메뉴 건너뛰기




Volumn 128, Issue , 2014, Pages 207-216

Extreme learning machines for soybean classification in remote sensing hyperspectral images

Author keywords

Agricultural remote sensing; Extreme learning machine; Hyperspectral images

Indexed keywords

AGRICULTURAL REMOTE SENSING; CLASSIFICATION PERFORMANCE; CLASSIFICATION PROCESS; EXTREME LEARNING MACHINE; FEED-FORWARD NETWORK; FUNCTIONAL DATA ANALYSIS; HYPER-SPECTRAL IMAGES; STATE-OF-THE-ART ALGORITHMS;

EID: 84893640041     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2013.03.057     Document Type: Article
Times cited : (79)

References (43)
  • 1
    • 84255192609 scopus 로고    scopus 로고
    • Detection of vehicles in shadow areas
    • 3rd Workshop on Hyperspectral Image and Signal Processing (WHISPERS)
    • M. Shimoni, G. Tolt, C. Perneel, J. Ahlberg, Detection of vehicles in shadow areas, in: 3rd Workshop on Hyperspectral Image and Signal Processing (WHISPERS), 2011, pp. 1-4.
    • (2011)
    • Shimoni, M.1    Tolt, G.2    Perneel, C.3    Ahlberg, J.4
  • 2
    • 84255170877 scopus 로고    scopus 로고
    • Infrared reflectance hyperspectral features of athabasca oil sand ore and froth
    • 3rd Workshop on Hyperspectral Image and Signal Processing (WHISPERS)
    • B. Rivard, J. Feng, V. Bushan, M. Lipsett, Infrared reflectance hyperspectral features of athabasca oil sand ore and froth, in: 3rd Workshop on Hyperspectral Image and Signal Processing (WHISPERS), 2011, pp. 1-4.
    • (2011) , pp. 1-4
    • Rivard, B.1    Feng, J.2    Bushan, V.3    Lipsett, M.4
  • 3
    • 84255167082 scopus 로고    scopus 로고
    • Extraction of stellar spectra from dense fields in hyperspectral muse data cubes using non-negative matrix factorization
    • 3rd Workshop on Hyperspectral Image and Signal Processing(WHISPERS)
    • I. Meganem, Y. Deville, S. Hosseini, H. Carfantan, M. Karoui, Extraction of stellar spectra from dense fields in hyperspectral muse data cubes using non-negative matrix factorization, in: 3rd Workshop on Hyperspectral Image and Signal Processing(WHISPERS), 2011, pp. 1-4.
    • (2011) , pp. 1-4
    • Meganem, I.1    Deville, Y.2    Hosseini, S.3    Carfantan, H.4    Karoui, M.5
  • 4
    • 80052117198 scopus 로고    scopus 로고
    • Hyperspectral remote sensing of the impact of environmental stresses on nitrogen fixing soybean plants (Glycine max l.)
    • 5th International Conference on Recent Advances in Space Technologies (RAST)
    • D. Krezhova, E. Kirova, Hyperspectral remote sensing of the impact of environmental stresses on nitrogen fixing soybean plants (Glycine max l.), in: 5th International Conference on Recent Advances in Space Technologies (RAST), 2011, pp. 172-177.
    • (2011) , pp. 172-177
    • Krezhova, D.1    Kirova, E.2
  • 5
    • 84255192855 scopus 로고    scopus 로고
    • Application of airborne hyperspectral imagery to estimating fruit yield in citrus
    • 3rd Workshop on Hyperspectral Image and Signal Processing (WHISPERS)
    • X. Ye, K. Sakai, Application of airborne hyperspectral imagery to estimating fruit yield in citrus, in: 3rd Workshop on Hyperspectral Image and Signal Processing (WHISPERS), 2011, pp. 1-6.
    • (2011) , pp. 1-6
    • Ye, X.1    Sakai, K.2
  • 6
    • 46449094010 scopus 로고    scopus 로고
    • Soybean LAI estimation with in-situ collected hyperspectral data based on BP-neural networks
    • 3rd International Conference on Recent Advances in Space Technologies (RAST '07)
    • L. Guozhu, S. Kaishan, N. Shuwen, Soybean LAI estimation with in-situ collected hyperspectral data based on BP-neural networks, in: 3rd International Conference on Recent Advances in Space Technologies (RAST '07), 2007, pp. 331-336.
    • (2007) , pp. 331-336
    • Guozhu, L.1    Kaishan, S.2    Shuwen, N.3
  • 7
    • 34247515522 scopus 로고    scopus 로고
    • Prediction of sweetness and amino acid content in soybean crops from hyperspectral imagery
    • Monteiro S.T., Minekawa Y., Kosugi Y., Akazawa T., Oda K. Prediction of sweetness and amino acid content in soybean crops from hyperspectral imagery. ISPRS J. Photogr. Remote Sens. 2007, 62(1):2-12.
    • (2007) ISPRS J. Photogr. Remote Sens. , vol.62 , Issue.1 , pp. 2-12
    • Monteiro, S.T.1    Minekawa, Y.2    Kosugi, Y.3    Akazawa, T.4    Oda, K.5
  • 8
    • 78149341297 scopus 로고    scopus 로고
    • Detection of cowpea weevil (Callosobruchus maculatus (F.)) in soybean with hyperspectral spectrometry and a backpropagation neural network
    • Sixth International Conference on Natural Computation (ICNC)
    • Z. Zhou, Y. Zang, B. Shen, X. Zhou, X. Luo, Detection of cowpea weevil (Callosobruchus maculatus (F.)) in soybean with hyperspectral spectrometry and a backpropagation neural network, in: Sixth International Conference on Natural Computation (ICNC), vol. 3, 2010, pp. 1223-1227.
    • (2010) , vol.3 , pp. 1223-1227
    • Zhou, Z.1    Zang, Y.2    Shen, B.3    Zhou, X.4    Luo, X.5
  • 9
    • 84255182378 scopus 로고    scopus 로고
    • Using hyperspectral remote sensing data for retrieving total canopy chlorophyll and nitrogen content
    • 3rd Workshop on Hyperspectral Image and Signal Processing (WHISPERS)
    • J. Clevers, L. Kooistra, Using hyperspectral remote sensing data for retrieving total canopy chlorophyll and nitrogen content, in: 3rd Workshop on Hyperspectral Image and Signal Processing (WHISPERS), 2011, pp. 1-4.
    • (2011) , pp. 1-4
    • Clevers, J.1    Kooistra, L.2
  • 10
    • 84255167033 scopus 로고    scopus 로고
    • Regularization of discriminant analysis for the study of biodiversity in humid tropical forests
    • 3rd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)
    • J. Feret, G. Asner, S. Jacquemoud, Regularization of discriminant analysis for the study of biodiversity in humid tropical forests, in: 3rd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2011, pp. 1-4.
    • (2011) , pp. 1-4
    • Feret, J.1    Asner, G.2    Jacquemoud, S.3
  • 11
    • 80054059109 scopus 로고    scopus 로고
    • Classification of soybean varieties using different techniques. case study with hyperion and sensor spectral resolution simulations
    • Breunig F.M., Galvao L.S., Formaggio A.R., Epiphanio J.C.N. Classification of soybean varieties using different techniques. case study with hyperion and sensor spectral resolution simulations. J. Appl. Remote Sens. 2011, 5(1):053533.
    • (2011) J. Appl. Remote Sens. , vol.5 , Issue.1 , pp. 053533
    • Breunig, F.M.1    Galvao, L.S.2    Formaggio, A.R.3    Epiphanio, J.C.N.4
  • 14
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine. theory and applications
    • Huang G.-B., Zhu Q.-Y., Siew C.-K. Extreme learning machine. theory and applications. Neurocomputing 2006, 70(1-3):489-501.
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 16
    • 55949132682 scopus 로고    scopus 로고
    • A fast pruned-extreme learning machine for classification problem
    • Rong H.-J., Ong Y.-S., Tan A.-H., Zhu Z. A fast pruned-extreme learning machine for classification problem. Neurocomputing 2008, 72(1-3):359-366.
    • (2008) Neurocomputing , vol.72 , Issue.1-3 , pp. 359-366
    • Rong, H.-J.1    Ong, Y.-S.2    Tan, A.-H.3    Zhu, Z.4
  • 17
    • 67349131281 scopus 로고    scopus 로고
    • Systemical convergence rate analysis of convex incremental feedforward neural networks
    • Chen L., Huang G.-B., Pung H.K. Systemical convergence rate analysis of convex incremental feedforward neural networks. Neurocomputing 2009, 72(10-12):2627-2635.
    • (2009) Neurocomputing , vol.72 , Issue.10-12 , pp. 2627-2635
    • Chen, L.1    Huang, G.-B.2    Pung, H.K.3
  • 19
    • 0001181674 scopus 로고
    • Principal component analysis of sampled curves
    • Besse P., Ramsay J.O. Principal component analysis of sampled curves. Psychometrika 1986, 51:285-311.
    • (1986) Psychometrika , vol.51 , pp. 285-311
    • Besse, P.1    Ramsay, J.O.2
  • 20
    • 0036050012 scopus 로고    scopus 로고
    • Measure of association for Hilbertian subspaces and some applications
    • Dauxois J., Nkiet G.M. Measure of association for Hilbertian subspaces and some applications. J. Multivariate Anal. 2002, 82:136-154.
    • (2002) J. Multivariate Anal. , vol.82 , pp. 136-154
    • Dauxois, J.1    Nkiet, G.M.2
  • 21
    • 0038734117 scopus 로고    scopus 로고
    • Functional canonical analysis for square integrable stochastic processes
    • He G.Z., Müller H.-G., Wang J.I. Functional canonical analysis for square integrable stochastic processes. J. Multivariate Anal. 2003, 85:54-77.
    • (2003) J. Multivariate Anal. , vol.85 , pp. 54-77
    • He, G.Z.1    Müller, H.-G.2    Wang, J.I.3
  • 22
    • 0035535702 scopus 로고    scopus 로고
    • Functional linear discriminant analysis for irregularly sampled curves
    • James G.M., Hastie T.J. Functional linear discriminant analysis for irregularly sampled curves. J. R. Stat. Soc. Ser. B 2001, 63:533-550.
    • (2001) J. R. Stat. Soc. Ser. B , vol.63 , pp. 533-550
    • James, G.M.1    Hastie, T.J.2
  • 25
    • 11844253306 scopus 로고    scopus 로고
    • Functional multi-layer perceptron. a nonlinear tool for functional data analysis
    • Rossi F., Conan-Guez B. Functional multi-layer perceptron. a nonlinear tool for functional data analysis. Neural Netw. 2005, 18:45-60.
    • (2005) Neural Netw. , vol.18 , pp. 45-60
    • Rossi, F.1    Conan-Guez, B.2
  • 27
    • 32544451454 scopus 로고    scopus 로고
    • Support vector machine for functional data classification
    • Rossi F., Villa-Vialaneix N. Support vector machine for functional data classification. Neurocomputing 2006, 69:730-742.
    • (2006) Neurocomputing , vol.69 , pp. 730-742
    • Rossi, F.1    Villa-Vialaneix, N.2
  • 28
    • 50249150500 scopus 로고    scopus 로고
    • Potential applications of functional data analysis in chemometrics
    • Saeys W., Ketelaere B.D., Darius P. Potential applications of functional data analysis in chemometrics. J. Chemom. 2008, 22:335-344.
    • (2008) J. Chemom. , vol.22 , pp. 335-344
    • Saeys, W.1    Ketelaere, B.D.2    Darius, P.3
  • 29
    • 35648981518 scopus 로고    scopus 로고
    • Parameter estimation for differential equations. a generalized smoothing approach
    • Ramsay J.O., Hooker G., Campbell D., Cao J. Parameter estimation for differential equations. a generalized smoothing approach. J. R. Stat. Soc. Ser. B 2007, 69:741-796.
    • (2007) J. R. Stat. Soc. Ser. B , vol.69 , pp. 741-796
    • Ramsay, J.O.1    Hooker, G.2    Campbell, D.3    Cao, J.4
  • 30
    • 0242490488 scopus 로고    scopus 로고
    • Functional approaches for predicting land use with the temporal evolution of coarse resolution remote sensing data
    • Cardot H., Faivre R., Goulard M. Functional approaches for predicting land use with the temporal evolution of coarse resolution remote sensing data. J. Appl. Stat. 2003, 30:1185-1199.
    • (2003) J. Appl. Stat. , vol.30 , pp. 1185-1199
    • Cardot, H.1    Faivre, R.2    Goulard, M.3
  • 31
    • 38649132568 scopus 로고    scopus 로고
    • Biomarker discovery for arsenic exposure using functional data. Analysis and feature learning of mass spectrometry proteomic data
    • Harezlak J., Wu M.C., Wang M., Schwartzman A., Cristianini D.C., Lin X. Biomarker discovery for arsenic exposure using functional data. Analysis and feature learning of mass spectrometry proteomic data. J. Proteome Res. 2008, 7:217-224.
    • (2008) J. Proteome Res. , vol.7 , pp. 217-224
    • Harezlak, J.1    Wu, M.C.2    Wang, M.3    Schwartzman, A.4    Cristianini, D.C.5    Lin, X.6
  • 32
    • 43949121435 scopus 로고    scopus 로고
    • Bayesian analysis of mass spectrometry proteomics data using Wavelet-based functional mixed models
    • Morris J.S., Brown P.J., Herrick R.C., Baggerly K.A., Coombes K.R. Bayesian analysis of mass spectrometry proteomics data using Wavelet-based functional mixed models. Biometrics 2008, 64:479-489.
    • (2008) Biometrics , vol.64 , pp. 479-489
    • Morris, J.S.1    Brown, P.J.2    Herrick, R.C.3    Baggerly, K.A.4    Coombes, K.R.5
  • 33
    • 66949138473 scopus 로고    scopus 로고
    • Functional regression analysis of fluorescence curves
    • Ritz C., Streibig J.C. Functional regression analysis of fluorescence curves. Biometrics 2009, 65:609-617.
    • (2009) Biometrics , vol.65 , pp. 609-617
    • Ritz, C.1    Streibig, J.C.2
  • 35
    • 78049320291 scopus 로고    scopus 로고
    • Improved methods for spectral calibration of on-orbit imaging spectrometers
    • Wang T., Yan G., Ren H., Mu X. Improved methods for spectral calibration of on-orbit imaging spectrometers. IEEE Trans. Geosci. Remote Sens. 2010, 48(November (11)):3924-3931.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.11 NOVEMBER , pp. 3924-3931
    • Wang, T.1    Yan, G.2    Ren, H.3    Mu, X.4
  • 36
    • 0034506944 scopus 로고    scopus 로고
    • Performance characterization of the hyperion imaging spectrometer instrument
    • Proceedings of SPIE on Earth Observing Systems V (SPIE 2000)
    • L.B. Liao, P.J. Jarecke, D.A. Gleichauf, T.R. Hedman, Performance characterization of the hyperion imaging spectrometer instrument, in: Proceedings of SPIE on Earth Observing Systems V (SPIE 2000), vol. 4135, 2000, pp. 264-275.
    • (2000) , vol.4135 , pp. 264-275
    • Liao, L.B.1    Jarecke, P.J.2    Gleichauf, D.A.3    Hedman, T.R.4
  • 37
    • 80051579893 scopus 로고    scopus 로고
    • Advances in extreme learning machines (ELM2010)
    • Huang G.-B., Wang D. Advances in extreme learning machines (ELM2010). Neurocomputing 2011, 74(16):2411-2412.
    • (2011) Neurocomputing , vol.74 , Issue.16 , pp. 2411-2412
    • Huang, G.-B.1    Wang, D.2
  • 38
    • 84870234983 scopus 로고    scopus 로고
    • Architecture selection for networks trained with extreme learning machine using localized generalization error model
    • Xi-Zhao W., Qing-Yan S., Qing M., Jun-Hai Z. Architecture selection for networks trained with extreme learning machine using localized generalization error model. Neurocomputing 2013, 102(1):3-9.
    • (2013) Neurocomputing , vol.102 , Issue.1 , pp. 3-9
    • Xi-Zhao, W.1    Qing-Yan, S.2    Qing, M.3    Jun-Hai, Z.4
  • 39
    • 34548158996 scopus 로고    scopus 로고
    • Convex incremental extreme learning machine
    • Huang G.-B., Chen L. Convex incremental extreme learning machine. Neurocomputing 2007, 70(16-18):3056-3062.
    • (2007) Neurocomputing , vol.70 , Issue.16-18 , pp. 3056-3062
    • Huang, G.-B.1    Chen, L.2
  • 40
    • 56549090053 scopus 로고    scopus 로고
    • Enhanced random search based incremental extreme learning machine
    • Huang G.-B., Chen L. Enhanced random search based incremental extreme learning machine. Neurocomputing 2008, 71(16-18):3460-3468.
    • (2008) Neurocomputing , vol.71 , Issue.16-18 , pp. 3460-3468
    • Huang, G.-B.1    Chen, L.2
  • 41
    • 84862236089 scopus 로고    scopus 로고
    • About gradient operators on hyperspectral images
    • Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods, SciTePress
    • R. Moreno, M. Graña, About gradient operators on hyperspectral images, in: Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods, SciTePress, 2012, pp. 433-437.
    • (2012) , pp. 433-437
    • Moreno, R.1    Graña, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.