of the myocardial sodium-hydrogen exchanger (NHE) and its role in mediating ischemic and reperfusion injury. Keio J Med 1998;47:65-72.
-
(1998)
Keio J Med
, vol.47
, pp. 65-72
-
-
Karmazyn, M.1
-
13
-
-
0026753508
-
Effect of ischemia and reperfusion on sarcoplasmic reticulum calcium uptake
-
Kaplan P, Hendrikx M, Mattheussen M, Mubagwa K, Flameng W. Effect of ischemia and reperfusion on sarcoplasmic reticulum calcium uptake. Circ Res 1992;71: 1123-1130.
-
(1992)
Circ Res
, vol.71
, pp. 1123-1130
-
-
Kaplan, P.1
Hendrikx, M.2
Mattheussen, M.3
Mubagwa, K.4
Flameng, W.5
-
14
-
-
0027717581
-
Role of increased cytosolic free calcium concentration in myocardial ischemic injury
-
Steenbergen C, Fralix TA, Murphy E. Role of increased cytosolic free calcium concentration in myocardial ischemic injury. Basic Res Cardiol 1993;88:456-470.
-
(1993)
Basic Res Cardiol
, vol.88
, pp. 456-470
-
-
Steenbergen, C.1
Fralix, T.A.2
Murphy, E.3
-
15
-
-
0018117909
-
Metabolic responses to cardiac hypoxia. Increased production of succinate by rabbit papillary muscles
-
Taegtmeyer H. Metabolic responses to cardiac hypoxia. Increased production of succinate by rabbit papillary muscles. Circ Res 1978;43:808-815.
-
(1978)
Circ Res
, vol.43
, pp. 808-815
-
-
Taegtmeyer, H.1
-
16
-
-
0023904443
-
An assessment of anaerobic metabolism during ischemia and reperfusion in isolated Guinea pig heart
-
Pisarenko O, Studneva I, Khlopkov V, Solomatina E, Ruuge E. An assessment of anaerobic metabolism during ischemia and reperfusion in isolated guinea pig heart. Biochim Biophys Acta 1988;934:55-63.
-
(1988)
Biochim Biophys Acta
, vol.934
, pp. 55-63
-
-
Pisarenko, O.1
Studneva, I.2
Khlopkov, V.3
Solomatina, E.4
Ruuge, E.5
-
17
-
-
84911466192
-
Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS
-
Chouchani ET, Pell VR, Gaude E, Aksentijevic D, Sundier SY, Robb EL, Logan A, Nadtochiy SM, Ord ENJ, Smith AC, Eyassu F, Shirley R, Hu C, Dare AJ, James AM, Rogatti S, Hartley RC, Eaton S, Costa ASH, Brookes PS, Davidson SM, Duchen MR, Saeb-parsy K, Shattock MJ, Robinson AJ, Work LM, Frezza C, Krieg T, Murphy MP. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 2014;515:431-435.
-
(2014)
Nature
, vol.515
, pp. 431-435
-
-
Chouchani, E.T.1
Pell, V.R.2
Gaude, E.3
Aksentijevic, D.4
Sundier, S.Y.5
Robb, E.L.6
Logan, A.7
Nadtochiy, S.M.8
Ord, E.N.J.9
Smith, A.C.10
Eyassu, F.11
Shirley, R.12
Hu, C.13
Dare, A.J.14
James, A.M.15
Rogatti, S.16
Hartley, R.C.17
Eaton, S.18
Costa, A.S.H.19
Brookes, P.S.20
Davidson, S.M.21
Duchen, M.R.22
Saeb-Parsy, K.23
Shattock, M.J.24
Robinson, A.J.25
Work, L.M.26
Frezza, C.27
Krieg, T.28
Murphy, M.P.29
more..
-
18
-
-
84891393224
-
The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter
-
Pan X, Liu J, Nguyen T, Liu C, Sun J, Teng Y, Fergusson MM, Rovira II, Allen M, Springer DA, Aponte AM, Gucek M, Balaban RS, Murphy E, Finkel T. The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter. Nat Cell Biol 2013;15:1464-1472.
-
(2013)
Nat Cell Biol
, vol.15
, pp. 1464-1472
-
-
Pan, X.1
Liu, J.2
Nguyen, T.3
Liu, C.4
Sun, J.5
Teng, Y.6
Fergusson, M.M.7
Rovira, I.I.8
Allen, M.9
Springer, D.A.10
Aponte, A.M.11
Gucek, M.12
Balaban, R.S.13
Murphy, E.14
Finkel, T.15
-
19
-
-
0000098037
-
Direct measurement of free radical generation following reperfusion of ischemic myocardium
-
Zweier JL, Flaherty JT, Weisfeldt ML. Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proc Natl Acad Sci U S A. 1987;84: 1404-1407.
-
(1987)
Proc Natl Acad Sci U S A
, vol.84
, pp. 1404-1407
-
-
Zweier, J.L.1
Flaherty, J.T.2
Weisfeldt, M.L.3
-
20
-
-
0029684022
-
The pH paradox in ischemia-reperfusion injury to cardiac myocytes
-
Lemasters J, Bond J, Chacon E, Harper I, Kaplan S, Ohata H, Trollinger D, Herman B, Cascio W. The pH paradox in ischemia-reperfusion injury to cardiac myocytes. EXS 1996;76:99-114.
-
(1996)
EXS
, vol.76
, pp. 99-114
-
-
Lemasters, J.1
Bond, J.2
Chacon, E.3
Harper, I.4
Kaplan, S.5
Ohata, H.6
Trollinger, D.7
Herman, B.8
Cascio, W.9
-
21
-
-
0033565557
-
The mitochondrial permeability transition pore and its role in cell death
-
Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J 1999;341:233-249.
-
(1999)
Biochem J
, vol.341
, pp. 233-249
-
-
Crompton, M.1
-
22
-
-
1142273368
-
Mitochondrial permeability transition pore opening during myocardial reperfusion - A target for cardioprotection
-
Halestrap AP, Clarke SJ, Javadov SA. Mitochondrial permeability transition pore opening during myocardial reperfusion - A target for cardioprotection. Cardiovasc Res 2004; 61:372-385.
-
(2004)
Cardiovasc Res
, vol.61
, pp. 372-385
-
-
Halestrap, A.P.1
Clarke, S.J.2
Javadov, S.A.3
-
23
-
-
4043161974
-
Mitochondrial redox control of matrix metalloproteinases
-
Nelson KK, Melendez JA. Mitochondrial redox control of matrix metalloproteinases. Free Radic Biol Med 2004;37:768-784.
-
(2004)
Free Radic Biol Med
, vol.37
, pp. 768-784
-
-
Nelson, K.K.1
Melendez, J.A.2
-
25
-
-
0141815741
-
Production of reactive oxygen species by mitochondria: Central role of complex III
-
Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ. Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem 2003;278: 36027-36031.
-
(2003)
J Biol Chem
, vol.278
, pp. 36027-36031
-
-
Chen, Q.1
Vazquez, E.J.2
Moghaddas, S.3
Hoppel, C.L.4
Lesnefsky, E.J.5
-
26
-
-
33645395280
-
Allopurinol modulates reactive oxygen species generation and Ca 2+ overload in ischemia-reperfused heart and hypoxia-reoxygenated cardiomyocytes
-
Kang SM, Lim S, Song H, ChangW, Lee S, Bae SM, Chung JH, Lee H, Kim HG, Yoon DH, Kim TW, Jang Y, Sung JM, Chung NS, Hwang KC. Allopurinol modulates reactive oxygen species generation and Ca 2+ overload in ischemia-reperfused heart and hypoxia-reoxygenated cardiomyocytes. Eur J Pharmacol 2006;535:212-219.
-
(2006)
Eur J Pharmacol
, vol.535
, pp. 212-219
-
-
Kang, S.M.1
Lim, S.2
Song, H.3
Chang, W.4
Lee, S.5
Bae, S.M.6
Chung, J.H.7
Lee, H.8
Kim, H.G.9
Yoon, D.H.10
Kim, T.W.11
Jang, Y.12
Sung, J.M.13
Chung, N.S.14
Hwang, K.C.15
-
27
-
-
84857030964
-
The effects of modulating eNOS activity and coupling in ischemia/reperfusion (I/R)
-
Perkins K-AA, Pershad S, Chen Q, McGraw S, Adams JS, Zambrano C, Krass S, Emrich J, Bell B, Iyamu M, Prince C, Kay H, Teng JC, Young LH. The effects of modulating eNOS activity and coupling in ischemia/reperfusion (I/R). Naunyn Schmiedebergs Arch Pharmacol 2012;385:27-38.
-
(2012)
Naunyn Schmiedebergs Arch Pharmacol
, vol.385
, pp. 27-38
-
-
Perkins, K.-A.A.1
Pershad, S.2
Chen, Q.3
McGraw, S.4
Adams, J.S.5
Zambrano, C.6
Krass, S.7
Emrich, J.8
Bell, B.9
Iyamu, M.10
Prince, C.11
Kay, H.12
Teng, J.C.13
Young, L.H.14
-
28
-
-
33751177799
-
Reversible blockade of electron transport during ischemia protects mitochondria and decreases myocardial injury following reperfusion
-
Chen Q, Moghaddas S, Hoppel CL, Lesnefsky EJ. Reversible blockade of electron transport during ischemia protects mitochondria and decreases myocardial injury following reperfusion. J Pharmacol Exp Ther 2006;319:1405-1412.
-
(2006)
J Pharmacol Exp Ther
, vol.319
, pp. 1405-1412
-
-
Chen, Q.1
Moghaddas, S.2
Hoppel, C.L.3
Lesnefsky, E.J.4
-
29
-
-
53849099653
-
The production of reactive oxygen species by complex I
-
Hirst J, King MS, Pryde KR. The production of reactive oxygen species by complex I. Biochem Soc Trans 2008;36:976-980.
-
(2008)
Biochem Soc Trans
, vol.36
, pp. 976-980
-
-
Hirst, J.1
King, M.S.2
Pryde, K.R.3
-
30
-
-
64549084087
-
Reversible blockade of electron transport with amobarbital at the onset of reperfusion attenuates cardiac injury
-
Stewart S, Lesnefsky EJ, Chen Q. Reversible blockade of electron transport with amobarbital at the onset of reperfusion attenuates cardiac injury. Transl Res 2009;153: 224-231.
-
(2009)
Transl Res
, vol.153
, pp. 224-231
-
-
Stewart, S.1
Lesnefsky, E.J.2
Chen, Q.3
-
31
-
-
0021996572
-
Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria
-
Turrens JF, Alexandre A, Lehninger AL. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys 1985;237:408-414.
-
(1985)
Arch Biochem Biophys
, vol.237
, pp. 408-414
-
-
Turrens, J.F.1
Alexandre, A.2
Lehninger, A.L.3
-
32
-
-
58249093939
-
How mitochondria produce reactive oxygen species
-
Murphy MP. How mitochondria produce reactive oxygen species. Biochem J 2009;417: 1-13.
-
(2009)
Biochem J
, vol.417
, pp. 1-13
-
-
Murphy, M.P.1
-
33
-
-
6444220801
-
Preconditioning by isoflurane is mediated by reactive oxygen species generated from mitochondrial electron transport chain complex III
-
Ludwig L, Tanaka K, Eells J, Weihrauch D, Pagel P, Kersten J, Warltier D. Preconditioning by isoflurane is mediated by reactive oxygen species generated from mitochondrial electron transport chain complex III. Anesth Analg 2004;99:1308-1315.
-
(2004)
Anesth Analg
, vol.99
, pp. 1308-1315
-
-
Ludwig, L.1
Tanaka, K.2
Eells, J.3
Weihrauch, D.4
Pagel, P.5
Kersten, J.6
Warltier, D.7
-
34
-
-
0032541173
-
Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes
-
Vanden Hoek TL, Becker LB, Shao Z, Li C, Schumacker PT. Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes. J Biol Chem 1998;273:18092-18098.
-
(1998)
J Biol Chem
, vol.273
, pp. 18092-18098
-
-
Vanden Hoek, T.L.1
Becker, L.B.2
Shao, Z.3
Li, C.4
Schumacker, P.T.5
-
35
-
-
33751072935
-
Bioenergetics and the formation of mitochondrial reactive oxygen species
-
Adam-Vizi V, Chinopoulos C. Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci 2006;27:639-645.
-
(2006)
Trends Pharmacol Sci
, vol.27
, pp. 639-645
-
-
Adam-Vizi, V.1
Chinopoulos, C.2
-
36
-
-
9144227549
-
Blockade of electron transport during ischemia protects cardiac mitochondria
-
Lesnefsky EJ, Chen Q, Moghaddas S, Hassan MO, Tandler B, Hoppel CL. Blockade of electron transport during ischemia protects cardiac mitochondria. J Biol Chem 2004; 279:47961-47967.
-
(2004)
J Biol Chem
, vol.279
, pp. 47961-47967
-
-
Lesnefsky, E.J.1
Chen, Q.2
Moghaddas, S.3
Hassan, M.O.4
Tandler, B.5
Hoppel, C.L.6
-
37
-
-
0025072729
-
Slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase
-
Kotlyar AB, Vinogradov AD. Slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase. Biochim Biophys Acta Bioenerg 1990;1019:151-158.
-
(1990)
Biochim Biophys Acta Bioenerg
, vol.1019
, pp. 151-158
-
-
Kotlyar, A.B.1
Vinogradov, A.D.2
-
38
-
-
84901841671
-
Characterisation of the active/de-Active transition of mitochondrial complex i
-
Babot M, Birch A, Labarbuta P, Galkin A. Characterisation of the active/de-Active transition of mitochondrial complex i. Biochim Biophys Acta Bioenerg 2014;1837:1083-1092.
-
(2014)
Biochim Biophys Acta Bioenerg
, vol.1837
, pp. 1083-1092
-
-
Babot, M.1
Birch, A.2
Labarbuta, P.3
Galkin, A.4
-
39
-
-
33644992047
-
Direct evidence for S-nitrosation of mitochondrial complex I
-
Burwell LS, Nadtochiy SM, Tompkins AJ, Young S, Brookes PS. Direct evidence for S-nitrosation of mitochondrial complex I. Biochem J 2006;394:627-634.
-
(2006)
Biochem J
, vol.394
, pp. 627-634
-
-
Burwell, L.S.1
Nadtochiy, S.M.2
Tompkins, A.J.3
Young, S.4
Brookes, P.S.5
-
40
-
-
34548412578
-
Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer
-
Shiva S, Sack MN, Greer JJ, Duranski M, Ringwood LA, Burwell L, Wang X, MacArthur PH, Shoja A, Raghavachari N, Calvert JW, Brookes PS, Lefer DJ, Gladwin MT. Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer. J Exp Med 2007;204:2089-2102.
-
(2007)
J Exp Med
, vol.204
, pp. 2089-2102
-
-
Shiva, S.1
Sack, M.N.2
Greer, J.J.3
Duranski, M.4
Ringwood, L.A.5
Burwell, L.6
Wang, X.7
MacArthur, P.H.8
Shoja, A.9
Raghavachari, N.10
Calvert, J.W.11
Brookes, P.S.12
Lefer, D.J.13
Gladwin, M.T.14
-
41
-
-
67349179644
-
In vivo cardioprotection by S-nitroso-2-mercaptopropionyl glycine
-
Nadtochiy SM, Burwell LS, Ingraham CA, Spencer CM, Friedman AE, Pinkert CA, Brookes PS. In vivo cardioprotection by S-nitroso-2-mercaptopropionyl glycine. J Mol Cell Cardiol 2009;46:960-968.
-
(2009)
J Mol Cell Cardiol
, vol.46
, pp. 960-968
-
-
Nadtochiy, S.M.1
Burwell, L.S.2
Ingraham, C.A.3
Spencer, C.M.4
Friedman, A.E.5
Pinkert, C.A.6
Brookes, P.S.7
-
42
-
-
84880253528
-
Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I
-
Chouchani ET, Methner C, Nadtochiy SM, Logan A, Pell VR, Ding S, James AM, Cochemé HM, Reinhold J, Lilley KS, Partridge L, Fearnley IM, Robinson AJ, Hartley RC, Smith RAJ, Krieg T, Brookes PS, Murphy MP. Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nat Med 2013;19: 753-759.
-
(2013)
Nat Med
, vol.19
, pp. 753-759
-
-
Chouchani, E.T.1
Methner, C.2
Nadtochiy, S.M.3
Logan, A.4
Pell, V.R.5
Ding, S.6
James, A.M.7
Cochemé, H.M.8
Reinhold, J.9
Lilley, K.S.10
Partridge, L.11
Fearnley, I.M.12
Robinson, A.J.13
Hartley, R.C.14
Smith, R.A.J.15
Krieg, T.16
Brookes, P.S.17
Murphy, M.P.18
-
43
-
-
84903751373
-
Mitochondria selective S-nitrosation by mitochondria-Targeted S-nitrosothiol protects against post-infarct heart failure in mouse hearts
-
Methner C, Chouchani ET, Buonincontri G, Pell VR, Sawiak SJ, Murphy MP, Krieg T. Mitochondria selective S-nitrosation by mitochondria-Targeted S-nitrosothiol protects against post-infarct heart failure in mouse hearts. Eur J Heart Fail 2014;16:712-717.
-
(2014)
Eur J Heart Fail
, vol.16
, pp. 712-717
-
-
Methner, C.1
Chouchani, E.T.2
Buonincontri, G.3
Pell, V.R.4
Sawiak, S.J.5
Murphy, M.P.6
Krieg, T.7
-
45
-
-
4744344869
-
Excessive ATP hydrolysis in ischemic myocardium by mitochondrial F1F0-ATPase: Effect of selective pharmacological inhibition of mitochondrial ATPase hydrolase activity
-
Grover GJ, Atwal KS, Sleph PG, Wang F-L, Monshizadegan H, Monticello T, Green DW. Excessive ATP hydrolysis in ischemic myocardium by mitochondrial F1F0-ATPase: effect of selective pharmacological inhibition of mitochondrial ATPase hydrolase activity. Am J Physiol Heart Circ Physiol 2004;287:H1747-H1755.
-
(2004)
Am J Physiol Heart Circ Physiol
, vol.287
, pp. H1747-H1755
-
-
Grover, G.J.1
Atwal, K.S.2
Sleph, P.G.3
Wang, F.-L.4
Monshizadegan, H.5
Monticello, T.6
Green, D.W.7
-
46
-
-
0019503201
-
Hypoxanthine production by ischemic heart demonstrated by high pressure liquid chromatography of blood purine nucleosides and oxypurines
-
Harmsen E, de Jong J, Serruys P. Hypoxanthine production by ischemic heart demonstrated by high pressure liquid chromatography of blood purine nucleosides and oxypurines. Clin Chim Acta 1981;115:73-84.
-
(1981)
Clin Chim Acta
, vol.115
, pp. 73-84
-
-
Harmsen, E.1
De Jong, J.2
Serruys, P.3
-
47
-
-
33644631485
-
Therapeutic effects of xanthine oxidase inhibitors: Renaissance half a century after the discovery of allopurinol
-
Pacher P, Nivorozhkin A, Szabó C. Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol Rev 2006;58: 87-114.
-
(2006)
Pharmacol Rev
, vol.58
, pp. 87-114
-
-
Pacher, P.1
Nivorozhkin, A.2
Szabó, C.3
-
49
-
-
0016670964
-
Metabolic consequences of diving in animals and man
-
Hochachka PW, Storey KB. Metabolic consequences of diving in animals and man. Science 1975;187:613-621.
-
(1975)
Science
, vol.187
, pp. 613-621
-
-
Hochachka, P.W.1
Storey, K.B.2
-
50
-
-
0023549336
-
Evidence for succinate production by reduction of fumarate during hypoxia in isolated adult rat heart cells
-
Hohl C, Oestreich R, Rösen P, Wiesner R, Grieshaber M. Evidence for succinate production by reduction of fumarate during hypoxia in isolated adult rat heart cells. Arch Biochem Biophys 1987;259:527-535.
-
(1987)
Arch Biochem Biophys
, vol.259
, pp. 527-535
-
-
Hohl, C.1
Oestreich, R.2
Rösen, P.3
Wiesner, R.4
Grieshaber, M.5
-
51
-
-
84863244462
-
Fumarate is cardioprotective via activation of the Nrf2 anti-oxidant pathway
-
Ashrafian H, Czibik G, Bellahcene M, Aksentijević D, Smith AC, Mitchell SJ, Dodd MS, Kirwan J, Byrne JJ, Ludwig C, Isackson H, Yavari A, Støttrup NB, Contractor H, Cahill TJ, Sahgal N, Ball DR, Birkler RI, Hargreaves I, Tennant DA, Land J, Lygate CA, Johannsen M, Kharbanda RK, Neubauer S, Redwood C, de Cabo R, Ahmet I, Talan M, Günther UL, Robinson AJ, Viant MR, Pollard PJ, Tyler DJ, Watkins H. Fumarate is cardioprotective via activation of the Nrf2 anti-oxidant pathway. Cell Metab 2012;15: 361-371.
-
(2012)
Cell Metab
, vol.15
, pp. 361-371
-
-
Ashrafian, H.1
Czibik, G.2
Bellahcene, M.3
Aksentijević, D.4
Smith, A.C.5
Mitchell, S.J.6
Dodd, M.S.7
Kirwan, J.8
Byrne, J.J.9
Ludwig, C.10
Isackson, H.11
Yavari, A.12
Støttrup, N.B.13
Contractor, H.14
Cahill, T.J.15
Sahgal, N.16
Ball, D.R.17
Birkler, R.I.18
Hargreaves, I.19
Tennant, D.A.20
Land, J.21
Lygate, C.A.22
Johannsen, M.23
Kharbanda, R.K.24
Neubauer, S.25
Redwood, C.26
De Cabo, R.27
Ahmet, I.28
Talan, M.29
Günther, U.L.30
Robinson, A.J.31
Viant, M.R.32
Pollard, P.J.33
Tyler, D.J.34
Watkins, H.35
more..
-
52
-
-
0023718383
-
Pathways of succinate formation and their contribution to improvement of cardiac function in the hypoxic rat heart
-
Wiesner RJ, Rösen P, Grieshaber MK. Pathways of succinate formation and their contribution to improvement of cardiac function in the hypoxic rat heart. Biochem Med Metab Biol 1988;40:19-34.
-
(1988)
Biochem Med Metab Biol
, vol.40
, pp. 19-34
-
-
Wiesner, R.J.1
Rösen, P.2
Grieshaber, M.K.3
-
53
-
-
0020658559
-
Effect of glutamic and aspartic acids on adenine nucleotides, nitrogenous compounds and contractile function during underperfusion of isolated rat heart
-
Pisarenko O, Solomatina E, Studneva I, Ivanov VE, Kapelko VI, Smirnov VN. Effect of glutamic and aspartic acids on adenine nucleotides, nitrogenous compounds and contractile function during underperfusion of isolated rat heart. J Mol Cell Cardiol 1983;15: 53-60.
-
(1983)
J Mol Cell Cardiol
, vol.15
, pp. 53-60
-
-
Pisarenko, O.1
Solomatina, E.2
Studneva, I.3
Ivanov, V.E.4
Kapelko, V.I.5
Smirnov, V.N.6
-
54
-
-
0014797606
-
Anaerobic rat heart. Effects of glucose and tricarboxylic acidcycle metabolites on metabolism and physiological performance
-
Penney D, Cascarano J. Anaerobic Rat Heart. Effects of glucose and tricarboxylic acidcycle metabolites on metabolism and physiological performance. Biochem J 1970;118: 221-227.
-
(1970)
Biochem J
, vol.118
, pp. 221-227
-
-
Penney, D.1
Cascarano, J.2
-
55
-
-
84876285741
-
Succinate is an inflammatory signal that induces IL-1b through HIF-1a
-
Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF, Goel G, Frezza C, Bernard NJ, Kelly B, Foley NH, Zheng L, Gardet A, Tong Z, Jany SS, Corr SC, Haneklaus M, Caffrey BE, Pierce K, Walmsley S, Beasley FC, Cummins E, Nizet V, Whyte M, Taylor CT, Lin H, Masters SL, Gottlieb E, Kelly VP, Clish C, Auron PE, Xavier RJ, O'Neill LA. Succinate is an inflammatory signal that induces IL-1b through HIF-1a. Nature 2013;496:238-242.
-
(2013)
Nature
, vol.496
, pp. 238-242
-
-
Tannahill, G.M.1
Curtis, A.M.2
Adamik, J.3
Palsson-McDermott, E.M.4
McGettrick, A.F.5
Goel, G.6
Frezza, C.7
Bernard, N.J.8
Kelly, B.9
Foley, N.H.10
Zheng, L.11
Gardet, A.12
Tong, Z.13
Jany, S.S.14
Corr, S.C.15
Haneklaus, M.16
Caffrey, B.E.17
Pierce, K.18
Walmsley, S.19
Beasley, F.C.20
Cummins, E.21
Nizet, V.22
Whyte, M.23
Taylor, C.T.24
Lin, H.25
Masters, S.L.26
Gottlieb, E.27
Kelly, V.P.28
Clish, C.29
Auron, P.E.30
Xavier, R.J.31
O'Neill, L.A.32
more..
-
56
-
-
84864570953
-
The succinate receptor as a novel therapeutic target for oxidative and metabolic stress-related conditions
-
Lausanne
-
Ariza AC, Deen PMT, Robben JH. The succinate receptor as a novel therapeutic target for oxidative and metabolic stress-related conditions. Front Endocrinol (Lausanne) 2012; 3:1-8.
-
(2012)
Front Endocrinol
, vol.3
, pp. 1-8
-
-
Ariza, A.C.1
Deen, P.M.T.2
Robben, J.H.3
-
57
-
-
78651117288
-
The interaction of energy and electron transfer reactions in mitochondria. V. The energy transfer pathway
-
Chance B. The interaction of energy and electron transfer reactions in mitochondria. V. The energy transfer pathway. J Biol Chem 1961;236:1569-1576.
-
(1961)
J Biol Chem
, vol.236
, pp. 1569-1576
-
-
Chance, B.1
-
58
-
-
84875218644
-
The mitochondrial transporter family SLC25: Identification, properties and physiopathology
-
Palmieri F. The mitochondrial transporter family SLC25: identification, properties and physiopathology. Mol Aspects Med 2013;34:465-484.
-
(2013)
Mol Aspects Med
, vol.34
, pp. 465-484
-
-
Palmieri, F.1
-
59
-
-
84959923890
-
Succinate dehydrogenase inhibition with malonate during reperfusion reduces infarct size by preventing mitochondrial permeability transition
-
Valls-Lacalle L, Barba I, Miró -Casas E, Alburquerque-Béjar JJ, Ruiz-Meana M, Fuertes-Agudo M, Rodríguez-Sinovas A, García-Dorado D. Succinate dehydrogenase inhibition with malonate during reperfusion reduces infarct size by preventing mitochondrial permeability transition. Cardiovasc Res 2016;109:374-384.
-
(2016)
Cardiovasc Res
, vol.109
, pp. 374-384
-
-
Valls-Lacalle, L.1
Barba, I.2
Miró-Casas, E.3
Alburquerque-Béjar, J.J.4
Ruiz-Meana, M.5
Fuertes-Agudo, M.6
Rodríguez-Sinovas, A.7
García-Dorado, D.8
-
60
-
-
0024594297
-
Glutamate degradation in the ischemic dog heart: Contribution to anaerobic energy production
-
Wiesner RJ, Deussen A, Borst M, Schrader J, Grieshaber MK. Glutamate degradation in the ischemic dog heart: contribution to anaerobic energy production. J Mol Cell Cardiol 1989;21:49-59.
-
(1989)
J Mol Cell Cardiol
, vol.21
, pp. 49-59
-
-
Wiesner, R.J.1
Deussen, A.2
Borst, M.3
Schrader, J.4
Grieshaber, M.K.5
-
61
-
-
0031897566
-
The physiological basis of diving to depth: Birds and mammals
-
Kooyman GL, Ponganis PJ. The physiological basis of diving to depth: birds and mammals. Annu Rev Physiol 1998;60:19-32.
-
(1998)
Annu Rev Physiol
, vol.60
, pp. 19-32
-
-
Kooyman, G.L.1
Ponganis, P.J.2
-
62
-
-
77955301066
-
The NADH-fumarate reductase system, a novel mitochondrial energy metabolism, is a new target for anticancer therapy in tumor microenvironments
-
Tomitsuka E, Kita K, Esumi H. The NADH-fumarate reductase system, a novel mitochondrial energy metabolism, is a new target for anticancer therapy in tumor microenvironments. Ann N Y Acad Sci 2010;1201:44-49.
-
(2010)
Ann N Y Acad Sci
, vol.1201
, pp. 44-49
-
-
Tomitsuka, E.1
Kita, K.2
Esumi, H.3
-
63
-
-
33846335174
-
Modulation of electron transport protects cardiac mitochondria and decreases myocardial injury during ischemia and reperfusion
-
Chen Q, Camara AKS, Stowe DF, Hoppel CL, Lesnefsky EJ. Modulation of electron transport protects cardiac mitochondria and decreases myocardial injury during ischemia and reperfusion. Am J Physiol Cell Physiol 2007;292:C137-C147.
-
(2007)
Am J Physiol Cell Physiol
, vol.292
, pp. C137-C147
-
-
Chen, Q.1
Camara, A.K.S.2
Stowe, D.F.3
Hoppel, C.L.4
Lesnefsky, E.J.5
-
64
-
-
0034740585
-
DCM-Dependent and -independent production of reactive oxygen species by rat brain mitochondria
-
Votyakova TV, Reynolds IJ. Dcm-Dependent and -independent production of reactive oxygen species by rat brain mitochondria. J Neurochem 2001;79:266-277.
-
(2001)
J Neurochem
, vol.79
, pp. 266-277
-
-
Votyakova, T.V.1
Reynolds, I.J.2
-
65
-
-
0036319021
-
Generation of reactive oxygen species by the mitochondrial electron transport chain
-
Liu Y, Fiskum G, Schubert D. Generation of reactive oxygen species by the mitochondrial electron transport chain. J Neurochem 2002;80:780-787.
-
(2002)
J Neurochem
, vol.80
, pp. 780-787
-
-
Liu, Y.1
Fiskum, G.2
Schubert, D.3
-
66
-
-
67349133591
-
Ambivalent effects of diazoxide on mitochondrial ROS production at respiratory chain complexes I and III
-
Dröse S, Hanley PJ, Brandt U. Ambivalent effects of diazoxide on mitochondrial ROS production at respiratory chain complexes I and III. Biochim Biophys Acta 2009;1790: 558-565.
-
(2009)
Biochim Biophys Acta
, vol.1790
, pp. 558-565
-
-
Dröse, S.1
Hanley, P.J.2
Brandt, U.3
-
67
-
-
78649930470
-
Ischemic preconditioning decreases mitochondrial proton leak and reactive oxygen species production in the postischemic, heart
-
Quarrie R, Cramer BM, Lee DS, Steinbaugh GE, Erdahl W, Pfeiffer DR, Zweier JL, Crestanello MD. Ischemic preconditioning decreases mitochondrial proton leak and reactive oxygen species production in the postischemic heart. J Surg Res 2011;165: 5-14.
-
(2011)
J Surg Res
, vol.165
, pp. 5-14
-
-
Quarrie, R.1
Cramer, B.M.2
Lee, D.S.3
Steinbaugh, G.E.4
Erdahl, W.5
Pfeiffer, D.R.6
Zweier, J.L.7
Crestanello, M.D.8
-
68
-
-
84957951849
-
A unifying mechanism for mitochondrial superoxide production during ischemia-reperfusion injury
-
Chouchani ET, Pell VR, James AM, Work LM, Saeb-Parsy K, Frezza C, Krieg T, Murphy MP. A unifying mechanism for mitochondrial superoxide production during ischemia-reperfusion injury. Cell Metab 2016;23:254-263.
-
(2016)
Cell Metab
, vol.23
, pp. 254-263
-
-
Chouchani, E.T.1
Pell, V.R.2
James, A.M.3
Work, L.M.4
Saeb-Parsy, K.5
Frezza, C.6
Krieg, T.7
Murphy, M.P.8
-
69
-
-
0025283871
-
The effect of ischemia/reperfusion on adenine nucleotide metabolism and xanthine oxidase production in skeletal muscle
-
Lindsay TF, Liauw S, Romaschin AD, Walker PM. The effect of ischemia/reperfusion on adenine nucleotide metabolism and xanthine oxidase production in skeletal muscle. J Vasc Surg 1990;12:8-15.
-
(1990)
J Vasc Surg
, vol.12
, pp. 8-15
-
-
Lindsay, T.F.1
Liauw, S.2
Romaschin, A.D.3
Walker, P.M.4
-
70
-
-
0026628120
-
Prolonged adenine nucleotide resynthesis injury in postischemic skeletal muscle
-
Rubin BB, Liauw S, Tittley J, Romaschin AD, Walker PM. Prolonged adenine nucleotide resynthesis injury in postischemic skeletal muscle. Am J Physiol 1992;262: H1538-H1547.
-
(1992)
Am J Physiol
, vol.262
, pp. H1538-H1547
-
-
Rubin, B.B.1
Liauw, S.2
Tittley, J.3
Romaschin, A.D.4
Walker, P.M.5
-
71
-
-
0036088772
-
Potassium channel openers protect cardiac mitochondria by attenuating oxidant stress at reoxygenation
-
Ozcan C, Bienengraeber M, Dzeja PP, Terzic A. Potassium channel openers protect cardiac mitochondria by attenuating oxidant stress at reoxygenation. Am J Physiol Heart Circ Physiol 2002;282:H531-H539.
-
(2002)
Am J Physiol Heart Circ Physiol
, vol.282
, pp. H531-H539
-
-
Ozcan, C.1
Bienengraeber, M.2
Dzeja, P.P.3
Terzic, A.4
-
72
-
-
62249098383
-
The complex II inhibitor atpenin A5 protects against cardiac ischemia-reperfusion injury via activation of mitochondrial KATP channels
-
Wojtovich AP, Brookes PS. The complex II inhibitor atpenin A5 protects against cardiac ischemia-reperfusion injury via activation of mitochondrial KATP channels. Basic Res Cardiol 2009;104:121-129.
-
(2009)
Basic Res Cardiol
, vol.104
, pp. 121-129
-
-
Wojtovich, A.P.1
Brookes, P.S.2
-
73
-
-
84942514336
-
Characterization of the cardiac succinylome and its role in ischemia-reperfusion injury
-
Boylston JA, Sun J, Chen Y, Gucek M, Sack MN, Murphy E. Characterization of the cardiac succinylome and its role in ischemia-reperfusion injury. J Mol Cell Cardiol 2015;88: 73-81.
-
(2015)
J Mol Cell Cardiol
, vol.88
, pp. 73-81
-
-
Boylston, J.A.1
Sun, J.2
Chen, Y.3
Gucek, M.4
Sack, M.N.5
Murphy, E.6
-
74
-
-
4143097031
-
Multiprotein complex containing succinate dehydrogenase confers mitochondrial ATP-sensitive K+ channel activity
-
Ardehali H, Chen Z, Ko Y, Mejía-Alvarez R, Marbán E. Multiprotein complex containing succinate dehydrogenase confers mitochondrial ATP-sensitive K+ channel activity. Proc Natl Acad Sci U S A 2004;101:11880-11885.
-
(2004)
Proc Natl Acad Sci U S A
, vol.101
, pp. 11880-11885
-
-
Ardehali, H.1
Chen, Z.2
Ko, Y.3
Mejía-Alvarez, R.4
Marbán, E.5
-
75
-
-
46349106237
-
The endogenous mitochondrial complex II inhibitor malonate regulates mitochondrial ATP-sensitive potassium channels: Implications for ischemic preconditioning
-
Wojtovich AP, Brookes PS. The endogenous mitochondrial complex II inhibitor malonate regulates mitochondrial ATP-sensitive potassium channels: Implications for ischemic preconditioning. Biochim Biophys Acta Bioenerg 2008;1777: 882-889.
-
(2008)
Biochim Biophys Acta Bioenerg
, vol.1777
, pp. 882-889
-
-
Wojtovich, A.P.1
Brookes, P.S.2
-
76
-
-
0026547286
-
Blockade of ATP-sensitive potassium channels prevents myocardial preconditioning in dogs
-
Gross GJ, Auchampach JA. Blockade of ATP-sensitive potassium channels prevents myocardial preconditioning in dogs. Circ Res 1992;70:223-233.
-
(1992)
Circ Res
, vol.70
, pp. 223-233
-
-
Gross, G.J.1
Auchampach, J.A.2
-
77
-
-
49849123118
-
Diazoxide, an inhibitor of succinate oxidation
-
Schäfer G, Wegener C, Portenhauser R, Bojanovski D. Diazoxide, an inhibitor of succinate oxidation. Biochem Pharmacol 1969;18:2678-2681.
-
(1969)
Biochem Pharmacol
, vol.18
, pp. 2678-2681
-
-
Schäfer, G.1
Wegener, C.2
Portenhauser, R.3
Bojanovski, D.4
-
78
-
-
0037377605
-
Targeting nucleotide-requiring enzymes: Implications for diazoxide-induced cardioprotection
-
Dzeja PP, Bast P, Ozcan C, Valverde A, Holmuhamedov EL, Van Wylen DGL, Terzic A, Petras P, Bast P, Ozcan C, Holmuhamedov EL, Van DGL, Terzic A. Targeting nucleotide-requiring enzymes: implications for diazoxide-induced cardioprotection. Am J Physiol Hear Circ Physiol 2003;284:H1048-H1056.
-
(2003)
Am J Physiol Hear Circ Physiol
, vol.284
, pp. H1048-H1056
-
-
Dzeja, P.P.1
Bast, P.2
Ozcan, C.3
Valverde, A.4
Holmuhamedov, E.L.5
Van Wylen, D.G.L.6
Terzic, A.7
Petras, P.8
Bast, P.9
Ozcan, C.10
Holmuhamedov, E.L.11
Van, D.G.L.12
Terzic, A.13
-
79
-
-
0034880982
-
Selective blockade of mitochondrial K(ATP) channels does not impair myocardial oxygen consumption
-
Chen Y, Traverse JH, Zhang J, Bache RJ. Selective blockade of mitochondrial K(ATP) channels does not impair myocardial oxygen consumption. Am J Physiol Heart Circ Physiol 2001;281:H738-H744.
-
(2001)
Am J Physiol Heart Circ Physiol
, vol.281
, pp. H738-H744
-
-
Chen, Y.1
Traverse, J.H.2
Zhang, J.3
Bache, R.J.4
-
80
-
-
84864880941
-
Mitochondrial ROMK channel is a molecular component of mitoKATP
-
Foster DB, Ho AS, Rucker J, Garlid AO, Chen L, Sidor A, Garlid KD, O'Rourke B. Mitochondrial ROMK channel is a molecular component of mitoKATP. Circ Res 2012;111:446-454.
-
(2012)
Circ Res
, vol.111
, pp. 446-454
-
-
Foster, D.B.1
Ho, A.S.2
Rucker, J.3
Garlid, A.O.4
Chen, L.5
Sidor, A.6
Garlid, K.D.7
O'Rourke, B.8
-
81
-
-
0027204154
-
Age-dependent striatal excitotoxic lesions produced by the endogenous mitochondrial inhibitor malonate
-
Beal M, Brouillet E, Jenkins B, Henshaw R, Rosen B, Hyman B. Age-dependent striatal excitotoxic lesions produced by the endogenous mitochondrial inhibitor malonate. J Neurochem 1993;61:1147-1150.
-
(1993)
J Neurochem
, vol.61
, pp. 1147-1150
-
-
Beal, M.1
Brouillet, E.2
Jenkins, B.3
Henshaw, R.4
Rosen, B.5
Hyman, B.6
-
82
-
-
84860437228
-
Hydrogen sulfide decreases the levels of ROS by inhibiting mitochondrial complex IV and increasing SOD activities in cardiomyocytes under ischemia/reperfusion
-
Sun WH, Liu F, Chen Y, Zhu YC. Hydrogen sulfide decreases the levels of ROS by inhibiting mitochondrial complex IV and increasing SOD activities in cardiomyocytes under ischemia/reperfusion. Biochem Biophys Res Commun 2012;421:164-169.
-
(2012)
Biochem Biophys Res Commun
, vol.421
, pp. 164-169
-
-
Sun, W.H.1
Liu, F.2
Chen, Y.3
Zhu, Y.C.4
-
83
-
-
33749433230
-
Mitochondrial uncoupling, with low concentration FCCP, induces ROS-dependent cardioprotection independent of KATP channel activation
-
Brennan J, Southworth R, Medina R, Davidson S, Duchen M, Shattock M. Mitochondrial uncoupling, with low concentration FCCP, induces ROS-dependent cardioprotection independent of KATP channel activation. Cardiovasc Res 2006;72:313-321.
-
(2006)
Cardiovasc Res
, vol.72
, pp. 313-321
-
-
Brennan, J.1
Southworth, R.2
Medina, R.3
Davidson, S.4
Duchen, M.5
Shattock, M.6
|