-
1
-
-
33747373639
-
Use of population genetics to derive nonrecombinant Saccharomyces cerevisiae strains that grow using xylose as a sole carbon source
-
COI: 1:CAS:528:DC%2BD28XhtVCjt7jF, PID: 16911508
-
Attfield PV, Bell PJ (2006) Use of population genetics to derive nonrecombinant Saccharomyces cerevisiae strains that grow using xylose as a sole carbon source. FEMS Yeast Res 6:862–868
-
(2006)
FEMS Yeast Res
, vol.6
, pp. 862-868
-
-
Attfield, P.V.1
Bell, P.J.2
-
2
-
-
0022697977
-
Direct evidence for a xylose metabolic pathway in Saccharomyces cerevisiae
-
COI: 1:CAS:528:DyaL28XktVehsLc%3D, PID: 18555359
-
Batt CA, Carvallo S, Easson DD, Akedo M, Sinskey AJ (1986) Direct evidence for a xylose metabolic pathway in Saccharomyces cerevisiae. Biotechnol Bioeng 28:549–553
-
(1986)
Biotechnol Bioeng
, vol.28
, pp. 549-553
-
-
Batt, C.A.1
Carvallo, S.2
Easson, D.D.3
Akedo, M.4
Sinskey, A.J.5
-
3
-
-
84883615587
-
Engineering yeast hexokinase 2 for improved tolerance toward xylose-induced inactivation
-
COI: 1:CAS:528:DC%2BC3sXhsVKrtbzF, PID: 24040384
-
Bergdahl B, Sandstrom AG, Borgstrom C, Boonyawan T, van Niel EW, Gorwa-Grauslund MF (2013) Engineering yeast hexokinase 2 for improved tolerance toward xylose-induced inactivation. PLoS One 8:e75055
-
(2013)
PLoS One
, vol.8
-
-
Bergdahl, B.1
Sandstrom, A.G.2
Borgstrom, C.3
Boonyawan, T.4
van Niel, E.W.5
Gorwa-Grauslund, M.F.6
-
4
-
-
0037474301
-
The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur
-
COI: 1:CAS:528:DC%2BD3sXmt1Gqtw%3D%3D, PID: 12414795
-
Boer VM, de Winde JH, Pronk JT, Piper MD (2003) The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur. J Biol Chem 278:3265–3274
-
(2003)
J Biol Chem
, vol.278
, pp. 3265-3274
-
-
Boer, V.M.1
de Winde, J.H.2
Pronk, J.T.3
Piper, M.D.4
-
5
-
-
68349157532
-
Isolation of cobalt hyper-resistant mutants of Saccharomyces cerevisiae by in vivo evolutionary engineering approach
-
PID: 19577596
-
Çakar ZP, Alkım C, Turanlı B, Tokman N, Akman S, Sarıkaya M, Tamerler C, Benbadis L, François JM (2009) Isolation of cobalt hyper-resistant mutants of Saccharomyces cerevisiae by in vivo evolutionary engineering approach. J Biotechnol 143(2):130–138
-
(2009)
J Biotechnol
, vol.143
, Issue.2
, pp. 130-138
-
-
Çakar, Z.P.1
Alkım, C.2
Turanlı, B.3
Tokman, N.4
Akman, S.5
Sarıkaya, M.6
Tamerler, C.7
Benbadis, L.8
François, J.M.9
-
6
-
-
84857056878
-
Evolutionary engineering of Saccharomyces cerevisiae for improved industrially important properties
-
PID: 22136139
-
Çakar ZP, Turanlı-Yıldız B, Alkım C, Yılmaz Ü (2012) Evolutionary engineering of Saccharomyces cerevisiae for improved industrially important properties. FEMS Yeast Res 12:171–182
-
(2012)
FEMS Yeast Res
, vol.12
, pp. 171-182
-
-
Çakar, Z.P.1
Turanlı-Yıldız, B.2
Alkım, C.3
Yılmaz, Ü.4
-
9
-
-
34447286236
-
Genetic improvement of Saccharomyces cerevisiae for xylose fermentation
-
COI: 1:CAS:528:DC%2BD2sXnslWhtL8%3D, PID: 17524590
-
Chu BC, Lee H (2007) Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnol Adv 25:425–441
-
(2007)
Biotechnol Adv
, vol.25
, pp. 425-441
-
-
Chu, B.C.1
Lee, H.2
-
10
-
-
84879119602
-
Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering
-
COI: 1:CAS:528:DC%2BC3sXhtFCntL%2FI, PID: 23800147
-
Demeke MM, Dietz H, Li Y, Foulquié-Moreno MR, Mutturi S, Deprez S, Den Abt T, Bonini BM, Liden G, Dumortier F, Verplaetse A, Boles E, Thevelein JM (2013) Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnol Biofuels 6:89
-
(2013)
Biotechnol Biofuels
, vol.6
, pp. 89
-
-
Demeke, M.M.1
Dietz, H.2
Li, Y.3
Foulquié-Moreno, M.R.4
Mutturi, S.5
Deprez, S.6
Den Abt, T.7
Bonini, B.M.8
Liden, G.9
Dumortier, F.10
Verplaetse, A.11
Boles, E.12
Thevelein, J.M.13
-
11
-
-
1342343932
-
Characterization of the products of the genes SNO1 and SNZ1 involved in pyridoxine synthesis in Saccharomyces cerevisiae
-
COI: 1:CAS:528:DC%2BD2cXhslKqsbw%3D, PID: 14764090
-
Dong YX, Sueda S, Nikawa JI, Kondo H (2004) Characterization of the products of the genes SNO1 and SNZ1 involved in pyridoxine synthesis in Saccharomyces cerevisiae. Eur J Biochem 271:745–752
-
(2004)
Eur J Biochem
, vol.271
, pp. 745-752
-
-
Dong, Y.X.1
Sueda, S.2
Nikawa, J.I.3
Kondo, H.4
-
12
-
-
84879489028
-
Adaptive laboratory evolution—principles and applications for biotechnology
-
Dragosits M, Mattanovich D (2013) Adaptive laboratory evolution—principles and applications for biotechnology. Microb Cell Factories 12:1
-
(2013)
Microb Cell Factories
, vol.12
, pp. 1
-
-
Dragosits, M.1
Mattanovich, D.2
-
13
-
-
0025886466
-
A constant rate of spontaneous mutation in DNA-based microbes
-
COI: 1:CAS:528:DyaK3MXlsFais7g%3D, PID: 1831267
-
Drake JW (1991) A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci U S A 88:7160–7164
-
(1991)
Proc Natl Acad Sci U S A
, vol.88
, pp. 7160-7164
-
-
Drake, J.W.1
-
14
-
-
84865278051
-
Customized optimization of metabolic pathways by combinatorial transcriptional engineering
-
COI: 1:CAS:528:DC%2BC38XhsFWktbrJ, PID: 22718979
-
Du J, Yuan Y, Si T, Lian J, Zhao H (2012) Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Nucleic Acids Res 40:e142–e142
-
(2012)
Nucleic Acids Res
, vol.40
, pp. e142
-
-
Du, J.1
Yuan, Y.2
Si, T.3
Lian, J.4
Zhao, H.5
-
15
-
-
0038441327
-
Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation
-
COI: 1:CAS:528:DC%2BD3sXktFOgsLY%3D, PID: 12776215
-
Elena SF, Lenski RE (2003) Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat Rev Genet 4:457–469
-
(2003)
Nat Rev Genet
, vol.4
, pp. 457-469
-
-
Elena, S.F.1
Lenski, R.E.2
-
16
-
-
0031810672
-
Yeast carbon catabolite repression
-
COI: 1:CAS:528:DyaK1cXkt1OitLY%3D, PID: 9618445
-
Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62:334–361
-
(1998)
Microbiol Mol Biol Rev
, vol.62
, pp. 334-361
-
-
Gancedo, J.M.1
-
17
-
-
54949145764
-
+ biosynthetic gene BNA2 in chromosome end protection
-
PID: 18828915
-
+ biosynthetic gene BNA2 in chromosome end protection. Genome Biol 9:R146
-
(2008)
Genome Biol
, vol.9
, pp. R146
-
-
Greenall, A.1
Lei, G.2
Swan, D.C.3
James, K.4
Wang, L.5
Peters, H.6
Wipat, A.7
Wilkinson, D.J.8
Lydall, D.9
-
18
-
-
0032537591
-
Thiamin metabolism and thiamin diphosphate-dependent enzymes in the yeast Saccharomyces cerevisiae: genetic regulation
-
COI: 1:CAS:528:DyaK1cXkt1yhs70%3D, PID: 9655908
-
Hohmann S, Meacock PA (1998) Thiamin metabolism and thiamin diphosphate-dependent enzymes in the yeast Saccharomyces cerevisiae: genetic regulation. Biochim Biophys Acta 1385:201–219
-
(1998)
Biochim Biophys Acta
, vol.1385
, pp. 201-219
-
-
Hohmann, S.1
Meacock, P.A.2
-
19
-
-
0036208491
-
Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose
-
COI: 1:CAS:528:DC%2BD38XivFGltrc%3D, PID: 11916674
-
Jeppsson M, Johansson B, Hahn-Hägerdal B, Gorwa-Grauslund MF (2002) Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl Environ Microbiol 68:1604–1609
-
(2002)
Appl Environ Microbiol
, vol.68
, pp. 1604-1609
-
-
Jeppsson, M.1
Johansson, B.2
Hahn-Hägerdal, B.3
Gorwa-Grauslund, M.F.4
-
20
-
-
0037228901
-
Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity
-
COI: 1:CAS:528:DC%2BD3sXkvVarsQ%3D%3D, PID: 12514033
-
Jin YS, Ni H, Laplaza JM, Jeffries TW (2003) Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity. Appl Environ Microbiol 69:495–503
-
(2003)
Appl Environ Microbiol
, vol.69
, pp. 495-503
-
-
Jin, Y.S.1
Ni, H.2
Laplaza, J.M.3
Jeffries, T.W.4
-
21
-
-
8744293844
-
Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response
-
COI: 1:CAS:528:DC%2BD2cXhtVSju7rM, PID: 15528549
-
Jin YS, Laplaza JM, Jeffries TW (2004) Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response. Appl Environ Microbiol 70:6816–6825
-
(2004)
Appl Environ Microbiol
, vol.70
, pp. 6816-6825
-
-
Jin, Y.S.1
Laplaza, J.M.2
Jeffries, T.W.3
-
22
-
-
0026673456
-
Repeated-batch fermentation process using a thermotolerant flocculating yeast constructed by protoplast fusion
-
COI: 1:CAS:528:DyaK38XmtlaitL0%3D
-
Kida K, Kume K, Morimura S, Sonoda Y (1992) Repeated-batch fermentation process using a thermotolerant flocculating yeast constructed by protoplast fusion. J Fermentation Bioeng 74:169–173
-
(1992)
J Fermentation Bioeng
, vol.74
, pp. 169-173
-
-
Kida, K.1
Kume, K.2
Morimura, S.3
Sonoda, Y.4
-
23
-
-
0031832807
-
Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence
-
COI: 1:CAS:528:DyaK1cXjt1aksLY%3D, PID: 9582191
-
Kim JM, Vanguri S, Boeke JD, Gabriel A, Voytas DF (1998) Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res 8:464–478
-
(1998)
Genome Res
, vol.8
, pp. 464-478
-
-
Kim, J.M.1
Vanguri, S.2
Boeke, J.D.3
Gabriel, A.4
Voytas, D.F.5
-
24
-
-
84859499872
-
Analysis and prediction of the physiological effects of altered coenzyme specificity in xylose reductase and xylitol dehydrogenase during xylose fermentation by Saccharomyces cerevisiae
-
COI: 1:CAS:528:DC%2BC38XlsFGgtLs%3D, PID: 21903144
-
Krahulec S, Klimacek M, Nidetzky B (2012) Analysis and prediction of the physiological effects of altered coenzyme specificity in xylose reductase and xylitol dehydrogenase during xylose fermentation by Saccharomyces cerevisiae. J Biotechnol 158:192–202
-
(2012)
J Biotechnol
, vol.158
, pp. 192-202
-
-
Krahulec, S.1
Klimacek, M.2
Nidetzky, B.3
-
25
-
-
78049249838
-
A quantitative model of glucose signaling in yeast reveals an incoherent feed forward loop leading to a specific, transient pulse of transcription
-
COI: 1:CAS:528:DC%2BC3cXht1ais7bE, PID: 20810924
-
Kuttykrishnan S, Sabina J, Langton LL, Johnston M, Brent MR (2010) A quantitative model of glucose signaling in yeast reveals an incoherent feed forward loop leading to a specific, transient pulse of transcription. Proc Natl Acad Sci U S A 107:16743–16748
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 16743-16748
-
-
Kuttykrishnan, S.1
Sabina, J.2
Langton, L.L.3
Johnston, M.4
Brent, M.R.5
-
26
-
-
1642315441
-
Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle
-
COI: 1:CAS:528:DC%2BD2cXisVarsLY%3D, PID: 15040955
-
Kuyper M, Aaron A, van Dijken JP, Pronk JT (2004) Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Res 4:655–664
-
(2004)
FEMS Yeast Res
, vol.4
, pp. 655-664
-
-
Kuyper, M.1
Aaron, A.2
van Dijken, J.P.3
Pronk, J.T.4
-
27
-
-
21744438324
-
Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain
-
COI: 1:CAS:528:DC%2BD2MXlvFKlu74%3D, PID: 15949975
-
Kuyper M, Toirkens MJ, Diderich JA, Winkler AA, van Dijken JP, Pronk JT (2005) Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res 5:925–934
-
(2005)
FEMS Yeast Res
, vol.5
, pp. 925-934
-
-
Kuyper, M.1
Toirkens, M.J.2
Diderich, J.A.3
Winkler, A.A.4
van Dijken, J.P.5
Pronk, J.T.6
-
28
-
-
84903748219
-
Employing a combinatorial expression approach to characterize xylose utilization in Saccharomyces cerevisiae
-
COI: 1:CAS:528:DC%2BC2cXht1Orur3I, PID: 24930894
-
Latimer LN, Lee ME, Medina-Cleghorn D, Kohnz RA, Nomura DK, Dueber JE (2014) Employing a combinatorial expression approach to characterize xylose utilization in Saccharomyces cerevisiae. Metab Eng 25:20–29
-
(2014)
Metab Eng
, vol.25
, pp. 20-29
-
-
Latimer, L.N.1
Lee, M.E.2
Medina-Cleghorn, D.3
Kohnz, R.A.4
Nomura, D.K.5
Dueber, J.E.6
-
29
-
-
84922851448
-
Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields
-
Lee SM, Jellison T, Alper HS (2014) Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields. Biotechnol Biofuels 7:1
-
(2014)
Biotechnol Biofuels
, vol.7
, pp. 1
-
-
Lee, S.M.1
Jellison, T.2
Alper, H.S.3
-
30
-
-
84943604629
-
Systems strategies for developing industrial microbial strains
-
COI: 1:CAS:528:DC%2BC2MXhvFKksLjJ
-
Lee SY, Kim HU (2015) Systems strategies for developing industrial microbial strains. Nature Biotechnol 33:1061–1072
-
(2015)
Nature Biotechnol
, vol.33
, pp. 1061-1072
-
-
Lee, S.Y.1
Kim, H.U.2
-
31
-
-
84955197551
-
Xylose fermentation efficiency and inhibitor tolerance of the recombinant industrial Saccharomyces cerevisiae strain NAPX37
-
PID: 26603762
-
Li YC, Mitsumasu K, Gou ZX, Gou M, Tang YQ, Li GY, XL W, Akamatsu T, Taguchi H, Kida K (2015) Xylose fermentation efficiency and inhibitor tolerance of the recombinant industrial Saccharomyces cerevisiae strain NAPX37. Appl Microbiol Biotechnol 100:1531–1542
-
(2015)
Appl Microbiol Biotechnol
, vol.100
, pp. 1531-1542
-
-
Li, Y.C.1
Mitsumasu, K.2
Gou, Z.X.3
Gou, M.4
Tang, Y.Q.5
Li, G.Y.6
Xl, W.7
Akamatsu, T.8
Taguchi, H.9
Kida, K.10
-
32
-
-
72149123391
-
Construction of a xylose-fermenting Saccharomyces cerevisiae strain by combined approaches of genetic engineering, chemical mutagenesis and evolutionary adaptation
-
COI: 1:CAS:528:DC%2BD1MXhsFyktbfO
-
Liu E, Hu Y (2010) Construction of a xylose-fermenting Saccharomyces cerevisiae strain by combined approaches of genetic engineering, chemical mutagenesis and evolutionary adaptation. Biochem Eng J 48:204–210
-
(2010)
Biochem Eng J
, vol.48
, pp. 204-210
-
-
Liu, E.1
Hu, Y.2
-
33
-
-
35148890697
-
Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiae strain
-
COI: 1:CAS:528:DC%2BD2sXhtFGmtrrM, PID: 17693563
-
Lu C, Jeffries T (2007) Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiae strain. Appl Environ Microbiol 73:6072–6077
-
(2007)
Appl Environ Microbiol
, vol.73
, pp. 6072-6077
-
-
Lu, C.1
Jeffries, T.2
-
34
-
-
0034174474
-
S-adenosylmethionine
-
COI: 1:CAS:528:DC%2BD3cXhtFWqtrs%3D, PID: 10762064
-
Lu SC (2000) S-adenosylmethionine. Int J Biochem Cell Biol 32:391–395
-
(2000)
Int J Biochem Cell Biol
, vol.32
, pp. 391-395
-
-
Lu, S.C.1
-
35
-
-
68349109625
-
Ethanol production from xylose in engineered Saccharomyces cerevisiae strains, current state and perspectives
-
COI: 1:CAS:528:DC%2BD1MXovVOhsL8%3D, PID: 19572128
-
Matsushika A, Inoue H, Kodaki T, Sawayama S (2009) Ethanol production from xylose in engineered Saccharomyces cerevisiae strains, current state and perspectives. Appl Microbiol Biotechnol 84(1):37–53
-
(2009)
Appl Microbiol Biotechnol
, vol.84
, Issue.1
, pp. 37-53
-
-
Matsushika, A.1
Inoue, H.2
Kodaki, T.3
Sawayama, S.4
-
36
-
-
84892934934
-
Transcription analysis of recombinant industrial and laboratory Saccharomyces cerevisiae strains reveals the molecular basis for fermentation of glucose and xylose
-
Matsushika A, Goshima T, Hoshino T (2014) Transcription analysis of recombinant industrial and laboratory Saccharomyces cerevisiae strains reveals the molecular basis for fermentation of glucose and xylose. Microb Cell Factories 13:459–459
-
(2014)
Microb Cell Factories
, vol.13
, pp. 459
-
-
Matsushika, A.1
Goshima, T.2
Hoshino, T.3
-
37
-
-
33746050402
-
Pdc2 coordinates expression of the THI regulon in the yeast Saccharomyces cerevisiae
-
COI: 1:CAS:528:DC%2BD28XntVWltro%3D
-
Mojzita D, Hohmann S (2006) Pdc2 coordinates expression of the THI regulon in the yeast Saccharomyces cerevisiae. Mol Gen Genomics 276:147–161
-
(2006)
Mol Gen Genomics
, vol.276
, pp. 147-161
-
-
Mojzita, D.1
Hohmann, S.2
-
38
-
-
84857061668
-
Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast
-
COI: 1:CAS:528:DC%2BC38XjsV2gur4%3D, PID: 22152095
-
Oud B, van Maris AJ, Daran JM, Pronk JT (2012) Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast. FEMS Yeast Res 12:183–196
-
(2012)
FEMS Yeast Res
, vol.12
, pp. 183-196
-
-
Oud, B.1
van Maris, A.J.2
Daran, J.M.3
Pronk, J.T.4
-
39
-
-
84884213071
-
Rad59 regulates association of Rad52 with DNA double-strand breaks
-
COI: 1:CAS:528:DC%2BC38XhsVeitL%2FI
-
Pannunzio NR, Manthey GM, Liddell LC, BX F, Roberts CM, Bailis AM (2012) Rad59 regulates association of Rad52 with DNA double-strand breaks. Microbiology 1:285–297
-
(2012)
Microbiology
, vol.1
, pp. 285-297
-
-
Pannunzio, N.R.1
Manthey, G.M.2
Liddell, L.C.3
Bx, F.4
Roberts, C.M.5
Bailis, A.M.6
-
40
-
-
84942587806
-
Preferential retrotransposition in aging yeast mother cells is correlated with increased genome instability
-
COI: 1:CAS:528:DC%2BC2MXhtlSntLfN, PID: 26298836
-
Patterson MN, Scannapieco AE, PH A, Dorsey S, Royer CA, Maxwell PH (2015) Preferential retrotransposition in aging yeast mother cells is correlated with increased genome instability. DNA Repair 34:18–27
-
(2015)
DNA Repair
, vol.34
, pp. 18-27
-
-
Patterson, M.N.1
Scannapieco, A.E.2
Ph, A.3
Dorsey, S.4
Royer, C.A.5
Maxwell, P.H.6
-
41
-
-
84855419323
-
Improvement of xylose fermentation in respiratory-deficient xylose-fermenting Saccharomyces cerevisiae
-
COI: 1:CAS:528:DC%2BC38XlsVOruw%3D%3D, PID: 22178745
-
Peng B, Shen Y, Li X, Chen X, Hou J, Bao X (2012) Improvement of xylose fermentation in respiratory-deficient xylose-fermenting Saccharomyces cerevisiae. Metab Eng 14:9–18
-
(2012)
Metab Eng
, vol.14
, pp. 9-18
-
-
Peng, B.1
Shen, Y.2
Li, X.3
Chen, X.4
Hou, J.5
Bao, X.6
-
42
-
-
33947232747
-
Biosynthesis and function of GPI proteins in the yeast Saccharomyces cerevisiae
-
COI: 1:CAS:528:DC%2BD2sXjsVeru70%3D, PID: 16859984
-
Pittet M, Conzelmann A (2007) Biosynthesis and function of GPI proteins in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1771:405–420
-
(2007)
Biochim Biophys Acta
, vol.1771
, pp. 405-420
-
-
Pittet, M.1
Conzelmann, A.2
-
43
-
-
33847711060
-
The power to reduce: pyridine nucleotides--small molecules with a multitude of functions
-
COI: 1:CAS:528:DC%2BD2sXhslWntLg%3D, PID: 17295611
-
Pollak N, Dölle C, Ziegler M (2007) The power to reduce: pyridine nucleotides--small molecules with a multitude of functions. Biochem J 402:205–218
-
(2007)
Biochem J
, vol.402
, pp. 205-218
-
-
Pollak, N.1
Dölle, C.2
Ziegler, M.3
-
44
-
-
57149093800
-
Modulation of thiamine metabolism in Zea mays seedlings
-
COI: 1:CAS:528:DC%2BD1cXhsVCgt7zJ, PID: 18940932
-
Rapala-Kozik M, Kowalska E, Ostrowska K (2008) Modulation of thiamine metabolism in Zea mays seedlings. J Exp Bot 59:4133–4143
-
(2008)
J Exp Bot
, vol.59
, pp. 4133-4143
-
-
Rapala-Kozik, M.1
Kowalska, E.2
Ostrowska, K.3
-
45
-
-
84855220924
-
The upregulation of thiamine (vitamin B 1) biosynthesis in Arabidopsis thaliana seedlings under salt and osmotic stress conditions is mediated by abscisic acid at the early stages of this stress response
-
Rapala-Kozik M, Wolak N, Kujda M, Banas AK (2012) The upregulation of thiamine (vitamin B 1) biosynthesis in Arabidopsis thaliana seedlings under salt and osmotic stress conditions is mediated by abscisic acid at the early stages of this stress response. BMC Plant Biol 12:1
-
(2012)
BMC Plant Biol
, vol.12
, pp. 1
-
-
Rapala-Kozik, M.1
Wolak, N.2
Kujda, M.3
Banas, A.K.4
-
46
-
-
33845935641
-
Growth-rate regulated genes have profound impact on interpretation of transcriptome profiling in Saccharomyces cerevisiae
-
PID: 17105650
-
Regenberg B, Regenberg B, Grotkjær T, Winther O, Fausbøll A, Åkesson M, Bro C, Hansen LK, Brunak S, Nielsen J (2006) Growth-rate regulated genes have profound impact on interpretation of transcriptome profiling in Saccharomyces cerevisiae. Genome Biol 7:R107
-
(2006)
Genome Biol
, vol.7
, pp. R107
-
-
Regenberg, B.1
Regenberg, B.2
Grotkjær, T.3
Winther, O.4
Fausbøll, A.5
Åkesson, M.6
Bro, C.7
Hansen, L.K.8
Brunak, S.9
Nielsen, J.10
-
47
-
-
84874608346
-
Nonallelic homologous recombination between retrotransposable elements is a driver of de novo unbalanced translocations
-
PID: 23212949
-
Robberecht C, Voet T, Esteki MZ, Nowakowska BA, Vermeesch JR (2012) Nonallelic homologous recombination between retrotransposable elements is a driver of de novo unbalanced translocations. Genome Res 23:411–418
-
(2012)
Genome Res
, vol.23
, pp. 411-418
-
-
Robberecht, C.1
Voet, T.2
Esteki, M.Z.3
Nowakowska, B.A.4
Vermeesch, J.R.5
-
48
-
-
0036800171
-
Functional analysis of yeast gene families involved in metabolism of vitamins B1 and B6
-
COI: 1:CAS:528:DC%2BD38XotFektbk%3D, PID: 12271461
-
Rodriguez-Navarro S, Llorente B, Rodriguez-Manzaneque MT, Ramne A, Uber G, Marchesan D, Dujon B, Herrero E, Sunnerhagen P, Perez-Ortin JE (2002) Functional analysis of yeast gene families involved in metabolism of vitamins B1 and B6. Yeast 19:1261–1276
-
(2002)
Yeast
, vol.19
, pp. 1261-1276
-
-
Rodriguez-Navarro, S.1
Llorente, B.2
Rodriguez-Manzaneque, M.T.3
Ramne, A.4
Uber, G.5
Marchesan, D.6
Dujon, B.7
Herrero, E.8
Sunnerhagen, P.9
Perez-Ortin, J.E.10
-
49
-
-
0035339662
-
The hexokinase 2 protein regulates the expression of the GLK1, HXK1 and HXK2 genes of Saccharomyces cerevisiae
-
COI: 1:CAS:528:DC%2BD3MXjslCntbY%3D, PID: 11311123
-
Rodriguez A, Herrero P, Moreno F (2001) The hexokinase 2 protein regulates the expression of the GLK1, HXK1 and HXK2 genes of Saccharomyces cerevisiae. Biochem J 355:625–631
-
(2001)
Biochem J
, vol.355
, pp. 625-631
-
-
Rodriguez, A.1
Herrero, P.2
Moreno, F.3
-
50
-
-
70449428931
-
Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing Saccharomyces cerevisiae
-
Runquist D, Hahn-Hägerdal B, Bettiga M (2009) Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing Saccharomyces cerevisiae. Microb Cell Factories 8:49
-
(2009)
Microb Cell Factories
, vol.8
, pp. 49
-
-
Runquist, D.1
Hahn-Hägerdal, B.2
Bettiga, M.3
-
51
-
-
46349094089
-
Regulation of xylose metabolism in recombinant Saccharomyces cerevisiae
-
Salusjärvi L, Kankainen M, Soliymani R, Pitkänen JP, Penttilä M, Ruohonen L (2008) Regulation of xylose metabolism in recombinant Saccharomyces cerevisiae. Microb Cell Factories 7:18
-
(2008)
Microb Cell Factories
, vol.7
, pp. 18
-
-
Salusjärvi, L.1
Kankainen, M.2
Soliymani, R.3
Pitkänen, J.P.4
Penttilä, M.5
Ruohonen, L.6
-
52
-
-
84870994085
-
An efficient xylose-fermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile
-
COI: 1:CAS:528:DC%2BC38XhsFGqsbzK, PID: 23053078
-
Shen Y, Chen X, Peng B, Chen L, Jin H, Bao X (2012) An efficient xylose-fermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile. Appl Microbiol Biotechnol 96:1079–1091
-
(2012)
Appl Microbiol Biotechnol
, vol.96
, pp. 1079-1091
-
-
Shen, Y.1
Chen, X.2
Peng, B.3
Chen, L.4
Jin, H.5
Bao, X.6
-
53
-
-
84887524530
-
Enhanced xylose fermentation capacity related to an altered glucose sensing and repression network in a recombinant Saccharomyces cerevisiae
-
PID: 23812433
-
Shen Y, Hou J, Bao X (2013) Enhanced xylose fermentation capacity related to an altered glucose sensing and repression network in a recombinant Saccharomyces cerevisiae. Bioengineered 4:435–437
-
(2013)
Bioengineered
, vol.4
, pp. 435-437
-
-
Shen, Y.1
Hou, J.2
Bao, X.3
-
54
-
-
74549126675
-
An overview of second generation biofuel technologies
-
COI: 1:CAS:528:DC%2BD1MXhs1WlurnK, PID: 19963372
-
Sims RE, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Bioresour Technol 101:1570–1580
-
(2010)
Bioresour Technol
, vol.101
, pp. 1570-1580
-
-
Sims, R.E.1
Mabee, W.2
Saddler, J.N.3
Taylor, M.4
-
55
-
-
0037394596
-
Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose
-
COI: 1:CAS:528:DC%2BD3sXivFKru7g%3D, PID: 12676674
-
Sonderegger M, Sauer U (2003) Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl Environ Microbiol 69:1990–1998
-
(2003)
Appl Environ Microbiol
, vol.69
, pp. 1990-1998
-
-
Sonderegger, M.1
Sauer, U.2
-
56
-
-
0030620272
-
Role of mutator alleles in adaptive evolution
-
COI: 1:CAS:528:DyaK2sXktVWmsrw%3D, PID: 9192893
-
Taddei F, Radman M, Maynard-Smith J, Toupance B, Gouyon P, Godelle B (1997) Role of mutator alleles in adaptive evolution. Nature 387:700–702
-
(1997)
Nature
, vol.387
, pp. 700-702
-
-
Taddei, F.1
Radman, M.2
Maynard-Smith, J.3
Toupance, B.4
Gouyon, P.5
Godelle, B.6
-
57
-
-
33644548035
-
Ethanol production from acid hydrolysate of wood biomass using the flocculating yeast Saccharomyces cerevisiae strain KF-7
-
COI: 1:CAS:528:DC%2BD28XhvVWms70%3D
-
Tang Y, An M, Liu K, Nagai S, Shigematsu T, Morimura S, Kida K (2006) Ethanol production from acid hydrolysate of wood biomass using the flocculating yeast Saccharomyces cerevisiae strain KF-7. Proc Biochem 41:909–914
-
(2006)
Proc Biochem
, vol.41
, pp. 909-914
-
-
Tang, Y.1
An, M.2
Liu, K.3
Nagai, S.4
Shigematsu, T.5
Morimura, S.6
Kida, K.7
-
58
-
-
37449001203
-
Yeast responses to stresses
-
Springer-Verlag, Berlin
-
Tanghe A, Prior B, Thevelein JM (2006) Yeast responses to stresses. In: Rosa CA, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer-Verlag, Berlin, pp 175–195
-
(2006)
Biodiversity and ecophysiology of yeasts
, pp. 175-195
-
-
Tanghe, A.1
Prior, B.2
Thevelein, J.M.3
Rosa, C.A.4
Peter, G.5
-
59
-
-
0031457095
-
Metabolism of sulfur amino acids in Saccharomyces cerevisiae
-
COI: 1:CAS:528:DyaK2sXotVymsbc%3D, PID: 9409150
-
Thomas D, SurdinKerjan Y (1997) Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 61:503–532
-
(1997)
Microbiol Mol Biol Rev
, vol.61
, pp. 503-532
-
-
Thomas, D.1
SurdinKerjan, Y.2
-
60
-
-
0347297600
-
Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway
-
COI: 1:CAS:528:DC%2BD3sXhtF2isro%3D, PID: 12570990
-
Wahlbom CF, Cordero Otero RR, van Zyl WH, Hahn-Hägerdal B, Jonsson LJ (2003) Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway. Appl Environ Microbiol 69:740–746
-
(2003)
Appl Environ Microbiol
, vol.69
, pp. 740-746
-
-
Wahlbom, C.F.1
Cordero Otero, R.R.2
van Zyl, W.H.3
Hahn-Hägerdal, B.4
Jonsson, L.J.5
-
61
-
-
34948882785
-
Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis
-
COI: 1:CAS:528:DC%2BD2sXhtFKrtL7E, PID: 17768247
-
Watanabe S, Abu Saleh A, Pack SP, Annaluru N, Kodaki T, Makino K (2007) Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis. Microbiology 153:3044–3054
-
(2007)
Microbiology
, vol.153
, pp. 3044-3054
-
-
Watanabe, S.1
Abu Saleh, A.2
Pack, S.P.3
Annaluru, N.4
Kodaki, T.5
Makino, K.6
-
62
-
-
84918564999
-
Thiamine increases the resistance of baker's yeast Saccharomyces cerevisiae against oxidative, osmotic and thermal stress, through mechanisms partly independent of thiamine diphosphate-bound enzymes
-
COI: 1:CAS:528:DC%2BC2cXitVCisrvL, PID: 25331172
-
Wolak N, Kowalska E, Kozik A, Rapala-Kozik M (2014) Thiamine increases the resistance of baker's yeast Saccharomyces cerevisiae against oxidative, osmotic and thermal stress, through mechanisms partly independent of thiamine diphosphate-bound enzymes. FEMS Yeast Res 14:1249–1262
-
(2014)
FEMS Yeast Res
, vol.14
, pp. 1249-1262
-
-
Wolak, N.1
Kowalska, E.2
Kozik, A.3
Rapala-Kozik, M.4
-
63
-
-
0034717050
-
Siderophore-iron uptake in Saccharomyces cerevisiae
-
COI: 1:CAS:528:DC%2BD3cXjvFaiur0%3D, PID: 10748025
-
Yun CW (2000) Siderophore-iron uptake in Saccharomyces cerevisiae. J Biol Chem 275:16354–16359
-
(2000)
J Biol Chem
, vol.275
, pp. 16354-16359
-
-
Yun, C.W.1
-
64
-
-
58549084410
-
How Saccharomyces responds to nutrients
-
COI: 1:CAS:528:DC%2BD1cXhsFemtb3O, PID: 18303986
-
Zaman S, Lippman SI, Zhao X, Broach JR (2008) How Saccharomyces responds to nutrients. Annu Rev Genet 42:27–81
-
(2008)
Annu Rev Genet
, vol.42
, pp. 27-81
-
-
Zaman, S.1
Lippman, S.I.2
Zhao, X.3
Broach, J.R.4
-
65
-
-
84982709289
-
Transcriptomes of a xylose-utilizing industrial flocculating Saccharomyces cerevisiae strain cultured in media containing different sugar sources
-
PID: 27485516
-
Zeng WY, Tang YQ, Gou M, Xia ZY, Kida K (2016) Transcriptomes of a xylose-utilizing industrial flocculating Saccharomyces cerevisiae strain cultured in media containing different sugar sources. AMB Express 6:51
-
(2016)
AMB Express
, vol.6
, pp. 51
-
-
Zeng, W.Y.1
Tang, Y.Q.2
Gou, M.3
Xia, Z.Y.4
Kida, K.5
|