메뉴 건너뛰기




Volumn 101, Issue 4, 2017, Pages 1753-1767

Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae with improved xylose utilization capability

Author keywords

Adaptive evolution; Bioethanol; Saccharomyces cerevisiae; Transcriptome; Xylose regulation

Indexed keywords

BIOCHEMISTRY; BIOETHANOL; BIOSYNTHESIS; ETHANOL; EVOLUTIONARY ALGORITHMS; FERMENTATION; GLUCOSE; IRON COMPOUNDS; METABOLIC ENGINEERING; METABOLISM; PHYSIOLOGY; POPULATION STATISTICS; SUGAR SUBSTITUTES; VITAMINS; YEAST;

EID: 85006931087     PISSN: 01757598     EISSN: 14320614     Source Type: Journal    
DOI: 10.1007/s00253-016-8046-y     Document Type: Article
Times cited : (33)

References (65)
  • 1
    • 33747373639 scopus 로고    scopus 로고
    • Use of population genetics to derive nonrecombinant Saccharomyces cerevisiae strains that grow using xylose as a sole carbon source
    • COI: 1:CAS:528:DC%2BD28XhtVCjt7jF, PID: 16911508
    • Attfield PV, Bell PJ (2006) Use of population genetics to derive nonrecombinant Saccharomyces cerevisiae strains that grow using xylose as a sole carbon source. FEMS Yeast Res 6:862–868
    • (2006) FEMS Yeast Res , vol.6 , pp. 862-868
    • Attfield, P.V.1    Bell, P.J.2
  • 2
    • 0022697977 scopus 로고
    • Direct evidence for a xylose metabolic pathway in Saccharomyces cerevisiae
    • COI: 1:CAS:528:DyaL28XktVehsLc%3D, PID: 18555359
    • Batt CA, Carvallo S, Easson DD, Akedo M, Sinskey AJ (1986) Direct evidence for a xylose metabolic pathway in Saccharomyces cerevisiae. Biotechnol Bioeng 28:549–553
    • (1986) Biotechnol Bioeng , vol.28 , pp. 549-553
    • Batt, C.A.1    Carvallo, S.2    Easson, D.D.3    Akedo, M.4    Sinskey, A.J.5
  • 4
    • 0037474301 scopus 로고    scopus 로고
    • The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur
    • COI: 1:CAS:528:DC%2BD3sXmt1Gqtw%3D%3D, PID: 12414795
    • Boer VM, de Winde JH, Pronk JT, Piper MD (2003) The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur. J Biol Chem 278:3265–3274
    • (2003) J Biol Chem , vol.278 , pp. 3265-3274
    • Boer, V.M.1    de Winde, J.H.2    Pronk, J.T.3    Piper, M.D.4
  • 6
    • 84857056878 scopus 로고    scopus 로고
    • Evolutionary engineering of Saccharomyces cerevisiae for improved industrially important properties
    • PID: 22136139
    • Çakar ZP, Turanlı-Yıldız B, Alkım C, Yılmaz Ü (2012) Evolutionary engineering of Saccharomyces cerevisiae for improved industrially important properties. FEMS Yeast Res 12:171–182
    • (2012) FEMS Yeast Res , vol.12 , pp. 171-182
    • Çakar, Z.P.1    Turanlı-Yıldız, B.2    Alkım, C.3    Yılmaz, Ü.4
  • 8
  • 9
    • 34447286236 scopus 로고    scopus 로고
    • Genetic improvement of Saccharomyces cerevisiae for xylose fermentation
    • COI: 1:CAS:528:DC%2BD2sXnslWhtL8%3D, PID: 17524590
    • Chu BC, Lee H (2007) Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnol Adv 25:425–441
    • (2007) Biotechnol Adv , vol.25 , pp. 425-441
    • Chu, B.C.1    Lee, H.2
  • 11
    • 1342343932 scopus 로고    scopus 로고
    • Characterization of the products of the genes SNO1 and SNZ1 involved in pyridoxine synthesis in Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BD2cXhslKqsbw%3D, PID: 14764090
    • Dong YX, Sueda S, Nikawa JI, Kondo H (2004) Characterization of the products of the genes SNO1 and SNZ1 involved in pyridoxine synthesis in Saccharomyces cerevisiae. Eur J Biochem 271:745–752
    • (2004) Eur J Biochem , vol.271 , pp. 745-752
    • Dong, Y.X.1    Sueda, S.2    Nikawa, J.I.3    Kondo, H.4
  • 12
    • 84879489028 scopus 로고    scopus 로고
    • Adaptive laboratory evolution—principles and applications for biotechnology
    • Dragosits M, Mattanovich D (2013) Adaptive laboratory evolution—principles and applications for biotechnology. Microb Cell Factories 12:1
    • (2013) Microb Cell Factories , vol.12 , pp. 1
    • Dragosits, M.1    Mattanovich, D.2
  • 13
    • 0025886466 scopus 로고
    • A constant rate of spontaneous mutation in DNA-based microbes
    • COI: 1:CAS:528:DyaK3MXlsFais7g%3D, PID: 1831267
    • Drake JW (1991) A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci U S A 88:7160–7164
    • (1991) Proc Natl Acad Sci U S A , vol.88 , pp. 7160-7164
    • Drake, J.W.1
  • 14
    • 84865278051 scopus 로고    scopus 로고
    • Customized optimization of metabolic pathways by combinatorial transcriptional engineering
    • COI: 1:CAS:528:DC%2BC38XhsFWktbrJ, PID: 22718979
    • Du J, Yuan Y, Si T, Lian J, Zhao H (2012) Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Nucleic Acids Res 40:e142–e142
    • (2012) Nucleic Acids Res , vol.40 , pp. e142
    • Du, J.1    Yuan, Y.2    Si, T.3    Lian, J.4    Zhao, H.5
  • 15
    • 0038441327 scopus 로고    scopus 로고
    • Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation
    • COI: 1:CAS:528:DC%2BD3sXktFOgsLY%3D, PID: 12776215
    • Elena SF, Lenski RE (2003) Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat Rev Genet 4:457–469
    • (2003) Nat Rev Genet , vol.4 , pp. 457-469
    • Elena, S.F.1    Lenski, R.E.2
  • 16
    • 0031810672 scopus 로고    scopus 로고
    • Yeast carbon catabolite repression
    • COI: 1:CAS:528:DyaK1cXkt1OitLY%3D, PID: 9618445
    • Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62:334–361
    • (1998) Microbiol Mol Biol Rev , vol.62 , pp. 334-361
    • Gancedo, J.M.1
  • 18
    • 0032537591 scopus 로고    scopus 로고
    • Thiamin metabolism and thiamin diphosphate-dependent enzymes in the yeast Saccharomyces cerevisiae: genetic regulation
    • COI: 1:CAS:528:DyaK1cXkt1yhs70%3D, PID: 9655908
    • Hohmann S, Meacock PA (1998) Thiamin metabolism and thiamin diphosphate-dependent enzymes in the yeast Saccharomyces cerevisiae: genetic regulation. Biochim Biophys Acta 1385:201–219
    • (1998) Biochim Biophys Acta , vol.1385 , pp. 201-219
    • Hohmann, S.1    Meacock, P.A.2
  • 19
    • 0036208491 scopus 로고    scopus 로고
    • Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose
    • COI: 1:CAS:528:DC%2BD38XivFGltrc%3D, PID: 11916674
    • Jeppsson M, Johansson B, Hahn-Hägerdal B, Gorwa-Grauslund MF (2002) Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl Environ Microbiol 68:1604–1609
    • (2002) Appl Environ Microbiol , vol.68 , pp. 1604-1609
    • Jeppsson, M.1    Johansson, B.2    Hahn-Hägerdal, B.3    Gorwa-Grauslund, M.F.4
  • 20
    • 0037228901 scopus 로고    scopus 로고
    • Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity
    • COI: 1:CAS:528:DC%2BD3sXkvVarsQ%3D%3D, PID: 12514033
    • Jin YS, Ni H, Laplaza JM, Jeffries TW (2003) Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity. Appl Environ Microbiol 69:495–503
    • (2003) Appl Environ Microbiol , vol.69 , pp. 495-503
    • Jin, Y.S.1    Ni, H.2    Laplaza, J.M.3    Jeffries, T.W.4
  • 21
    • 8744293844 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response
    • COI: 1:CAS:528:DC%2BD2cXhtVSju7rM, PID: 15528549
    • Jin YS, Laplaza JM, Jeffries TW (2004) Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response. Appl Environ Microbiol 70:6816–6825
    • (2004) Appl Environ Microbiol , vol.70 , pp. 6816-6825
    • Jin, Y.S.1    Laplaza, J.M.2    Jeffries, T.W.3
  • 22
    • 0026673456 scopus 로고
    • Repeated-batch fermentation process using a thermotolerant flocculating yeast constructed by protoplast fusion
    • COI: 1:CAS:528:DyaK38XmtlaitL0%3D
    • Kida K, Kume K, Morimura S, Sonoda Y (1992) Repeated-batch fermentation process using a thermotolerant flocculating yeast constructed by protoplast fusion. J Fermentation Bioeng 74:169–173
    • (1992) J Fermentation Bioeng , vol.74 , pp. 169-173
    • Kida, K.1    Kume, K.2    Morimura, S.3    Sonoda, Y.4
  • 23
    • 0031832807 scopus 로고    scopus 로고
    • Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence
    • COI: 1:CAS:528:DyaK1cXjt1aksLY%3D, PID: 9582191
    • Kim JM, Vanguri S, Boeke JD, Gabriel A, Voytas DF (1998) Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res 8:464–478
    • (1998) Genome Res , vol.8 , pp. 464-478
    • Kim, J.M.1    Vanguri, S.2    Boeke, J.D.3    Gabriel, A.4    Voytas, D.F.5
  • 24
    • 84859499872 scopus 로고    scopus 로고
    • Analysis and prediction of the physiological effects of altered coenzyme specificity in xylose reductase and xylitol dehydrogenase during xylose fermentation by Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BC38XlsFGgtLs%3D, PID: 21903144
    • Krahulec S, Klimacek M, Nidetzky B (2012) Analysis and prediction of the physiological effects of altered coenzyme specificity in xylose reductase and xylitol dehydrogenase during xylose fermentation by Saccharomyces cerevisiae. J Biotechnol 158:192–202
    • (2012) J Biotechnol , vol.158 , pp. 192-202
    • Krahulec, S.1    Klimacek, M.2    Nidetzky, B.3
  • 25
    • 78049249838 scopus 로고    scopus 로고
    • A quantitative model of glucose signaling in yeast reveals an incoherent feed forward loop leading to a specific, transient pulse of transcription
    • COI: 1:CAS:528:DC%2BC3cXht1ais7bE, PID: 20810924
    • Kuttykrishnan S, Sabina J, Langton LL, Johnston M, Brent MR (2010) A quantitative model of glucose signaling in yeast reveals an incoherent feed forward loop leading to a specific, transient pulse of transcription. Proc Natl Acad Sci U S A 107:16743–16748
    • (2010) Proc Natl Acad Sci U S A , vol.107 , pp. 16743-16748
    • Kuttykrishnan, S.1    Sabina, J.2    Langton, L.L.3    Johnston, M.4    Brent, M.R.5
  • 26
    • 1642315441 scopus 로고    scopus 로고
    • Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle
    • COI: 1:CAS:528:DC%2BD2cXisVarsLY%3D, PID: 15040955
    • Kuyper M, Aaron A, van Dijken JP, Pronk JT (2004) Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Res 4:655–664
    • (2004) FEMS Yeast Res , vol.4 , pp. 655-664
    • Kuyper, M.1    Aaron, A.2    van Dijken, J.P.3    Pronk, J.T.4
  • 27
    • 21744438324 scopus 로고    scopus 로고
    • Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain
    • COI: 1:CAS:528:DC%2BD2MXlvFKlu74%3D, PID: 15949975
    • Kuyper M, Toirkens MJ, Diderich JA, Winkler AA, van Dijken JP, Pronk JT (2005) Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res 5:925–934
    • (2005) FEMS Yeast Res , vol.5 , pp. 925-934
    • Kuyper, M.1    Toirkens, M.J.2    Diderich, J.A.3    Winkler, A.A.4    van Dijken, J.P.5    Pronk, J.T.6
  • 28
    • 84903748219 scopus 로고    scopus 로고
    • Employing a combinatorial expression approach to characterize xylose utilization in Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BC2cXht1Orur3I, PID: 24930894
    • Latimer LN, Lee ME, Medina-Cleghorn D, Kohnz RA, Nomura DK, Dueber JE (2014) Employing a combinatorial expression approach to characterize xylose utilization in Saccharomyces cerevisiae. Metab Eng 25:20–29
    • (2014) Metab Eng , vol.25 , pp. 20-29
    • Latimer, L.N.1    Lee, M.E.2    Medina-Cleghorn, D.3    Kohnz, R.A.4    Nomura, D.K.5    Dueber, J.E.6
  • 29
    • 84922851448 scopus 로고    scopus 로고
    • Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields
    • Lee SM, Jellison T, Alper HS (2014) Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields. Biotechnol Biofuels 7:1
    • (2014) Biotechnol Biofuels , vol.7 , pp. 1
    • Lee, S.M.1    Jellison, T.2    Alper, H.S.3
  • 30
    • 84943604629 scopus 로고    scopus 로고
    • Systems strategies for developing industrial microbial strains
    • COI: 1:CAS:528:DC%2BC2MXhvFKksLjJ
    • Lee SY, Kim HU (2015) Systems strategies for developing industrial microbial strains. Nature Biotechnol 33:1061–1072
    • (2015) Nature Biotechnol , vol.33 , pp. 1061-1072
    • Lee, S.Y.1    Kim, H.U.2
  • 32
    • 72149123391 scopus 로고    scopus 로고
    • Construction of a xylose-fermenting Saccharomyces cerevisiae strain by combined approaches of genetic engineering, chemical mutagenesis and evolutionary adaptation
    • COI: 1:CAS:528:DC%2BD1MXhsFyktbfO
    • Liu E, Hu Y (2010) Construction of a xylose-fermenting Saccharomyces cerevisiae strain by combined approaches of genetic engineering, chemical mutagenesis and evolutionary adaptation. Biochem Eng J 48:204–210
    • (2010) Biochem Eng J , vol.48 , pp. 204-210
    • Liu, E.1    Hu, Y.2
  • 33
    • 35148890697 scopus 로고    scopus 로고
    • Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiae strain
    • COI: 1:CAS:528:DC%2BD2sXhtFGmtrrM, PID: 17693563
    • Lu C, Jeffries T (2007) Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiae strain. Appl Environ Microbiol 73:6072–6077
    • (2007) Appl Environ Microbiol , vol.73 , pp. 6072-6077
    • Lu, C.1    Jeffries, T.2
  • 34
    • 0034174474 scopus 로고    scopus 로고
    • S-adenosylmethionine
    • COI: 1:CAS:528:DC%2BD3cXhtFWqtrs%3D, PID: 10762064
    • Lu SC (2000) S-adenosylmethionine. Int J Biochem Cell Biol 32:391–395
    • (2000) Int J Biochem Cell Biol , vol.32 , pp. 391-395
    • Lu, S.C.1
  • 35
    • 68349109625 scopus 로고    scopus 로고
    • Ethanol production from xylose in engineered Saccharomyces cerevisiae strains, current state and perspectives
    • COI: 1:CAS:528:DC%2BD1MXovVOhsL8%3D, PID: 19572128
    • Matsushika A, Inoue H, Kodaki T, Sawayama S (2009) Ethanol production from xylose in engineered Saccharomyces cerevisiae strains, current state and perspectives. Appl Microbiol Biotechnol 84(1):37–53
    • (2009) Appl Microbiol Biotechnol , vol.84 , Issue.1 , pp. 37-53
    • Matsushika, A.1    Inoue, H.2    Kodaki, T.3    Sawayama, S.4
  • 36
    • 84892934934 scopus 로고    scopus 로고
    • Transcription analysis of recombinant industrial and laboratory Saccharomyces cerevisiae strains reveals the molecular basis for fermentation of glucose and xylose
    • Matsushika A, Goshima T, Hoshino T (2014) Transcription analysis of recombinant industrial and laboratory Saccharomyces cerevisiae strains reveals the molecular basis for fermentation of glucose and xylose. Microb Cell Factories 13:459–459
    • (2014) Microb Cell Factories , vol.13 , pp. 459
    • Matsushika, A.1    Goshima, T.2    Hoshino, T.3
  • 37
    • 33746050402 scopus 로고    scopus 로고
    • Pdc2 coordinates expression of the THI regulon in the yeast Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BD28XntVWltro%3D
    • Mojzita D, Hohmann S (2006) Pdc2 coordinates expression of the THI regulon in the yeast Saccharomyces cerevisiae. Mol Gen Genomics 276:147–161
    • (2006) Mol Gen Genomics , vol.276 , pp. 147-161
    • Mojzita, D.1    Hohmann, S.2
  • 38
    • 84857061668 scopus 로고    scopus 로고
    • Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast
    • COI: 1:CAS:528:DC%2BC38XjsV2gur4%3D, PID: 22152095
    • Oud B, van Maris AJ, Daran JM, Pronk JT (2012) Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast. FEMS Yeast Res 12:183–196
    • (2012) FEMS Yeast Res , vol.12 , pp. 183-196
    • Oud, B.1    van Maris, A.J.2    Daran, J.M.3    Pronk, J.T.4
  • 40
    • 84942587806 scopus 로고    scopus 로고
    • Preferential retrotransposition in aging yeast mother cells is correlated with increased genome instability
    • COI: 1:CAS:528:DC%2BC2MXhtlSntLfN, PID: 26298836
    • Patterson MN, Scannapieco AE, PH A, Dorsey S, Royer CA, Maxwell PH (2015) Preferential retrotransposition in aging yeast mother cells is correlated with increased genome instability. DNA Repair 34:18–27
    • (2015) DNA Repair , vol.34 , pp. 18-27
    • Patterson, M.N.1    Scannapieco, A.E.2    Ph, A.3    Dorsey, S.4    Royer, C.A.5    Maxwell, P.H.6
  • 41
    • 84855419323 scopus 로고    scopus 로고
    • Improvement of xylose fermentation in respiratory-deficient xylose-fermenting Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BC38XlsVOruw%3D%3D, PID: 22178745
    • Peng B, Shen Y, Li X, Chen X, Hou J, Bao X (2012) Improvement of xylose fermentation in respiratory-deficient xylose-fermenting Saccharomyces cerevisiae. Metab Eng 14:9–18
    • (2012) Metab Eng , vol.14 , pp. 9-18
    • Peng, B.1    Shen, Y.2    Li, X.3    Chen, X.4    Hou, J.5    Bao, X.6
  • 42
    • 33947232747 scopus 로고    scopus 로고
    • Biosynthesis and function of GPI proteins in the yeast Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BD2sXjsVeru70%3D, PID: 16859984
    • Pittet M, Conzelmann A (2007) Biosynthesis and function of GPI proteins in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1771:405–420
    • (2007) Biochim Biophys Acta , vol.1771 , pp. 405-420
    • Pittet, M.1    Conzelmann, A.2
  • 43
    • 33847711060 scopus 로고    scopus 로고
    • The power to reduce: pyridine nucleotides--small molecules with a multitude of functions
    • COI: 1:CAS:528:DC%2BD2sXhslWntLg%3D, PID: 17295611
    • Pollak N, Dölle C, Ziegler M (2007) The power to reduce: pyridine nucleotides--small molecules with a multitude of functions. Biochem J 402:205–218
    • (2007) Biochem J , vol.402 , pp. 205-218
    • Pollak, N.1    Dölle, C.2    Ziegler, M.3
  • 44
    • 57149093800 scopus 로고    scopus 로고
    • Modulation of thiamine metabolism in Zea mays seedlings
    • COI: 1:CAS:528:DC%2BD1cXhsVCgt7zJ, PID: 18940932
    • Rapala-Kozik M, Kowalska E, Ostrowska K (2008) Modulation of thiamine metabolism in Zea mays seedlings. J Exp Bot 59:4133–4143
    • (2008) J Exp Bot , vol.59 , pp. 4133-4143
    • Rapala-Kozik, M.1    Kowalska, E.2    Ostrowska, K.3
  • 45
    • 84855220924 scopus 로고    scopus 로고
    • The upregulation of thiamine (vitamin B 1) biosynthesis in Arabidopsis thaliana seedlings under salt and osmotic stress conditions is mediated by abscisic acid at the early stages of this stress response
    • Rapala-Kozik M, Wolak N, Kujda M, Banas AK (2012) The upregulation of thiamine (vitamin B 1) biosynthesis in Arabidopsis thaliana seedlings under salt and osmotic stress conditions is mediated by abscisic acid at the early stages of this stress response. BMC Plant Biol 12:1
    • (2012) BMC Plant Biol , vol.12 , pp. 1
    • Rapala-Kozik, M.1    Wolak, N.2    Kujda, M.3    Banas, A.K.4
  • 47
    • 84874608346 scopus 로고    scopus 로고
    • Nonallelic homologous recombination between retrotransposable elements is a driver of de novo unbalanced translocations
    • PID: 23212949
    • Robberecht C, Voet T, Esteki MZ, Nowakowska BA, Vermeesch JR (2012) Nonallelic homologous recombination between retrotransposable elements is a driver of de novo unbalanced translocations. Genome Res 23:411–418
    • (2012) Genome Res , vol.23 , pp. 411-418
    • Robberecht, C.1    Voet, T.2    Esteki, M.Z.3    Nowakowska, B.A.4    Vermeesch, J.R.5
  • 49
    • 0035339662 scopus 로고    scopus 로고
    • The hexokinase 2 protein regulates the expression of the GLK1, HXK1 and HXK2 genes of Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BD3MXjslCntbY%3D, PID: 11311123
    • Rodriguez A, Herrero P, Moreno F (2001) The hexokinase 2 protein regulates the expression of the GLK1, HXK1 and HXK2 genes of Saccharomyces cerevisiae. Biochem J 355:625–631
    • (2001) Biochem J , vol.355 , pp. 625-631
    • Rodriguez, A.1    Herrero, P.2    Moreno, F.3
  • 50
    • 70449428931 scopus 로고    scopus 로고
    • Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing Saccharomyces cerevisiae
    • Runquist D, Hahn-Hägerdal B, Bettiga M (2009) Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing Saccharomyces cerevisiae. Microb Cell Factories 8:49
    • (2009) Microb Cell Factories , vol.8 , pp. 49
    • Runquist, D.1    Hahn-Hägerdal, B.2    Bettiga, M.3
  • 52
    • 84870994085 scopus 로고    scopus 로고
    • An efficient xylose-fermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile
    • COI: 1:CAS:528:DC%2BC38XhsFGqsbzK, PID: 23053078
    • Shen Y, Chen X, Peng B, Chen L, Jin H, Bao X (2012) An efficient xylose-fermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile. Appl Microbiol Biotechnol 96:1079–1091
    • (2012) Appl Microbiol Biotechnol , vol.96 , pp. 1079-1091
    • Shen, Y.1    Chen, X.2    Peng, B.3    Chen, L.4    Jin, H.5    Bao, X.6
  • 53
    • 84887524530 scopus 로고    scopus 로고
    • Enhanced xylose fermentation capacity related to an altered glucose sensing and repression network in a recombinant Saccharomyces cerevisiae
    • PID: 23812433
    • Shen Y, Hou J, Bao X (2013) Enhanced xylose fermentation capacity related to an altered glucose sensing and repression network in a recombinant Saccharomyces cerevisiae. Bioengineered 4:435–437
    • (2013) Bioengineered , vol.4 , pp. 435-437
    • Shen, Y.1    Hou, J.2    Bao, X.3
  • 54
    • 74549126675 scopus 로고    scopus 로고
    • An overview of second generation biofuel technologies
    • COI: 1:CAS:528:DC%2BD1MXhs1WlurnK, PID: 19963372
    • Sims RE, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Bioresour Technol 101:1570–1580
    • (2010) Bioresour Technol , vol.101 , pp. 1570-1580
    • Sims, R.E.1    Mabee, W.2    Saddler, J.N.3    Taylor, M.4
  • 55
    • 0037394596 scopus 로고    scopus 로고
    • Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose
    • COI: 1:CAS:528:DC%2BD3sXivFKru7g%3D, PID: 12676674
    • Sonderegger M, Sauer U (2003) Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl Environ Microbiol 69:1990–1998
    • (2003) Appl Environ Microbiol , vol.69 , pp. 1990-1998
    • Sonderegger, M.1    Sauer, U.2
  • 57
    • 33644548035 scopus 로고    scopus 로고
    • Ethanol production from acid hydrolysate of wood biomass using the flocculating yeast Saccharomyces cerevisiae strain KF-7
    • COI: 1:CAS:528:DC%2BD28XhvVWms70%3D
    • Tang Y, An M, Liu K, Nagai S, Shigematsu T, Morimura S, Kida K (2006) Ethanol production from acid hydrolysate of wood biomass using the flocculating yeast Saccharomyces cerevisiae strain KF-7. Proc Biochem 41:909–914
    • (2006) Proc Biochem , vol.41 , pp. 909-914
    • Tang, Y.1    An, M.2    Liu, K.3    Nagai, S.4    Shigematsu, T.5    Morimura, S.6    Kida, K.7
  • 59
    • 0031457095 scopus 로고    scopus 로고
    • Metabolism of sulfur amino acids in Saccharomyces cerevisiae
    • COI: 1:CAS:528:DyaK2sXotVymsbc%3D, PID: 9409150
    • Thomas D, SurdinKerjan Y (1997) Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 61:503–532
    • (1997) Microbiol Mol Biol Rev , vol.61 , pp. 503-532
    • Thomas, D.1    SurdinKerjan, Y.2
  • 60
    • 0347297600 scopus 로고    scopus 로고
    • Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway
    • COI: 1:CAS:528:DC%2BD3sXhtF2isro%3D, PID: 12570990
    • Wahlbom CF, Cordero Otero RR, van Zyl WH, Hahn-Hägerdal B, Jonsson LJ (2003) Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway. Appl Environ Microbiol 69:740–746
    • (2003) Appl Environ Microbiol , vol.69 , pp. 740-746
    • Wahlbom, C.F.1    Cordero Otero, R.R.2    van Zyl, W.H.3    Hahn-Hägerdal, B.4    Jonsson, L.J.5
  • 61
    • 34948882785 scopus 로고    scopus 로고
    • Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis
    • COI: 1:CAS:528:DC%2BD2sXhtFKrtL7E, PID: 17768247
    • Watanabe S, Abu Saleh A, Pack SP, Annaluru N, Kodaki T, Makino K (2007) Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis. Microbiology 153:3044–3054
    • (2007) Microbiology , vol.153 , pp. 3044-3054
    • Watanabe, S.1    Abu Saleh, A.2    Pack, S.P.3    Annaluru, N.4    Kodaki, T.5    Makino, K.6
  • 62
    • 84918564999 scopus 로고    scopus 로고
    • Thiamine increases the resistance of baker's yeast Saccharomyces cerevisiae against oxidative, osmotic and thermal stress, through mechanisms partly independent of thiamine diphosphate-bound enzymes
    • COI: 1:CAS:528:DC%2BC2cXitVCisrvL, PID: 25331172
    • Wolak N, Kowalska E, Kozik A, Rapala-Kozik M (2014) Thiamine increases the resistance of baker's yeast Saccharomyces cerevisiae against oxidative, osmotic and thermal stress, through mechanisms partly independent of thiamine diphosphate-bound enzymes. FEMS Yeast Res 14:1249–1262
    • (2014) FEMS Yeast Res , vol.14 , pp. 1249-1262
    • Wolak, N.1    Kowalska, E.2    Kozik, A.3    Rapala-Kozik, M.4
  • 63
    • 0034717050 scopus 로고    scopus 로고
    • Siderophore-iron uptake in Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BD3cXjvFaiur0%3D, PID: 10748025
    • Yun CW (2000) Siderophore-iron uptake in Saccharomyces cerevisiae. J Biol Chem 275:16354–16359
    • (2000) J Biol Chem , vol.275 , pp. 16354-16359
    • Yun, C.W.1
  • 64
    • 58549084410 scopus 로고    scopus 로고
    • How Saccharomyces responds to nutrients
    • COI: 1:CAS:528:DC%2BD1cXhsFemtb3O, PID: 18303986
    • Zaman S, Lippman SI, Zhao X, Broach JR (2008) How Saccharomyces responds to nutrients. Annu Rev Genet 42:27–81
    • (2008) Annu Rev Genet , vol.42 , pp. 27-81
    • Zaman, S.1    Lippman, S.I.2    Zhao, X.3    Broach, J.R.4
  • 65
    • 84982709289 scopus 로고    scopus 로고
    • Transcriptomes of a xylose-utilizing industrial flocculating Saccharomyces cerevisiae strain cultured in media containing different sugar sources
    • PID: 27485516
    • Zeng WY, Tang YQ, Gou M, Xia ZY, Kida K (2016) Transcriptomes of a xylose-utilizing industrial flocculating Saccharomyces cerevisiae strain cultured in media containing different sugar sources. AMB Express 6:51
    • (2016) AMB Express , vol.6 , pp. 51
    • Zeng, W.Y.1    Tang, Y.Q.2    Gou, M.3    Xia, Z.Y.4    Kida, K.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.