-
1
-
-
0038453192
-
Rademacher and Gaussian complexities: Risk bounds and structural results
-
Bartlett, P. L., and Mendelson, S. 2003. Rademacher and Gaussian complexities: Risk bounds and structural results. The Journal of Machine Learning Research 3:463-482.
-
(2003)
The Journal of Machine Learning Research
, vol.3
, pp. 463-482
-
-
Bartlett, P.L.1
Mendelson, S.2
-
2
-
-
0013037041
-
Almost linear vc-dimension bounds for piecewise polynomial networks
-
Bartlett, P. L.; Maiorov, V.; and Meir, R. 1998. Almost linear vc-dimension bounds for piecewise polynomial networks. Neural computation 10(8):2159-2173.
-
(1998)
Neural Computation
, vol.10
, Issue.8
, pp. 2159-2173
-
-
Bartlett, P.L.1
Maiorov, V.2
Meir, R.3
-
3
-
-
0032028728
-
The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
-
Bartlett, P. L. 1998. The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network. IEEE Transactions on Information Theory 44(2):525-536.
-
(1998)
IEEE Transactions on Information Theory
, vol.44
, Issue.2
, pp. 525-536
-
-
Bartlett, P.L.1
-
4
-
-
84904743910
-
On the complexity of neural network classifiers: A comparison between shallow and deep architectures
-
Bianchini, M., and Scarselli, F. 2014. On the complexity of neural network classifiers: A comparison between shallow and deep architectures. IEEE Transactions on Neural Networks.
-
(2014)
IEEE Transactions on Neural Networks
-
-
Bianchini, M.1
Scarselli, F.2
-
7
-
-
72249100259
-
Imagenet: A large-scale hierarchical image database
-
CVPR 2009. IEEE Conference on, IEEE
-
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei- Fei, L. 2009. Imagenet: A large-scale hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, 248-255. IEEE.
-
(2009)
Computer Vision and Pattern Recognition, 2009
, pp. 248-255
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Fei-Fei, L.6
-
10
-
-
0029256399
-
Bounding the vapnik-chervonenkis dimension of concept classes parameterized by real numbers
-
Goldberg, P. W., and Jerrum, M. R. 1995. Bounding the vapnik-chervonenkis dimension of concept classes parameterized by real numbers. Machine Learning 18(2-3):131- 148.
-
(1995)
Machine Learning
, vol.18
, Issue.2-3
, pp. 131-148
-
-
Goldberg, P.W.1
Jerrum, M.R.2
-
13
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
Hinton, G. E., and Salakhutdinov, R. R. 2006. Reducing the dimensionality of data with neural networks. Science 313(5786):504-507.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
14
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
-
Hinton, G. E.; Deng, L.; Yu, D.; Dahl, G. E.; Mohamed, A.- r.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath, T. N.; et al. 2012. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine 29(6):82-97.
-
(2012)
IEEE Signal Processing Magazine
, vol.29
, Issue.6
, pp. 82-97
-
-
Hinton, G.E.1
Deng, L.2
Yu, D.3
Dahl, G.E.4
Mohamed A-, R.5
Jaitly, N.6
Senior, A.7
Vanhoucke, V.8
Nguyen, P.9
Sainath, T.N.10
-
15
-
-
85007253342
-
-
arXiv preprint arXiv:1408.5093
-
Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; and Darrell, T. 2014. Caffe: Convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093.
-
(2014)
Caffe: Convolutional Architecture for Fast Feature Embedding
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
17
-
-
0036104545
-
Empirical margin distributions and bounding the generalization error of combined classifiers
-
Koltchinskii, V., and Panchenko, D. 2002. Empirical margin distributions and bounding the generalization error of combined classifiers. Annals of Statistics 1-50.
-
(2002)
Annals of Statistics
, pp. 1-50
-
-
Koltchinskii, V.1
Panchenko, D.2
-
20
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998. Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11):2278-2324.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
21
-
-
84943645147
-
-
arXiv preprint arXiv:1409.5185
-
Lee, C.-Y.; Xie, S.; Gallagher, P.; Zhang, Z.; and Tu, Z. 2014. Deeply-supervised nets. arXiv preprint arXiv:1409.5185.
-
(2014)
Deeply-supervised Nets
-
-
Lee, C.-Y.1
Xie, S.2
Gallagher, P.3
Zhang, Z.4
Tu, Z.5
-
23
-
-
84930634427
-
On the number of linear regions of deep neural networks
-
Montufar, G. F.; Pascanu, R.; Cho, K.; and Bengio, Y. 2014. On the number of linear regions of deep neural networks. In Advances in Neural Information Processing Systems, 2924- 2932.
-
(2014)
Advances in Neural Information Processing Systems
, pp. 2924-2932
-
-
Montufar, G.F.1
Pascanu, R.2
Cho, K.3
Bengio, Y.4
-
25
-
-
84964544562
-
-
arXiv preprint arXiv:1412.6550
-
Romero, A.; Ballas, N.; Kahou, S. E.; Chassang, A.; Gatta, C.; and Bengio, Y. 2014. Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550.
-
(2014)
Fitnets: Hints for Thin Deep Nets
-
-
Romero, A.1
Ballas, N.2
Kahou, S.E.3
Chassang, A.4
Gatta, C.5
Bengio, Y.6
-
29
-
-
85007173077
-
-
arXiv preprint arXiv:1409.4842
-
Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; and Rabinovich, A. 2014. Going deeper with convolutions. arXiv preprint arXiv:1409.4842.
-
(2014)
Going Deeper with Convolutions
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
31
-
-
0033145513
-
Betti numbers of semi-pfaffian sets
-
Zell, T. 1999. Betti numbers of semi-pfaffian sets. Journal of Pure and Applied Algebra 139(1):323-338.
-
(1999)
Journal of Pure and Applied Algebra
, vol.139
, Issue.1
, pp. 323-338
-
-
Zell, T.1
|