메뉴 건너뛰기




Volumn 111, Issue 2, 2016, Pages 134-141

Succinate metabolism: A new therapeutic target for myocardial reperfusion injury

Author keywords

Ischaemia Reperfusion; Mitochondria; Reactive oxygen species; Succinate

Indexed keywords

REACTIVE OXYGEN METABOLITE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE DEHYDROGENASE (UBIQUINONE); SUCCINATE DEHYDROGENASE; SUCCINATE DEHYDROGENASE (UBIQUINONE); SUCCINIC ACID; CARDIOVASCULAR AGENT;

EID: 85007381729     PISSN: 00086363     EISSN: 17553245     Source Type: Journal    
DOI: 10.1093/cvr/cvw100     Document Type: Review
Times cited : (114)

References (83)
  • 2
    • 84873848690 scopus 로고    scopus 로고
    • Myocardial ischemia-reperfusion injury: A neglected therapeutic target
    • Hausenloy DJ, Yellon DM. Myocardial ischemia-reperfusion injury: A neglected therapeutic target. J Clin Invest 2013;123:92-100.
    • (2013) J Clin Invest , vol.123 , pp. 92-100
    • Hausenloy, D.J.1    Yellon, D.M.2
  • 3
    • 34548746306 scopus 로고    scopus 로고
    • Myocardial reperfusion injury
    • Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med 2007;357: 1121-1135.
    • (2007) N Engl J Med , vol.357 , pp. 1121-1135
    • Yellon, D.M.1    Hausenloy, D.J.2
  • 4
    • 0035890319 scopus 로고    scopus 로고
    • The Na+/H+ exchange inhibitor eniporide as an adjunct to early reperfusion therapy for acute myocardial infarction. Results of the Evaluation of the Safety and Cardioprotective Effects of Eniporide in Acute Myocardial Infarction (ESCAMI) Trial
    • Zeymer U, Suryapranata H, Monassier JP, Opolski G, Davies J, Rasmanis G, Linssen G, Tebbe U, Tiemann R, Machnig T, Neuhaus K-L. The Na+/H+ exchange inhibitor eniporide as an adjunct to early reperfusion therapy for acute myocardial infarction. Results of the Evaluation of the Safety and Cardioprotective Effects of Eniporide in Acute Myocardial Infarction (ESCAMI) Trial. J Am Coll Cardiol 2001;38:1645-1650.
    • (2001) J Am Coll Cardiol , vol.38 , pp. 1645-1650
    • Zeymer, U.1    Suryapranata, H.2    Monassier, J.P.3    Opolski, G.4    Davies, J.5    Rasmanis, G.6    Linssen, G.7    Tebbe, U.8    Tiemann, R.9    Machnig, T.10    Neuhaus, K.-L.11
  • 8
    • 42049108814 scopus 로고    scopus 로고
    • Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury
    • Murphy E, Steenbergen C. Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 2008;88:581-609.
    • (2008) Physiol Rev , vol.88 , pp. 581-609
    • Murphy, E.1    Steenbergen, C.2
  • 9
    • 21244492310 scopus 로고    scopus 로고
    • Myocardial substrate metabolism in the normal and failing heart
    • Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 2005;85:1093-1129.
    • (2005) Physiol Rev , vol.85 , pp. 1093-1129
    • Stanley, W.C.1    Recchia, F.A.2    Lopaschuk, G.D.3
  • 10
    • 0014982432 scopus 로고
    • Acute metabolic response in myocardial infarction
    • Opie LH. Acute metabolic response in myocardial infarction. Br Heart J 1971;33(Suppl): 129-137.
    • (1971) Br Heart J , vol.33 , pp. 129-137
    • Opie, L.H.1
  • 11
    • 0028968606 scopus 로고
    • Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion
    • Griffiths EJ, Halestrap AP. Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J 1995;307:93-98.
    • (1995) Biochem J , vol.307 , pp. 93-98
    • Griffiths, E.J.1    Halestrap, A.P.2
  • 12
    • 0031902064 scopus 로고    scopus 로고
    • The role of the myocardial sodium-hydrogen exchanger (NHE) and its role in mediating ischemic and reperfusion injury
    • Karmazyn M. The role of the myocardial sodium-hydrogen exchanger (NHE) and its role in mediating ischemic and reperfusion injury. Keio J Med 1998;47:65-72.
    • (1998) Keio J Med , vol.47 , pp. 65-72
    • Karmazyn, M.1
  • 13
    • 0026753508 scopus 로고
    • Effect of ischemia and reperfusion on sarcoplasmic reticulum calcium uptake
    • Kaplan P, Hendrikx M, Mattheussen M, Mubagwa K, Flameng W. Effect of ischemia and reperfusion on sarcoplasmic reticulum calcium uptake. Circ Res 1992;71: 1123-1130.
    • (1992) Circ Res , vol.71 , pp. 1123-1130
    • Kaplan, P.1    Hendrikx, M.2    Mattheussen, M.3    Mubagwa, K.4    Flameng, W.5
  • 14
    • 0027717581 scopus 로고
    • Role of increased cytosolic free calcium concentration in myocardial ischemic injury
    • Steenbergen C, Fralix TA, Murphy E. Role of increased cytosolic free calcium concentration in myocardial ischemic injury. Basic Res Cardiol 1993;88:456-470.
    • (1993) Basic Res Cardiol , vol.88 , pp. 456-470
    • Steenbergen, C.1    Fralix, T.A.2    Murphy, E.3
  • 15
    • 0018117909 scopus 로고
    • Metabolic responses to cardiac hypoxia. Increased production of succinate by rabbit papillary muscles
    • Taegtmeyer H. Metabolic responses to cardiac hypoxia. Increased production of succinate by rabbit papillary muscles. Circ Res 1978;43:808-815.
    • (1978) Circ Res , vol.43 , pp. 808-815
    • Taegtmeyer, H.1
  • 16
    • 0023904443 scopus 로고
    • An assessment of anaerobic metabolism during ischemia and reperfusion in isolated Guinea pig heart
    • Pisarenko O, Studneva I, Khlopkov V, Solomatina E, Ruuge E. An assessment of anaerobic metabolism during ischemia and reperfusion in isolated guinea pig heart. Biochim Biophys Acta 1988;934:55-63.
    • (1988) Biochim Biophys Acta , vol.934 , pp. 55-63
    • Pisarenko, O.1    Studneva, I.2    Khlopkov, V.3    Solomatina, E.4    Ruuge, E.5
  • 19
    • 0000098037 scopus 로고
    • Direct measurement of free radical generation following reperfusion of ischemic myocardium
    • Zweier JL, Flaherty JT, Weisfeldt ML. Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proc Natl Acad Sci U S A. 1987;84: 1404-1407.
    • (1987) Proc Natl Acad Sci U S A , vol.84 , pp. 1404-1407
    • Zweier, J.L.1    Flaherty, J.T.2    Weisfeldt, M.L.3
  • 21
    • 0033565557 scopus 로고    scopus 로고
    • The mitochondrial permeability transition pore and its role in cell death
    • Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J 1999;341:233-249.
    • (1999) Biochem J , vol.341 , pp. 233-249
    • Crompton, M.1
  • 22
    • 1142273368 scopus 로고    scopus 로고
    • Mitochondrial permeability transition pore opening during myocardial reperfusion - A target for cardioprotection
    • Halestrap AP, Clarke SJ, Javadov SA. Mitochondrial permeability transition pore opening during myocardial reperfusion - A target for cardioprotection. Cardiovasc Res 2004; 61:372-385.
    • (2004) Cardiovasc Res , vol.61 , pp. 372-385
    • Halestrap, A.P.1    Clarke, S.J.2    Javadov, S.A.3
  • 23
    • 4043161974 scopus 로고    scopus 로고
    • Mitochondrial redox control of matrix metalloproteinases
    • Nelson KK, Melendez JA. Mitochondrial redox control of matrix metalloproteinases. Free Radic Biol Med 2004;37:768-784.
    • (2004) Free Radic Biol Med , vol.37 , pp. 768-784
    • Nelson, K.K.1    Melendez, J.A.2
  • 25
    • 0141815741 scopus 로고    scopus 로고
    • Production of reactive oxygen species by mitochondria: Central role of complex III
    • Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ. Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem 2003;278: 36027-36031.
    • (2003) J Biol Chem , vol.278 , pp. 36027-36031
    • Chen, Q.1    Vazquez, E.J.2    Moghaddas, S.3    Hoppel, C.L.4    Lesnefsky, E.J.5
  • 28
    • 33751177799 scopus 로고    scopus 로고
    • Reversible blockade of electron transport during ischemia protects mitochondria and decreases myocardial injury following reperfusion
    • Chen Q, Moghaddas S, Hoppel CL, Lesnefsky EJ. Reversible blockade of electron transport during ischemia protects mitochondria and decreases myocardial injury following reperfusion. J Pharmacol Exp Ther 2006;319:1405-1412.
    • (2006) J Pharmacol Exp Ther , vol.319 , pp. 1405-1412
    • Chen, Q.1    Moghaddas, S.2    Hoppel, C.L.3    Lesnefsky, E.J.4
  • 29
    • 53849099653 scopus 로고    scopus 로고
    • The production of reactive oxygen species by complex I
    • Hirst J, King MS, Pryde KR. The production of reactive oxygen species by complex I. Biochem Soc Trans 2008;36:976-980.
    • (2008) Biochem Soc Trans , vol.36 , pp. 976-980
    • Hirst, J.1    King, M.S.2    Pryde, K.R.3
  • 30
    • 64549084087 scopus 로고    scopus 로고
    • Reversible blockade of electron transport with amobarbital at the onset of reperfusion attenuates cardiac injury
    • Stewart S, Lesnefsky EJ, Chen Q. Reversible blockade of electron transport with amobarbital at the onset of reperfusion attenuates cardiac injury. Transl Res 2009;153: 224-231.
    • (2009) Transl Res , vol.153 , pp. 224-231
    • Stewart, S.1    Lesnefsky, E.J.2    Chen, Q.3
  • 31
    • 0021996572 scopus 로고
    • Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria
    • Turrens JF, Alexandre A, Lehninger AL. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys 1985;237:408-414.
    • (1985) Arch Biochem Biophys , vol.237 , pp. 408-414
    • Turrens, J.F.1    Alexandre, A.2    Lehninger, A.L.3
  • 32
    • 58249093939 scopus 로고    scopus 로고
    • How mitochondria produce reactive oxygen species
    • Murphy MP. How mitochondria produce reactive oxygen species. Biochem J 2009;417: 1-13.
    • (2009) Biochem J , vol.417 , pp. 1-13
    • Murphy, M.P.1
  • 33
    • 6444220801 scopus 로고    scopus 로고
    • Preconditioning by isoflurane is mediated by reactive oxygen species generated from mitochondrial electron transport chain complex III
    • Ludwig L, Tanaka K, Eells J, Weihrauch D, Pagel P, Kersten J, Warltier D. Preconditioning by isoflurane is mediated by reactive oxygen species generated from mitochondrial electron transport chain complex III. Anesth Analg 2004;99:1308-1315.
    • (2004) Anesth Analg , vol.99 , pp. 1308-1315
    • Ludwig, L.1    Tanaka, K.2    Eells, J.3    Weihrauch, D.4    Pagel, P.5    Kersten, J.6    Warltier, D.7
  • 34
    • 0032541173 scopus 로고    scopus 로고
    • Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes
    • Vanden Hoek TL, Becker LB, Shao Z, Li C, Schumacker PT. Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes. J Biol Chem 1998;273:18092-18098.
    • (1998) J Biol Chem , vol.273 , pp. 18092-18098
    • Vanden Hoek, T.L.1    Becker, L.B.2    Shao, Z.3    Li, C.4    Schumacker, P.T.5
  • 35
    • 33751072935 scopus 로고    scopus 로고
    • Bioenergetics and the formation of mitochondrial reactive oxygen species
    • Adam-Vizi V, Chinopoulos C. Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci 2006;27:639-645.
    • (2006) Trends Pharmacol Sci , vol.27 , pp. 639-645
    • Adam-Vizi, V.1    Chinopoulos, C.2
  • 37
    • 0025072729 scopus 로고
    • Slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase
    • Kotlyar AB, Vinogradov AD. Slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase. Biochim Biophys Acta Bioenerg 1990;1019:151-158.
    • (1990) Biochim Biophys Acta Bioenerg , vol.1019 , pp. 151-158
    • Kotlyar, A.B.1    Vinogradov, A.D.2
  • 38
    • 84901841671 scopus 로고    scopus 로고
    • Characterisation of the active/de-Active transition of mitochondrial complex i
    • Babot M, Birch A, Labarbuta P, Galkin A. Characterisation of the active/de-Active transition of mitochondrial complex i. Biochim Biophys Acta Bioenerg 2014;1837:1083-1092.
    • (2014) Biochim Biophys Acta Bioenerg , vol.1837 , pp. 1083-1092
    • Babot, M.1    Birch, A.2    Labarbuta, P.3    Galkin, A.4
  • 43
    • 84903751373 scopus 로고    scopus 로고
    • Mitochondria selective S-nitrosation by mitochondria-Targeted S-nitrosothiol protects against post-infarct heart failure in mouse hearts
    • Methner C, Chouchani ET, Buonincontri G, Pell VR, Sawiak SJ, Murphy MP, Krieg T. Mitochondria selective S-nitrosation by mitochondria-Targeted S-nitrosothiol protects against post-infarct heart failure in mouse hearts. Eur J Heart Fail 2014;16:712-717.
    • (2014) Eur J Heart Fail , vol.16 , pp. 712-717
    • Methner, C.1    Chouchani, E.T.2    Buonincontri, G.3    Pell, V.R.4    Sawiak, S.J.5    Murphy, M.P.6    Krieg, T.7
  • 45
    • 4744344869 scopus 로고    scopus 로고
    • Excessive ATP hydrolysis in ischemic myocardium by mitochondrial F1F0-ATPase: Effect of selective pharmacological inhibition of mitochondrial ATPase hydrolase activity
    • Grover GJ, Atwal KS, Sleph PG, Wang F-L, Monshizadegan H, Monticello T, Green DW. Excessive ATP hydrolysis in ischemic myocardium by mitochondrial F1F0-ATPase: effect of selective pharmacological inhibition of mitochondrial ATPase hydrolase activity. Am J Physiol Heart Circ Physiol 2004;287:H1747-H1755.
    • (2004) Am J Physiol Heart Circ Physiol , vol.287 , pp. H1747-H1755
    • Grover, G.J.1    Atwal, K.S.2    Sleph, P.G.3    Wang, F.-L.4    Monshizadegan, H.5    Monticello, T.6    Green, D.W.7
  • 46
    • 0019503201 scopus 로고
    • Hypoxanthine production by ischemic heart demonstrated by high pressure liquid chromatography of blood purine nucleosides and oxypurines
    • Harmsen E, de Jong J, Serruys P. Hypoxanthine production by ischemic heart demonstrated by high pressure liquid chromatography of blood purine nucleosides and oxypurines. Clin Chim Acta 1981;115:73-84.
    • (1981) Clin Chim Acta , vol.115 , pp. 73-84
    • Harmsen, E.1    De Jong, J.2    Serruys, P.3
  • 47
    • 33644631485 scopus 로고    scopus 로고
    • Therapeutic effects of xanthine oxidase inhibitors: Renaissance half a century after the discovery of allopurinol
    • Pacher P, Nivorozhkin A, Szabó C. Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol Rev 2006;58: 87-114.
    • (2006) Pharmacol Rev , vol.58 , pp. 87-114
    • Pacher, P.1    Nivorozhkin, A.2    Szabó, C.3
  • 49
    • 0016670964 scopus 로고
    • Metabolic consequences of diving in animals and man
    • Hochachka PW, Storey KB. Metabolic consequences of diving in animals and man. Science 1975;187:613-621.
    • (1975) Science , vol.187 , pp. 613-621
    • Hochachka, P.W.1    Storey, K.B.2
  • 50
    • 0023549336 scopus 로고
    • Evidence for succinate production by reduction of fumarate during hypoxia in isolated adult rat heart cells
    • Hohl C, Oestreich R, Rösen P, Wiesner R, Grieshaber M. Evidence for succinate production by reduction of fumarate during hypoxia in isolated adult rat heart cells. Arch Biochem Biophys 1987;259:527-535.
    • (1987) Arch Biochem Biophys , vol.259 , pp. 527-535
    • Hohl, C.1    Oestreich, R.2    Rösen, P.3    Wiesner, R.4    Grieshaber, M.5
  • 52
    • 0023718383 scopus 로고
    • Pathways of succinate formation and their contribution to improvement of cardiac function in the hypoxic rat heart
    • Wiesner RJ, Rösen P, Grieshaber MK. Pathways of succinate formation and their contribution to improvement of cardiac function in the hypoxic rat heart. Biochem Med Metab Biol 1988;40:19-34.
    • (1988) Biochem Med Metab Biol , vol.40 , pp. 19-34
    • Wiesner, R.J.1    Rösen, P.2    Grieshaber, M.K.3
  • 53
    • 0020658559 scopus 로고
    • Effect of glutamic and aspartic acids on adenine nucleotides, nitrogenous compounds and contractile function during underperfusion of isolated rat heart
    • Pisarenko O, Solomatina E, Studneva I, Ivanov VE, Kapelko VI, Smirnov VN. Effect of glutamic and aspartic acids on adenine nucleotides, nitrogenous compounds and contractile function during underperfusion of isolated rat heart. J Mol Cell Cardiol 1983;15: 53-60.
    • (1983) J Mol Cell Cardiol , vol.15 , pp. 53-60
    • Pisarenko, O.1    Solomatina, E.2    Studneva, I.3    Ivanov, V.E.4    Kapelko, V.I.5    Smirnov, V.N.6
  • 54
    • 0014797606 scopus 로고
    • Anaerobic rat heart. Effects of glucose and tricarboxylic acidcycle metabolites on metabolism and physiological performance
    • Penney D, Cascarano J. Anaerobic Rat Heart. Effects of glucose and tricarboxylic acidcycle metabolites on metabolism and physiological performance. Biochem J 1970;118: 221-227.
    • (1970) Biochem J , vol.118 , pp. 221-227
    • Penney, D.1    Cascarano, J.2
  • 56
    • 84864570953 scopus 로고    scopus 로고
    • The succinate receptor as a novel therapeutic target for oxidative and metabolic stress-related conditions
    • Lausanne
    • Ariza AC, Deen PMT, Robben JH. The succinate receptor as a novel therapeutic target for oxidative and metabolic stress-related conditions. Front Endocrinol (Lausanne) 2012; 3:1-8.
    • (2012) Front Endocrinol , vol.3 , pp. 1-8
    • Ariza, A.C.1    Deen, P.M.T.2    Robben, J.H.3
  • 57
    • 78651117288 scopus 로고
    • The interaction of energy and electron transfer reactions in mitochondria. V. The energy transfer pathway
    • Chance B. The interaction of energy and electron transfer reactions in mitochondria. V. The energy transfer pathway. J Biol Chem 1961;236:1569-1576.
    • (1961) J Biol Chem , vol.236 , pp. 1569-1576
    • Chance, B.1
  • 58
    • 84875218644 scopus 로고    scopus 로고
    • The mitochondrial transporter family SLC25: Identification, properties and physiopathology
    • Palmieri F. The mitochondrial transporter family SLC25: identification, properties and physiopathology. Mol Aspects Med 2013;34:465-484.
    • (2013) Mol Aspects Med , vol.34 , pp. 465-484
    • Palmieri, F.1
  • 60
    • 0024594297 scopus 로고
    • Glutamate degradation in the ischemic dog heart: Contribution to anaerobic energy production
    • Wiesner RJ, Deussen A, Borst M, Schrader J, Grieshaber MK. Glutamate degradation in the ischemic dog heart: contribution to anaerobic energy production. J Mol Cell Cardiol 1989;21:49-59.
    • (1989) J Mol Cell Cardiol , vol.21 , pp. 49-59
    • Wiesner, R.J.1    Deussen, A.2    Borst, M.3    Schrader, J.4    Grieshaber, M.K.5
  • 61
    • 0031897566 scopus 로고    scopus 로고
    • The physiological basis of diving to depth: Birds and mammals
    • Kooyman GL, Ponganis PJ. The physiological basis of diving to depth: birds and mammals. Annu Rev Physiol 1998;60:19-32.
    • (1998) Annu Rev Physiol , vol.60 , pp. 19-32
    • Kooyman, G.L.1    Ponganis, P.J.2
  • 62
    • 77955301066 scopus 로고    scopus 로고
    • The NADH-fumarate reductase system, a novel mitochondrial energy metabolism, is a new target for anticancer therapy in tumor microenvironments
    • Tomitsuka E, Kita K, Esumi H. The NADH-fumarate reductase system, a novel mitochondrial energy metabolism, is a new target for anticancer therapy in tumor microenvironments. Ann N Y Acad Sci 2010;1201:44-49.
    • (2010) Ann N Y Acad Sci , vol.1201 , pp. 44-49
    • Tomitsuka, E.1    Kita, K.2    Esumi, H.3
  • 63
    • 33846335174 scopus 로고    scopus 로고
    • Modulation of electron transport protects cardiac mitochondria and decreases myocardial injury during ischemia and reperfusion
    • Chen Q, Camara AKS, Stowe DF, Hoppel CL, Lesnefsky EJ. Modulation of electron transport protects cardiac mitochondria and decreases myocardial injury during ischemia and reperfusion. Am J Physiol Cell Physiol 2007;292:C137-C147.
    • (2007) Am J Physiol Cell Physiol , vol.292 , pp. C137-C147
    • Chen, Q.1    Camara, A.K.S.2    Stowe, D.F.3    Hoppel, C.L.4    Lesnefsky, E.J.5
  • 64
    • 0034740585 scopus 로고    scopus 로고
    • DCM-Dependent and -independent production of reactive oxygen species by rat brain mitochondria
    • Votyakova TV, Reynolds IJ. Dcm-Dependent and -independent production of reactive oxygen species by rat brain mitochondria. J Neurochem 2001;79:266-277.
    • (2001) J Neurochem , vol.79 , pp. 266-277
    • Votyakova, T.V.1    Reynolds, I.J.2
  • 65
    • 0036319021 scopus 로고    scopus 로고
    • Generation of reactive oxygen species by the mitochondrial electron transport chain
    • Liu Y, Fiskum G, Schubert D. Generation of reactive oxygen species by the mitochondrial electron transport chain. J Neurochem 2002;80:780-787.
    • (2002) J Neurochem , vol.80 , pp. 780-787
    • Liu, Y.1    Fiskum, G.2    Schubert, D.3
  • 66
    • 67349133591 scopus 로고    scopus 로고
    • Ambivalent effects of diazoxide on mitochondrial ROS production at respiratory chain complexes I and III
    • Dröse S, Hanley PJ, Brandt U. Ambivalent effects of diazoxide on mitochondrial ROS production at respiratory chain complexes I and III. Biochim Biophys Acta 2009;1790: 558-565.
    • (2009) Biochim Biophys Acta , vol.1790 , pp. 558-565
    • Dröse, S.1    Hanley, P.J.2    Brandt, U.3
  • 69
    • 0025283871 scopus 로고
    • The effect of ischemia/reperfusion on adenine nucleotide metabolism and xanthine oxidase production in skeletal muscle
    • Lindsay TF, Liauw S, Romaschin AD, Walker PM. The effect of ischemia/reperfusion on adenine nucleotide metabolism and xanthine oxidase production in skeletal muscle. J Vasc Surg 1990;12:8-15.
    • (1990) J Vasc Surg , vol.12 , pp. 8-15
    • Lindsay, T.F.1    Liauw, S.2    Romaschin, A.D.3    Walker, P.M.4
  • 70
    • 0026628120 scopus 로고
    • Prolonged adenine nucleotide resynthesis injury in postischemic skeletal muscle
    • Rubin BB, Liauw S, Tittley J, Romaschin AD, Walker PM. Prolonged adenine nucleotide resynthesis injury in postischemic skeletal muscle. Am J Physiol 1992;262: H1538-H1547.
    • (1992) Am J Physiol , vol.262 , pp. H1538-H1547
    • Rubin, B.B.1    Liauw, S.2    Tittley, J.3    Romaschin, A.D.4    Walker, P.M.5
  • 71
    • 0036088772 scopus 로고    scopus 로고
    • Potassium channel openers protect cardiac mitochondria by attenuating oxidant stress at reoxygenation
    • Ozcan C, Bienengraeber M, Dzeja PP, Terzic A. Potassium channel openers protect cardiac mitochondria by attenuating oxidant stress at reoxygenation. Am J Physiol Heart Circ Physiol 2002;282:H531-H539.
    • (2002) Am J Physiol Heart Circ Physiol , vol.282 , pp. H531-H539
    • Ozcan, C.1    Bienengraeber, M.2    Dzeja, P.P.3    Terzic, A.4
  • 72
    • 62249098383 scopus 로고    scopus 로고
    • The complex II inhibitor atpenin A5 protects against cardiac ischemia-reperfusion injury via activation of mitochondrial KATP channels
    • Wojtovich AP, Brookes PS. The complex II inhibitor atpenin A5 protects against cardiac ischemia-reperfusion injury via activation of mitochondrial KATP channels. Basic Res Cardiol 2009;104:121-129.
    • (2009) Basic Res Cardiol , vol.104 , pp. 121-129
    • Wojtovich, A.P.1    Brookes, P.S.2
  • 73
    • 84942514336 scopus 로고    scopus 로고
    • Characterization of the cardiac succinylome and its role in ischemia-reperfusion injury
    • Boylston JA, Sun J, Chen Y, Gucek M, Sack MN, Murphy E. Characterization of the cardiac succinylome and its role in ischemia-reperfusion injury. J Mol Cell Cardiol 2015;88: 73-81.
    • (2015) J Mol Cell Cardiol , vol.88 , pp. 73-81
    • Boylston, J.A.1    Sun, J.2    Chen, Y.3    Gucek, M.4    Sack, M.N.5    Murphy, E.6
  • 74
    • 4143097031 scopus 로고    scopus 로고
    • Multiprotein complex containing succinate dehydrogenase confers mitochondrial ATP-sensitive K+ channel activity
    • Ardehali H, Chen Z, Ko Y, Mejía-Alvarez R, Marbán E. Multiprotein complex containing succinate dehydrogenase confers mitochondrial ATP-sensitive K+ channel activity. Proc Natl Acad Sci U S A 2004;101:11880-11885.
    • (2004) Proc Natl Acad Sci U S A , vol.101 , pp. 11880-11885
    • Ardehali, H.1    Chen, Z.2    Ko, Y.3    Mejía-Alvarez, R.4    Marbán, E.5
  • 75
    • 46349106237 scopus 로고    scopus 로고
    • The endogenous mitochondrial complex II inhibitor malonate regulates mitochondrial ATP-sensitive potassium channels: Implications for ischemic preconditioning
    • Wojtovich AP, Brookes PS. The endogenous mitochondrial complex II inhibitor malonate regulates mitochondrial ATP-sensitive potassium channels: Implications for ischemic preconditioning. Biochim Biophys Acta Bioenerg 2008;1777: 882-889.
    • (2008) Biochim Biophys Acta Bioenerg , vol.1777 , pp. 882-889
    • Wojtovich, A.P.1    Brookes, P.S.2
  • 76
    • 0026547286 scopus 로고
    • Blockade of ATP-sensitive potassium channels prevents myocardial preconditioning in dogs
    • Gross GJ, Auchampach JA. Blockade of ATP-sensitive potassium channels prevents myocardial preconditioning in dogs. Circ Res 1992;70:223-233.
    • (1992) Circ Res , vol.70 , pp. 223-233
    • Gross, G.J.1    Auchampach, J.A.2
  • 79
    • 0034880982 scopus 로고    scopus 로고
    • Selective blockade of mitochondrial K(ATP) channels does not impair myocardial oxygen consumption
    • Chen Y, Traverse JH, Zhang J, Bache RJ. Selective blockade of mitochondrial K(ATP) channels does not impair myocardial oxygen consumption. Am J Physiol Heart Circ Physiol 2001;281:H738-H744.
    • (2001) Am J Physiol Heart Circ Physiol , vol.281 , pp. H738-H744
    • Chen, Y.1    Traverse, J.H.2    Zhang, J.3    Bache, R.J.4
  • 81
    • 0027204154 scopus 로고
    • Age-dependent striatal excitotoxic lesions produced by the endogenous mitochondrial inhibitor malonate
    • Beal M, Brouillet E, Jenkins B, Henshaw R, Rosen B, Hyman B. Age-dependent striatal excitotoxic lesions produced by the endogenous mitochondrial inhibitor malonate. J Neurochem 1993;61:1147-1150.
    • (1993) J Neurochem , vol.61 , pp. 1147-1150
    • Beal, M.1    Brouillet, E.2    Jenkins, B.3    Henshaw, R.4    Rosen, B.5    Hyman, B.6
  • 82
    • 84860437228 scopus 로고    scopus 로고
    • Hydrogen sulfide decreases the levels of ROS by inhibiting mitochondrial complex IV and increasing SOD activities in cardiomyocytes under ischemia/reperfusion
    • Sun WH, Liu F, Chen Y, Zhu YC. Hydrogen sulfide decreases the levels of ROS by inhibiting mitochondrial complex IV and increasing SOD activities in cardiomyocytes under ischemia/reperfusion. Biochem Biophys Res Commun 2012;421:164-169.
    • (2012) Biochem Biophys Res Commun , vol.421 , pp. 164-169
    • Sun, W.H.1    Liu, F.2    Chen, Y.3    Zhu, Y.C.4
  • 83
    • 33749433230 scopus 로고    scopus 로고
    • Mitochondrial uncoupling, with low concentration FCCP, induces ROS-dependent cardioprotection independent of KATP channel activation
    • Brennan J, Southworth R, Medina R, Davidson S, Duchen M, Shattock M. Mitochondrial uncoupling, with low concentration FCCP, induces ROS-dependent cardioprotection independent of KATP channel activation. Cardiovasc Res 2006;72:313-321.
    • (2006) Cardiovasc Res , vol.72 , pp. 313-321
    • Brennan, J.1    Southworth, R.2    Medina, R.3    Davidson, S.4    Duchen, M.5    Shattock, M.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.