-
1
-
-
84942931759
-
Cell-based therapy technology classifications and translational challenges
-
Mount NM, Ward SJ, Kefalas P. et al. Cell-based therapy technology classifications and translational challenges. Philos Trans R Soc Lond B Biol Sci 2015;370:20150017 doi: 10.1098/rstb.2015.0017
-
(2015)
Philos Trans R Soc Lond B Biol Sci
, vol.370
-
-
Mount, N.M.1
Ward, S.J.2
Kefalas, P.3
-
2
-
-
84893717170
-
Why commercialization of gene therapy stalled; examining the life cycles of gene therapy technologies
-
Ledley FD, McNamee LM, Uzdil V. et al. Why commercialization of gene therapy stalled; examining the life cycles of gene therapy technologies. Gene Ther 2014;21:188-94. doi: 10.1038/gt.2013.72
-
(2014)
Gene Ther
, vol.21
, pp. 188-194
-
-
Ledley, F.D.1
McNamee, L.M.2
Uzdil, V.3
-
3
-
-
85073764850
-
Glybera-The Most Expensive Drug in the world & First Approved Gene Therapy in the West
-
(20 December 2015, date last accessed)
-
Crasto AM. Glybera-The Most Expensive Drug in the world & First Approved Gene Therapy in the West. All About Drug. (20 December 2015, date last accessed)
-
All About Drug
-
-
Crasto, A.M.1
-
4
-
-
84937565249
-
Non viral vectors in gene therapy-an overview
-
Ramamoorth M, Narvekar A. Non viral vectors in gene therapy-an overview. J Clin Diagn Res 2015;9:GE01-6. doi: 10.7860/JCDR/2015/10443.5394
-
(2015)
J Clin Diagn Res
, vol.9
, pp. GE01-6
-
-
Ramamoorth, M.1
Narvekar, A.2
-
5
-
-
84873244450
-
Advanced materials and processing for drug delivery: the past and the future
-
Zhang Y, Chan HF, Leong KW. Advanced materials and processing for drug delivery: the past and the future. Adv Drug Deliv Rev 2013;65:104-20. doi: 10.1016/j.addr.2012.10.003
-
(2013)
Adv Drug Deliv Rev
, vol.65
, pp. 104-120
-
-
Zhang, Y.1
Chan, H.F.2
Leong, K.W.3
-
6
-
-
84887112373
-
Re-examining the size/charge paradigm: differing in vivo characteristics of size-and charge-matched mesoporous silica nanoparticles
-
Townson JL, Lin YS, Agola JO. et al. Re-examining the size/charge paradigm: differing in vivo characteristics of size-and charge-matched mesoporous silica nanoparticles. J Am Chem Soc 2013;135:16030-3. doi: 10.1021/ja4082414
-
(2013)
J Am Chem Soc
, vol.135
, pp. 16030-16033
-
-
Townson, J.L.1
Lin, Y.S.2
Agola, J.O.3
-
7
-
-
85009109516
-
-
The Office of the Federal Register; National Archives and Records Administration
-
Federal Register Devision. The Code of Federal Regulations of the United States of America. The Office of the Federal Register; National Archives and Records Administration, 1999
-
(1999)
The Code of Federal Regulations of the United States of America
-
-
-
8
-
-
33747117373
-
The origins and the future of microfluidics
-
Whitesides GM. The origins and the future of microfluidics. Nature 2006;442:368-73. doi: 10.1038/nature05058
-
(2006)
Nature
, vol.442
, pp. 368-373
-
-
Whitesides, G.M.1
-
9
-
-
84891409244
-
Magnetoactive sponges for dynamic control of microfluidic flow patterns in microphysiological systems
-
Hong S, Jung Y, Yen R. et al. Magnetoactive sponges for dynamic control of microfluidic flow patterns in microphysiological systems. Lab Chip 2014;14:514-21. doi: 10.1039/c3lc51076j
-
(2014)
Lab Chip
, vol.14
, pp. 514-521
-
-
Hong, S.1
Jung, Y.2
Yen, R.3
-
11
-
-
38849155318
-
Droplet microfluidics
-
Teh SY, Lin R, Hung LH. et al. Droplet microfluidics. Lab Chip 2008;8:198-220. doi: 10.1039/b715524g
-
(2008)
Lab Chip
, vol.8
, pp. 198-220
-
-
Teh, S.Y.1
Lin, R.2
Hung, L.H.3
-
12
-
-
84899448669
-
Synthesis of fluorosurfactants for emulsion-based biological applications
-
Chiu YL, Chan HF, Phua KK. et al. Synthesis of fluorosurfactants for emulsion-based biological applications. ACS Nano 2014;8:3913-20. doi: 10.1021/nn500810n
-
(2014)
ACS Nano
, vol.8
, pp. 3913-3920
-
-
Chiu, Y.L.1
Chan, H.F.2
Phua, K.K.3
-
13
-
-
84871033897
-
Microfluidic technologies for accelerating the clinical translation of nanoparticles
-
Valencia PM, Farokhzad OC, Karnik R. et al. Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nat Nanotechnol 2012;7:623-9. doi: 10.1038/nnano.2012.168
-
(2012)
Nat Nanotechnol
, vol.7
, pp. 623-629
-
-
Valencia, P.M.1
Farokhzad, O.C.2
Karnik, R.3
-
14
-
-
67749133574
-
Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow-focusing device for controlled drug delivery
-
Xu Q, Hashimoto M, Dang TT. et al. Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow-focusing device for controlled drug delivery. Small 2009;5:1575-81. doi: 10.1002/smll.200801855
-
(2009)
Small
, vol.5
, pp. 1575-1581
-
-
Xu, Q.1
Hashimoto, M.2
Dang, T.T.3
-
15
-
-
84873444254
-
A vector-free microfluidic platform for intracellular delivery
-
Sharei A, Zoldan J, Adamo A et al. A vector-free microfluidic platform for intracellular delivery. Proc Natl Acad Sci U S A 2013;110:2082-7. doi: 10.1073/pnas.1218705110
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. 2082-2087
-
-
Sharei, A.1
Zoldan, J.2
Adamo, A.3
-
16
-
-
34748901356
-
Monodisperse alginate hydrogel microbeads for cell encapsulation
-
Tan HW, Takeuchi S. Monodisperse alginate hydrogel microbeads for cell encapsulation. Adv Mater 2009;19:2696-701
-
(2009)
Adv Mater
, vol.19
, pp. 2696-2701
-
-
Tan, H.W.1
Takeuchi, S.2
-
17
-
-
84901938944
-
Microfluidic spinning of micro-and nanoscale fibers for tissue engineering
-
Jun Y, Kang E, Chae S. et al. Microfluidic spinning of micro-and nanoscale fibers for tissue engineering. Lab Chip 2014;14:2145-60. doi: 10.1039/c3lc51414e
-
(2014)
Lab Chip
, vol.14
, pp. 2145-2160
-
-
Jun, Y.1
Kang, E.2
Chae, S.3
-
18
-
-
22944443610
-
Sustained release of proteins from electrospun biodegradable fibers
-
Chew SY, Wen J, Yim EK. et al. Sustained release of proteins from electrospun biodegradable fibers. Biomacromolecules 2005;6:2017-24. doi: 10.1021/bm0501149
-
(2005)
Biomacromolecules
, vol.6
, pp. 2017-2024
-
-
Chew, S.Y.1
Wen, J.2
Yim, E.K.3
-
19
-
-
61349139614
-
Drug delivery and nanoparticles:applications and hazards
-
De Jong WH, Borm PJ. Drug delivery and nanoparticles:applications and hazards. Int J Nanomedicine 2008;3:133-49
-
(2008)
Int J Nanomedicine
, vol.3
, pp. 133-149
-
-
De Jong, W.H.1
Borm, P.J.2
-
20
-
-
84906241803
-
Optimizing the discovery and clinical translation of nanoparticles: could microfluidics hold the key?
-
Lim JM, Karnik R. Optimizing the discovery and clinical translation of nanoparticles: could microfluidics hold the key? Nanomed (Lond) 2014;9:1113-6. doi: 10.2217/nnm.14.73
-
(2014)
Nanomed (Lond)
, vol.9
, pp. 1113-1116
-
-
Lim, J.M.1
Karnik, R.2
-
21
-
-
58149465608
-
Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice
-
Schipper ML, Iyer G, Koh AL. et al. Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small 2009;5:126-34. doi: 10.1002/smll.200800003
-
(2009)
Small
, vol.5
, pp. 126-134
-
-
Schipper, M.L.1
Iyer, G.2
Koh, A.L.3
-
22
-
-
83555166219
-
Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size
-
Cabral H, Matsumoto Y, Mizuno K. et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol 2011;6:815-23. doi: 10.1038/nnano.2011.166
-
(2011)
Nat Nanotechnol
, vol.6
, pp. 815-823
-
-
Cabral, H.1
Matsumoto, Y.2
Mizuno, K.3
-
23
-
-
54549109219
-
Microfluidic platform for controlled synthesis of polymeric nanoparticles
-
Karnik R, Gu F, Basto P. et al. Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett 2008;8:2906-12. doi: 10.1021/nl801736q
-
(2008)
Nano Lett
, vol.8
, pp. 2906-2912
-
-
Karnik, R.1
Gu, F.2
Basto, P.3
-
24
-
-
0142089168
-
Mechanism for rapid self-assembly of block copolymer nanoparticles
-
Johnson BK, Prud'homme RK. Mechanism for rapid self-assembly of block copolymer nanoparticles. Phys Rev Lett 2003;91:118302 doi: 10.1103/PhysRevLett.91.118302
-
(2003)
Phys Rev Lett
, vol.91
-
-
Johnson, B.K.1
Prud'homme, R.K.2
-
25
-
-
79953058675
-
Synthesis of size-tunable polymeric nanoparticles enabled by 3D hydrodynamic flow focusing in single-layer microchannels
-
Rhee M, Valencia PM, Rodriguez MI. et al. Synthesis of size-tunable polymeric nanoparticles enabled by 3D hydrodynamic flow focusing in single-layer microchannels. Adv Mater 2011;23:H79-83. doi: 10.1002/adma.201004333
-
(2011)
Adv Mater
, vol.23
, pp. H79-H83
-
-
Rhee, M.1
Valencia, P.M.2
Rodriguez, M.I.3
-
26
-
-
0032901219
-
Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method
-
Barichello JM, Morishita M, Takayama K. et al. Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method. Drug Dev Ind Pharm 1999;25:471-6. doi: 10.1081/DDC-100102197
-
(1999)
Drug Dev Ind Pharm
, vol.25
, pp. 471-476
-
-
Barichello, J.M.1
Morishita, M.2
Takayama, K.3
-
27
-
-
84937239259
-
Recent trends in preparation of poly(lactide-co-glycolide) nanoparticles by mixing polymeric organic solution with antisolvent
-
Sah E, Sah H. Recent trends in preparation of poly(lactide-co-glycolide) nanoparticles by mixing polymeric organic solution with antisolvent. J Nanomater 2015;2015: 1-22
-
(2015)
J Nanomater
, vol.2015
, pp. 1-22
-
-
Sah, E.1
Sah, H.2
-
28
-
-
84856655429
-
Improved drug loading and antibacterial activity of minocycline-loaded PLGA nanoparticles prepared by solid/oil/water ion pairing method
-
Kashi TS, Eskandarion S, Esfandyari-Manesh M. et al. Improved drug loading and antibacterial activity of minocycline-loaded PLGA nanoparticles prepared by solid/oil/water ion pairing method. Int J Nanomed 2012;7:221-34. doi: 10.2147/IJN.S27709
-
(2012)
Int J Nanomed
, vol.7
, pp. 221-234
-
-
Kashi, T.S.1
Eskandarion, S.2
Esfandyari-Manesh, M.3
-
29
-
-
33645512835
-
Nanoprecipitation versus emulsionbased techniques for the encapsulation of proteins into biodegradable nanoparticles and process-related stability issues
-
Bilati U, Allemann E, Doelker E. Nanoprecipitation versus emulsionbased techniques for the encapsulation of proteins into biodegradable nanoparticles and process-related stability issues. AAPS PharmSciTech 2005;6:E594-604. doi: 10.1208/pt060474
-
(2005)
AAPS PharmSciTech
, vol.6
, pp. E594-E604
-
-
Bilati, U.1
Allemann, E.2
Doelker, E.3
-
30
-
-
84873038614
-
Biocompatible gemcitabine-based nanomedicine engineered by Flow Focusing for efficient antitumor activity
-
Martin-Banderas L, Saez-Fernandez E, Holgado MA. et al. Biocompatible gemcitabine-based nanomedicine engineered by Flow Focusing for efficient antitumor activity. Int J Pharm 2013;443:103-9. doi: 10.1016/j.ijpharm.2012.12.048
-
(2013)
Int J Pharm
, vol.443
, pp. 103-109
-
-
Martin-Banderas, L.1
Saez-Fernandez, E.2
Holgado, M.A.3
-
31
-
-
77954112372
-
PLGA micro/nanosphere synthesis by droplet microfluidic solvent evaporation and extraction approaches
-
Hung LH, Teh SY, Jester J. et al. PLGA micro/nanosphere synthesis by droplet microfluidic solvent evaporation and extraction approaches. Lab Chip 2010;10:1820-5. doi: 10.1039/c002866e
-
(2010)
Lab Chip
, vol.10
, pp. 1820-1825
-
-
Hung, L.H.1
Teh, S.Y.2
Jester, J.3
-
32
-
-
84892439853
-
Gene therapy and DNA delivery systems
-
Ibraheem D, Elaissari A, Fessi H. Gene therapy and DNA delivery systems. Int J Pharm2014;459:70-83. doi: 10.1016/j.ijpharm.2013.11.041
-
(2014)
Int J Pharm
, vol.459
, pp. 70-83
-
-
Ibraheem, D.1
Elaissari, A.2
Fessi, H.3
-
33
-
-
33748290173
-
Gene therapy progress and prospects: non-viral gene therapy by systemic delivery
-
Li SD, Huang L. Gene therapy progress and prospects: non-viral gene therapy by systemic delivery. Gene. Ther 2006;13:1313-9. doi: 10.1038/sj.gt.3302838
-
(2006)
Gene. Ther
, vol.13
, pp. 1313-1319
-
-
Li, S.D.1
Huang, L.2
-
34
-
-
22144447455
-
Design and development of polymers for gene delivery
-
Pack DW, Hoffman AS, Pun S. et al. Design and development of polymers for gene delivery. Nat Rev Drug Discov 2005;4:581-93. doi: 10.1038/nrd1775
-
(2005)
Nat Rev Drug Discov
, vol.4
, pp. 581-593
-
-
Pack, D.W.1
Hoffman, A.S.2
Pun, S.3
-
35
-
-
69549087912
-
Nonviral gene vector formation in monodispersed picolitre incubator for consistent gene delivery
-
Hsieh AT, Hori N, Massoudi R et al. Nonviral gene vector formation in monodispersed picolitre incubator for consistent gene delivery. Lab Chip 2009;9:2638-43. doi: 10.1039/b823191e
-
(2009)
Lab Chip
, vol.9
, pp. 2638-2643
-
-
Hsieh, A.T.1
Hori, N.2
Massoudi, R.3
-
36
-
-
79955907483
-
Tuning physical properties of nanocomplexes through microfluidics-assisted confinement
-
Ho YP, Grigsby CL, Zhao F. et al. Tuning physical properties of nanocomplexes through microfluidics-assisted confinement. Nano Lett 2011;11:2178-82. doi: 10.1021/nl200862n
-
(2011)
Nano Lett
, vol.11
, pp. 2178-2182
-
-
Ho, Y.P.1
Grigsby, C.L.2
Zhao, F.3
-
37
-
-
22244491275
-
A stopped-flow kinetic study of the assembly of nonviral gene delivery complexes
-
Braun CS, Fisher MT, Tomalia DA. et al. A stopped-flow kinetic study of the assembly of nonviral gene delivery complexes. Biophys J 2005;88:4146-58. doi: 10.1529/biophysj.104.055202
-
(2005)
Biophys J
, vol.88
, pp. 4146-4158
-
-
Braun, C.S.1
Fisher, M.T.2
Tomalia, D.A.3
-
38
-
-
65449165678
-
The convergence of quantum-dotmediated fluorescence resonance energy transfer and microfluidics for monitoring DNA polyplex self-assembly in real time
-
Ho YP, Chen HH, Leong KW. et al. The convergence of quantum-dotmediated fluorescence resonance energy transfer and microfluidics for monitoring DNA polyplex self-assembly in real time. Nanotechnology 2009;20:095103 doi: 10.1088/0957-4484/20/9/095103
-
(2009)
Nanotechnology
, vol.20
-
-
Ho, Y.P.1
Chen, H.H.2
Leong, K.W.3
-
39
-
-
84860722540
-
Challenges in development of nanoparticle-based therapeutics
-
Desai N. Challenges in development of nanoparticle-based therapeutics. Aaps J 2012;14:282-95. doi: 10.1208/s12248-012-9339-4
-
(2012)
Aaps J
, vol.14
, pp. 282-295
-
-
Desai, N.1
-
40
-
-
84889588946
-
Microfluidic preparation of polymernucleic acid nanocomplexes improves nonviral gene transfer
-
Grigsby CL, Ho YP, Lin C. et al. Microfluidic preparation of polymernucleic acid nanocomplexes improves nonviral gene transfer. Sci Rep 2013;3:3155 doi: 10.1038/srep03155
-
(2013)
Sci Rep
, vol.3
, pp. 3155
-
-
Grigsby, C.L.1
Ho, Y.P.2
Lin, C.3
-
41
-
-
84893511366
-
Three-dimensional hydrodynamic focusing method for polyplex synthesis
-
Lu M, Ho YP, Grigsby CL. et al. Three-dimensional hydrodynamic focusing method for polyplex synthesis. ACS Nano 2014;8:332-9. doi: 10.1021/nn404193e
-
(2014)
ACS Nano
, vol.8
, pp. 332-339
-
-
Lu, M.1
Ho, Y.P.2
Grigsby, C.L.3
-
42
-
-
84862842189
-
Optimized preparation of pDNA/poly(ethylene imine) polyplexes using a microfluidic system
-
Debus H, Beck-Broichsitter M, Kissel T. Optimized preparation of pDNA/poly(ethylene imine) polyplexes using a microfluidic system. Lab Chip 2012;12:2498-506. doi: 10.1039/c2lc40176b
-
(2012)
Lab Chip
, vol.12
, pp. 2498-2506
-
-
Debus, H.1
Beck-Broichsitter, M.2
Kissel, T.3
-
43
-
-
34248402413
-
Shape effects of filaments versus spherical particles in flow and drug delivery
-
Geng Y, Dalhaimer P, Cai S. et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2007;2:249-55. doi: 10.1038/nnano.2007.70
-
(2007)
Nat Nanotechnol
, vol.2
, pp. 249-255
-
-
Geng, Y.1
Dalhaimer, P.2
Cai, S.3
-
44
-
-
50149110878
-
The effect of particle design on cellular internalization pathways
-
Gratton SE, Ropp PA, Pohlhaus PD. et al. The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci U S A 2008;105:11613-8. doi: 10.1073/pnas.0801763105
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 11613-11618
-
-
Gratton, S.E.1
Ropp, P.A.2
Pohlhaus, P.D.3
-
45
-
-
22244460241
-
Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials
-
Rolland JP, Maynor BW, Euliss LE. et al. Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. J Am Chem Soc 2005;127:10096-100. doi: 10.1021/ja051977c
-
(2005)
J Am Chem Soc
, vol.127
, pp. 10096-10100
-
-
Rolland, J.P.1
Maynor, B.W.2
Euliss, L.E.3
-
46
-
-
33646475253
-
Continuous-flow lithography for high-throughput microparticle synthesis
-
Dendukuri D, Pregibon DC, Collins J. et al. Continuous-flow lithography for high-throughput microparticle synthesis. Nat Mater 2006;5:365-9. doi: 10.1038/nmat1617
-
(2006)
Nat Mater
, vol.5
, pp. 365-369
-
-
Dendukuri, D.1
Pregibon, D.C.2
Collins, J.3
-
47
-
-
34347254622
-
Stop-flow lithography in a microfluidic device
-
Dendukuri D, Gu SS, Pregibon DC. et al. Stop-flow lithography in a microfluidic device. Lab Chip 2007;7:818-28. doi: 10.1039/b703457a
-
(2007)
Lab Chip
, vol.7
, pp. 818-828
-
-
Dendukuri, D.1
Gu, S.S.2
Pregibon, D.C.3
-
48
-
-
84872120777
-
Plasmid-templated shape control of condensed DNA-block copolymer nanoparticles
-
Jiang X, Qu W, Pan D. et al. Plasmid-templated shape control of condensed DNA-block copolymer nanoparticles. Adv Mater 2013;25:227-32. doi: 10.1002/adma.201202932
-
(2013)
Adv Mater
, vol.25
, pp. 227-232
-
-
Jiang, X.1
Qu, W.2
Pan, D.3
-
49
-
-
77950152455
-
Single-step assembly of homogenous lipid-polymeric and lipid-quantum dot nanoparticles enabled by microfluidic rapid mixing
-
Valencia PM, Basto PA, Zhang L. et al. Single-step assembly of homogenous lipid-polymeric and lipid-quantum dot nanoparticles enabled by microfluidic rapid mixing. ACS Nano 2010;4:1671-9. doi: 10.1021/nn901433u
-
(2010)
ACS Nano
, vol.4
, pp. 1671-1679
-
-
Valencia, P.M.1
Basto, P.A.2
Zhang, L.3
-
50
-
-
84863854232
-
Mass production and size control of lipid-polymer hybrid nanoparticles through controlled microvortices
-
Kim Y, Lee Chung B, Ma M. et al. Mass production and size control of lipid-polymer hybrid nanoparticles through controlled microvortices. Nano Lett 2012;12:3587-91. doi: 10.1021/nl301253v
-
(2012)
Nano Lett
, vol.12
, pp. 3587-3591
-
-
Kim, Y.1
Lee Chung, B.2
Ma, M.3
-
51
-
-
84903478448
-
Ultra-high throughput synthesis of nanoparticles with homogeneous size distribution using a coaxial turbulent jet mixer
-
Lim JM, Swami A, Gilson LM. et al. Ultra-high throughput synthesis of nanoparticles with homogeneous size distribution using a coaxial turbulent jet mixer. ACS Nano 2014;8:6056-65. doi: 10.1021/nn501371n
-
(2014)
ACS Nano
, vol.8
, pp. 6056-6065
-
-
Lim, J.M.1
Swami, A.2
Gilson, L.M.3
-
52
-
-
84895071390
-
Parallel microfluidic synthesis of size-tunable polymeric nanoparticles using 3D flow focusing towards in vivo study
-
Lim JM, Bertrand N, Valencia PM. et al. Parallel microfluidic synthesis of size-tunable polymeric nanoparticles using 3D flow focusing towards in vivo study. Nanomedicine 2014;10:401-9. doi: 10.1016/j.nano.2013.08.003
-
(2014)
Nanomedicine
, vol.10
, pp. 401-409
-
-
Lim, J.M.1
Bertrand, N.2
Valencia, P.M.3
-
53
-
-
84891362991
-
Microfluidic platform for combinatorial synthesis and optimization of targeted nanoparticles for cancer therapy
-
Valencia PM, Pridgen EM, Rhee M. et al. Microfluidic platform for combinatorial synthesis and optimization of targeted nanoparticles for cancer therapy. ACS Nano 2013;7:10671-80. doi: 10.1021/nn403370e
-
(2013)
ACS Nano
, vol.7
, pp. 10671-10680
-
-
Valencia, P.M.1
Pridgen, E.M.2
Rhee, M.3
-
54
-
-
77955489520
-
Fabrication of PLGA nanoparticles with a fluidic nanoprecipitation system
-
Xie H, Smith JW. Fabrication of PLGA nanoparticles with a fluidic nanoprecipitation system. J Nanobiotechnol 2010;8:18 doi: 10.1186/1477-3155-8-18
-
(2010)
J Nanobiotechnol
, vol.8
, pp. 18
-
-
Xie, H.1
Smith, J.W.2
-
55
-
-
70350053403
-
Delivery of polyethylenimine/DNA complexes assembled in a microfluidics device
-
Koh CG, Kang X, Xie Y. et al. Delivery of polyethylenimine/DNA complexes assembled in a microfluidics device. Mol Pharm 2009;6:1333-42. doi: 10.1021/mp900016q
-
(2009)
Mol Pharm
, vol.6
, pp. 1333-1342
-
-
Koh, C.G.1
Kang, X.2
Xie, Y.3
-
56
-
-
77954970051
-
Dynamics of microfluidic droplets
-
Baroud CN, Gallaire F, Dangla R. Dynamics of microfluidic droplets. Lab Chip 2010;10:2032-45. doi: 10.1039/c001191f
-
(2010)
Lab Chip
, vol.10
, pp. 2032-2045
-
-
Baroud, C.N.1
Gallaire, F.2
Dangla, R.3
-
57
-
-
38849164275
-
Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles
-
Nisisako T, Torii T. Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles. Lab Chip 2008;8:287-93. doi: 10.1039/b713141k
-
(2008)
Lab Chip
, vol.8
, pp. 287-293
-
-
Nisisako, T.1
Torii, T.2
-
58
-
-
78349285166
-
Microparticles: protagonists of a novel communication network for intercellular information exchange
-
Mause SF, Weber C. Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ Res 2010;107:1047-57. doi: 10.1161/CIRCRESAHA.110.226456
-
(2010)
Circ Res
, vol.107
, pp. 1047-1057
-
-
Mause, S.F.1
Weber, C.2
-
59
-
-
79953184652
-
Microencapsulation: A promising technique for controlled drug delivery
-
Singh MN, Hemant KS, Ram M. et al. Microencapsulation: A promising technique for controlled drug delivery. Res Pharm Sci 2010;5:65-77
-
(2010)
Res Pharm Sci
, vol.5
, pp. 65-77
-
-
Singh, M.N.1
Hemant, K.S.2
Ram, M.3
-
60
-
-
0037130249
-
Precise control of PLG microsphere size provides enhanced control of drug release rate
-
Berkland C, King M, Cox A. et al. Precise control of PLG microsphere size provides enhanced control of drug release rate. J Control Release 2002;82:137-47
-
(2002)
J Control Release
, vol.82
, pp. 137-147
-
-
Berkland, C.1
King, M.2
Cox, A.3
-
61
-
-
69549119873
-
A comparative study of top-down and bottom-up approaches for the preparation of micro/nanosuspensions
-
Verma S, Gokhale R, Burgess DJ. A comparative study of top-down and bottom-up approaches for the preparation of micro/nanosuspensions. Int J Pharm 2009;380:216-22. doi: 10.1016/j.ijpharm.2009.07.005
-
(2009)
Int J Pharm
, vol.380
, pp. 216-222
-
-
Verma, S.1
Gokhale, R.2
Burgess, D.J.3
-
62
-
-
52649114442
-
Novel one-pot route to monodisperse thermosensitive hollow microcapsules in a microfluidic system
-
Choi CH, Jung JH, Kim DW. et al. Novel one-pot route to monodisperse thermosensitive hollow microcapsules in a microfluidic system. Lab Chip 2008;8:1544-51. doi: 10.1039/b804839h
-
(2008)
Lab Chip
, vol.8
, pp. 1544-1551
-
-
Choi, C.H.1
Jung, J.H.2
Kim, D.W.3
-
63
-
-
75749129486
-
Monodisperse stimuli-responsive colloidosomes by self-assembly of microgels in droplets
-
Shah RK, Kim JW, Weitz DA. Monodisperse stimuli-responsive colloidosomes by self-assembly of microgels in droplets. Langmuir 2010;26:1561-5. doi: 10.1021/la9041327
-
(2010)
Langmuir
, vol.26
, pp. 1561-1565
-
-
Shah, R.K.1
Kim, J.W.2
Weitz, D.A.3
-
64
-
-
79955671740
-
Monodisperse core-shell chitosan microcapsules for pH-responsive burst release of hydrophobic drugs
-
Liu L, Yang JP, Ju XJ. et al. Monodisperse core-shell chitosan microcapsules for pH-responsive burst release of hydrophobic drugs. Soft Matter 2011;7:4821-7
-
(2011)
Soft Matter
, vol.7
, pp. 4821-4827
-
-
Liu, L.1
Yang, J.P.2
Ju, X.J.3
-
65
-
-
78650325724
-
One-step formation of multiple emulsions in microfluidics
-
Abate AR, Thiele J, Weitz DA. One-step formation of multiple emulsions in microfluidics. Lab Chip 2011;11:253-8. doi: 10.1039/c0lc00236d
-
(2011)
Lab Chip
, vol.11
, pp. 253-258
-
-
Abate, A.R.1
Thiele, J.2
Weitz, D.A.3
-
66
-
-
84875873519
-
A programmable microenvironment for cellular studies via microfluidics-generated double emulsions
-
Zhang Y, Ho YP, Chiu YL. et al. A programmable microenvironment for cellular studies via microfluidics-generated double emulsions. Biomaterials 2013;34:4564-72. doi: 10.1016/j.biomaterials.2013. 03.002
-
(2013)
Biomaterials
, vol.34
, pp. 4564-4572
-
-
Zhang, Y.1
Ho, Y.P.2
Chiu, Y.L.3
-
67
-
-
84883355633
-
Microfluidic fabrication of polymeric core-shell microspheres for controlled release applications
-
Kong T, Wu J, Yeung KW. et al. Microfluidic fabrication of polymeric core-shell microspheres for controlled release applications. Biomicrofluidics 2013;7:44128 doi: 10.1063/1.4819274
-
(2013)
Biomicrofluidics
, vol.7
, pp. 44128
-
-
Kong, T.1
Wu, J.2
Yeung, K.W.3
-
68
-
-
84862177216
-
Microfluidic synthesis of advanced microparticles for encapsulation and controlled release
-
Duncanson WJ, Lin T, Abate AR. et al. Microfluidic synthesis of advanced microparticles for encapsulation and controlled release. Lab Chip 2012;12:2135-45. doi: 10.1039/c2lc21164e
-
(2012)
Lab Chip
, vol.12
, pp. 2135-2145
-
-
Duncanson, W.J.1
Lin, T.2
Abate, A.R.3
-
69
-
-
80053074605
-
Multiple polymersomes for programmed release of multiple components
-
Kim SH, Shum HC, Kim JW. et al. Multiple polymersomes for programmed release of multiple components. J Am Chem Soc 2011;133:15165-71. doi: 10.1021/ja205687k
-
(2011)
J Am Chem Soc
, vol.133
, pp. 15165-15171
-
-
Kim, S.H.1
Shum, H.C.2
Kim, J.W.3
-
70
-
-
33746372161
-
Janus and ternary particles generated by microfluidic synthesis: design, synthesis, and self-assembly
-
Nie Z, Li W, Seo M. et al. Janus and ternary particles generated by microfluidic synthesis: design, synthesis, and self-assembly. J Am Chem Soc 2006;128:9408-12. doi: 10.1021/ja060882n
-
(2006)
J Am Chem Soc
, vol.128
, pp. 9408-9412
-
-
Nie, Z.1
Li, W.2
Seo, M.3
-
71
-
-
77956588611
-
Janus microgels produced from functional precursor polymers
-
Seiffert S, Romanowsky MB, Weitz DA. Janus microgels produced from functional precursor polymers. Langmuir 2010;26:14842-7. doi: 10.1021/la101868w
-
(2010)
Langmuir
, vol.26
, pp. 14842-14847
-
-
Seiffert, S.1
Romanowsky, M.B.2
Weitz, D.A.3
-
72
-
-
84863263071
-
One-step fabrication of polymeric Janus nanoparticles for drug delivery
-
Xie H, She ZG, Wang S. et al. One-step fabrication of polymeric Janus nanoparticles for drug delivery. Langmuir 2012;28:4459-63. doi: 10.1021/la2042185
-
(2012)
Langmuir
, vol.28
, pp. 4459-4463
-
-
Xie, H.1
She, Z.G.2
Wang, S.3
-
73
-
-
84894250027
-
Droplet microfluidics for producing functional microparticles
-
Kim JH, Jeon TY, Choi TM. et al. Droplet microfluidics for producing functional microparticles. Langmuir 2014;30:1473-88. doi: 10.1021/la403220p
-
(2014)
Langmuir
, vol.30
, pp. 1473-1488
-
-
Kim, J.H.1
Jeon, T.Y.2
Choi, T.M.3
-
74
-
-
84902837097
-
Microfluidics-assisted engineering of polymeric microcapsules with high encapsulation efficiency for protein drug delivery
-
Pessi J, Santos HA, Miroshnyk I. et al. Microfluidics-assisted engineering of polymeric microcapsules with high encapsulation efficiency for protein drug delivery. Int J Pharm 2014;472:82-7. doi: 10.1016/j.ijpharm.2014.06.012
-
(2014)
Int J Pharm
, vol.472
, pp. 82-87
-
-
Pessi, J.1
Santos, H.A.2
Miroshnyk, I.3
-
75
-
-
84937046503
-
Simple microfluidic approach to fabricate monodisperse hollow microparticles for multidrug delivery
-
Vasiliauskas R, Liu D, Cito S. et al. Simple microfluidic approach to fabricate monodisperse hollow microparticles for multidrug delivery. ACS Appl Mater Interfaces 2015;7:14822-32. doi: 10.1021/acsami.5b04824
-
(2015)
ACS Appl Mater Interfaces
, vol.7
, pp. 14822-14832
-
-
Vasiliauskas, R.1
Liu, D.2
Cito, S.3
-
76
-
-
84856142118
-
High throughput production of single core double emulsions in a parallelized microfluidic device
-
Romanowsky MB, Abate AR, Rotem A. et al. High throughput production of single core double emulsions in a parallelized microfluidic device. Lab Chip 2012;12:802-7. doi: 10.1039/c2lc21033a
-
(2012)
Lab Chip
, vol.12
, pp. 802-807
-
-
Romanowsky, M.B.1
Abate, A.R.2
Rotem, A.3
-
77
-
-
84884416974
-
Engineering synthetic hydrogel microenvironments to instruct stem cells
-
Guvendiren M, Burdick JA. Engineering synthetic hydrogel microenvironments to instruct stem cells. Curr Opin Biotechnol 2013;24:841-6. doi: 10.1016/j.copbio.2013.03.009
-
(2013)
Curr Opin Biotechnol
, vol.24
, pp. 841-846
-
-
Guvendiren, M.1
Burdick, J.A.2
-
78
-
-
56349158571
-
Cell microencapsulation technology: towards clinical application
-
Murua A, Portero A, Orive G. et al. Cell microencapsulation technology: towards clinical application. J Control Release 2008;132:76-83. doi: 10.1016/j.jconrel.2008.08.010
-
(2008)
J Control Release
, vol.132
, pp. 76-83
-
-
Murua, A.1
Portero, A.2
Orive, G.3
-
79
-
-
84904603578
-
Device design and materials optimization of conformal coating for islets of Langerhans
-
Tomei AA, Manzoli V, Fraker CA. et al. Device design and materials optimization of conformal coating for islets of Langerhans. Proc Natl Acad Sci U S A 2014;111:10514-9. doi: 10.1073/pnas.1402216111
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. 10514-10519
-
-
Tomei, A.A.1
Manzoli, V.2
Fraker, C.A.3
-
80
-
-
48249153806
-
Cell encapsulation in sub-mm sized gel modules using replica molding
-
McGuigan AP, Bruzewicz DA, Glavan A. et al. Cell encapsulation in sub-mm sized gel modules using replica molding. PLoS One 2008;3:e2258 doi: 10.1371/journal.pone.0002258
-
(2008)
PLoS One
, vol.3
-
-
McGuigan, A.P.1
Bruzewicz, D.A.2
Glavan, A.3
-
81
-
-
0026637063
-
Xenografts of rat islets into diabetic mice. An evaluation of new smaller capsules
-
Lum ZP, Krestow M, Tai IT. et al. Xenografts of rat islets into diabetic mice. An evaluation of new smaller capsules. Transplantation 1992;53:1180-3
-
(1992)
Transplantation
, vol.53
, pp. 1180-1183
-
-
Lum, Z.P.1
Krestow, M.2
Tai, I.T.3
-
82
-
-
84862528024
-
Microfluidic-based synthesis of hydrogel particles for cell microencapsulation and cell-based drug delivery
-
Wan J. Microfluidic-based synthesis of hydrogel particles for cell microencapsulation and cell-based drug delivery. Polymers 2012;4:1084-108
-
(2012)
Polymers
, vol.4
, pp. 1084-1108
-
-
Wan, J.1
-
83
-
-
77951004006
-
Microfluidic encapsulation of cells in alginate capsules for high throughput screening
-
Trivedi V, Ereifej ES, Doshi A. et al. Microfluidic encapsulation of cells in alginate capsules for high throughput screening. Conf Proc IEEE Eng Med Biol Soc 2009;2009:7037-40. doi: 10.1109/IEMBS.2009.5333308
-
(2009)
Conf Proc IEEE Eng Med Biol Soc
, vol.2009
, pp. 7037-7040
-
-
Trivedi, V.1
Ereifej, E.S.2
Doshi, A.3
-
84
-
-
84938747686
-
Microfluidic generation of monodisperse, structurally homogeneous alginate microgels for cell encapsulation and 3D cell culture
-
Utech S, Prodanovic R, Mao AS. et al. Microfluidic generation of monodisperse, structurally homogeneous alginate microgels for cell encapsulation and 3D cell culture. Adv Healthc Mater 2015;4:1628-33. doi: 10.1002/adhm.201500021
-
(2015)
Adv Healthc Mater
, vol.4
, pp. 1628-1633
-
-
Utech, S.1
Prodanovic, R.2
Mao, A.S.3
-
85
-
-
84865213073
-
Collagen microsphere production on a chip
-
Hong S, Hsu HJ, Kaunas R. et al. Collagen microsphere production on a chip. Lab Chip 2012;12:3277-80. doi: 10.1039/c2lc40558j
-
(2012)
Lab Chip
, vol.12
, pp. 3277-3280
-
-
Hong, S.1
Hsu, H.J.2
Kaunas, R.3
-
86
-
-
78650271558
-
High-throughput generation of hydrogel microbeads with varying elasticity for cell encapsulation
-
Kumachev A, Greener J, Tumarkin E. et al. High-throughput generation of hydrogel microbeads with varying elasticity for cell encapsulation. Biomaterials 2011;32:1477-83. doi: 10.1016/j.biomaterials.2010.10.033
-
(2011)
Biomaterials
, vol.32
, pp. 1477-1483
-
-
Kumachev, A.1
Greener, J.2
Tumarkin, E.3
-
87
-
-
78650802851
-
Rapid monodisperse microencapsulation of single cells
-
Zhang X, Ohta AT, Garmire D. Rapid monodisperse microencapsulation of single cells. Conf Proc IEEE Eng Med Biol Soc 2010;2010:6518-21 doi: 10.1109/IEMBS.2010.5627084
-
(2010)
Conf Proc IEEE Eng Med Biol Soc
, vol.2010
, pp. 6518-6521
-
-
Zhang, X.1
Ohta, A.T.2
Garmire, D.3
-
88
-
-
79955614470
-
Encapsulating bacteria in agarose microparticles using microfluidics for high-throughput cell analysis and isolation
-
Eun YJ, Utada AS, Copeland MF. et al. Encapsulating bacteria in agarose microparticles using microfluidics for high-throughput cell analysis and isolation. ACS Chem Biol 2011;6:260-6. doi: 10.1021/cb100336p
-
(2011)
ACS Chem Biol
, vol.6
, pp. 260-266
-
-
Eun, Y.J.1
Utada, A.S.2
Copeland, M.F.3
-
89
-
-
79953272005
-
Cell-enclosing gelatin-based microcapsule production for tissue engineering using a microfluidic flow-focusing system
-
Sakai S, Ito S, Inagaki H. et al. Cell-enclosing gelatin-based microcapsule production for tissue engineering using a microfluidic flow-focusing system. Biomicrofluidics 2011;5:13402 doi: 10.1063/1.3516657
-
(2011)
Biomicrofluidics
, vol.5
, pp. 13402
-
-
Sakai, S.1
Ito, S.2
Inagaki, H.3
-
90
-
-
81255151150
-
Chemical transfection of cells in picoliter aqueous droplets in fluorocarbon oil
-
Chen F, Zhan Y, Geng T. et al. Chemical transfection of cells in picoliter aqueous droplets in fluorocarbon oil. Anal Chem 2011;83:8816-20. doi: 10.1021/ac2022794
-
(2011)
Anal Chem
, vol.83
, pp. 8816-8820
-
-
Chen, F.1
Zhan, Y.2
Geng, T.3
-
91
-
-
43149111583
-
Droplet-based microfluidic platforms for the encapsulation and screening of Mammalian cells and multicellular organisms
-
Clausell-Tormos J, Lieber D, Baret JC. et al. Droplet-based microfluidic platforms for the encapsulation and screening of Mammalian cells and multicellular organisms. Chem Biol 2008;15:427-37. doi: 10.1016/j.chembiol.2008.04.004
-
(2008)
Chem Biol
, vol.15
, pp. 427-437
-
-
Clausell-Tormos, J.1
Lieber, D.2
Baret, J.C.3
-
92
-
-
69549108398
-
Monodisperse semi-permeable microcapsules for continuous observation of cells
-
Morimoto Y, Tan WH, Tsuda Y. et al. Monodisperse semi-permeable microcapsules for continuous observation of cells. Lab Chip 2009;9:2217-23. doi: 10.1039/b900035f
-
(2009)
Lab Chip
, vol.9
, pp. 2217-2223
-
-
Morimoto, Y.1
Tan, W.H.2
Tsuda, Y.3
-
93
-
-
65349196129
-
Rapid exchange of oil-phase in microencapsulation chip to enhance cell viability
-
Kim C, Lee KS, Kim YE. et al. Rapid exchange of oil-phase in microencapsulation chip to enhance cell viability. Lab Chip 2009;9:1294-7. doi: 10.1039/b819044e
-
(2009)
Lab Chip
, vol.9
, pp. 1294-1297
-
-
Kim, C.1
Lee, K.S.2
Kim, Y.E.3
-
94
-
-
84898419600
-
The crucial role of mechanical heterogeneity in regulating follicle development and ovulation with engineered ovarian microtissue
-
Choi JK, Agarwal P, Huang H. et al. The crucial role of mechanical heterogeneity in regulating follicle development and ovulation with engineered ovarian microtissue. Biomaterials 2014;35:5122-8. doi: 10.1016/j.biomaterials.2014.03.028
-
(2014)
Biomaterials
, vol.35
, pp. 5122-5128
-
-
Choi, J.K.1
Agarwal, P.2
Huang, H.3
-
95
-
-
84890589120
-
Rapid formation of multicellular spheroids in double-emulsion droplets with controllable microenvironment
-
Chan HF, Zhang Y, Ho YP. et al. Rapid formation of multicellular spheroids in double-emulsion droplets with controllable microenvironment. Sci Rep 2013;3:3462. doi: 10.1038/srep03462
-
(2013)
Sci Rep
, vol.3
, pp. 3462
-
-
Chan, H.F.1
Zhang, Y.2
Ho, Y.P.3
-
96
-
-
84979488745
-
Efficient one-step production ofmicroencapsulated hepatocyte spheroids with enhanced functions
-
(In press)
-
Chan HF, Zhang Y, Leong KW. Efficient one-step production ofmicroencapsulated hepatocyte spheroids with enhanced functions. Small 2016; (In press)
-
(2016)
Small
-
-
Chan, H.F.1
Zhang, Y.2
Leong, K.W.3
-
97
-
-
84878053506
-
A robust strategy for negative selection of Cre-loxP recombination-based excision of transgenes in induced pluripotent stem cells
-
Chakraborty S, Christoforou N, Fattahi A. et al. A robust strategy for negative selection of Cre-loxP recombination-based excision of transgenes in induced pluripotent stem cells. PLoS One 2013;8:e64342 doi: 10.1371/journal.pone.0064342
-
(2013)
PLoS One
, vol.8
-
-
Chakraborty, S.1
Christoforou, N.2
Fattahi, A.3
-
98
-
-
78650300353
-
Efficacy of engineered FVIII-producing skeletal muscle enhanced by growth factor-releasing co-axial electrospun fibers
-
Liao IC, Leong KW. Efficacy of engineered FVIII-producing skeletal muscle enhanced by growth factor-releasing co-axial electrospun fibers. Biomaterials 2011;32:1669-77. doi: 10.1016/j.biomaterials.2010.10.049
-
(2011)
Biomaterials
, vol.32
, pp. 1669-1677
-
-
Liao, I.C.1
Leong, K.W.2
-
99
-
-
0033800754
-
Transfected human dendritic cells to induce antitumor immunity
-
Rughetti A, Biffoni M, Sabbatucci M. et al. Transfected human dendritic cells to induce antitumor immunity. Gene Ther 2000;7:1458-66. doi: 10.1038/sj.gt.3301266
-
(2000)
Gene Ther
, vol.7
, pp. 1458-1466
-
-
Rughetti, A.1
Biffoni, M.2
Sabbatucci, M.3
-
100
-
-
84935851134
-
Engineering mesenchymal stem cells for regenerative medicine and drug delivery
-
Park JS, Suryaprakash S, Lao YH. et al. Engineering mesenchymal stem cells for regenerative medicine and drug delivery. Methods 2015;84:3-16 doi: 10.1016/j.ymeth.2015.03.002
-
(2015)
Methods
, vol.84
, pp. 3-16
-
-
Park, J.S.1
Suryaprakash, S.2
Lao, Y.H.3
-
101
-
-
64749092098
-
Electroporation of cells in microfluidic droplets
-
Zhan Y, Wang J, Bao N. et al. Electroporation of cells in microfluidic droplets. Anal Chem 2009;81:2027-31. doi: 10.1021/ac9001172
-
(2009)
Anal Chem
, vol.81
, pp. 2027-2031
-
-
Zhan, Y.1
Wang, J.2
Bao, N.3
-
102
-
-
85034700814
-
CRISPR-Cas9 delivery to hard-to-transfect cells via membrane deformation
-
Han X, Liu Z, Jo MC. et al. CRISPR-Cas9 delivery to hard-to-transfect cells via membrane deformation. Sci Adv 2015;1:e1500454 doi: 10.1126/sciadv.1500454
-
(2015)
Sci Adv
, vol.1
-
-
Han, X.1
Liu, Z.2
Jo, M.C.3
-
103
-
-
40049090999
-
Electrospinning: applications in drug delivery and tissue engineering
-
Sill TJ, von Recum HA. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 2008;29:1989-2006. doi: 10.1016/j.biomaterials.2008.01.011
-
(2008)
Biomaterials
, vol.29
, pp. 1989-2006
-
-
Sill, T.J.1
von Recum, H.A.2
-
104
-
-
84879412130
-
Fiber-based tissue engineering: Progress, challenges, and opportunities
-
Tamayol A, Akbari M, Annabi N. et al. Fiber-based tissue engineering: Progress, challenges, and opportunities. Biotechnol Adv 2013;31:669-87 doi: 10.1016/j.biotechadv.2012.11.007
-
(2013)
Biotechnol Adv
, vol.31
, pp. 669-687
-
-
Tamayol, A.1
Akbari, M.2
Annabi, N.3
-
105
-
-
80053927918
-
Mammalian cell viability in electrospun composite nanofiber structures
-
Canbolat MF, Tang C, Bernacki SH. et al. Mammalian cell viability in electrospun composite nanofiber structures. Macromol Biosci 2011;11:1346-56. doi: 10.1002/mabi.201100108
-
(2011)
Macromol Biosci
, vol.11
, pp. 1346-1356
-
-
Canbolat, M.F.1
Tang, C.2
Bernacki, S.H.3
-
106
-
-
84862780211
-
Dual drug release from electrospun poly(lacticco-glycolic acid)/mesoporous silica nanoparticles composite mats with distinct release profiles
-
Song B, Wu C, Chang J. Dual drug release from electrospun poly(lacticco-glycolic acid)/mesoporous silica nanoparticles composite mats with distinct release profiles. Acta Biomater 2012;8:1901-7. doi: 10.1016/j.actbio.2012.01.020
-
(2012)
Acta Biomater
, vol.8
, pp. 1901-1907
-
-
Song, B.1
Wu, C.2
Chang, J.3
-
107
-
-
33746901298
-
Electrospun micro-and nanofibers for sustained delivery of paclitaxel to treat C6 glioma in vitro
-
Xie J, Wang CH. Electrospun micro-and nanofibers for sustained delivery of paclitaxel to treat C6 glioma in vitro. Pharm Res 2006;23:1817-26. doi: 10.1007/s11095-006-9036-z
-
(2006)
Pharm Res
, vol.23
, pp. 1817-1826
-
-
Xie, J.1
Wang, C.H.2
-
108
-
-
84878836401
-
Micro/Nanometer-scale fiber with highly ordered structures by mimicking the spinning process of silkworm
-
Chae SK, Kang E, Khademhosseini A. et al. Micro/Nanometer-scale fiber with highly ordered structures by mimicking the spinning process of silkworm. Adv Mater 2013;25:3071-8. doi: 10.1002/adma.201300837
-
(2013)
Adv Mater
, vol.25
, pp. 3071-3078
-
-
Chae, S.K.1
Kang, E.2
Khademhosseini, A.3
-
109
-
-
84866169463
-
Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydrogel microfibers for long-term preservation of liver-specific functions
-
Yamada M, Utoh R, Ohashi K. et al. Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydrogel microfibers for long-term preservation of liver-specific functions. Biomaterials 2012;33:8304-15. doi: 10.1016/j.biomaterials.2012.07.068
-
(2012)
Biomaterials
, vol.33
, pp. 8304-8315
-
-
Yamada, M.1
Utoh, R.2
Ohashi, K.3
-
110
-
-
67349267337
-
Cell immobilization in gelatinhydroxyphenylpropionic acid hydrogel fibers
-
Hu M, Kurisawa M, Deng R. et al. Cell immobilization in gelatinhydroxyphenylpropionic acid hydrogel fibers. Biomaterials 2009;30: 3523-31. doi: 10.1016/j.biomaterials.2009.03.004
-
(2009)
Biomaterials
, vol.30
, pp. 3523-3531
-
-
Hu, M.1
Kurisawa, M.2
Deng, R.3
-
111
-
-
79955449302
-
Optimised production of multifunctional microfibres by microfluidic chip technology for tissue engineering applications
-
Mazzitelli S, Capretto L, Carugo D. et al. Optimised production of multifunctional microfibres by microfluidic chip technology for tissue engineering applications. Lab Chip 2011;11:1776-85. doi: 10.1039/c1lc20082h
-
(2011)
Lab Chip
, vol.11
, pp. 1776-1785
-
-
Mazzitelli, S.1
Capretto, L.2
Carugo, D.3
-
112
-
-
77952406649
-
Amphiphilic triblock copolymer and a microfluidic device for porous microfiber fabrication
-
Marimuthu M, Kim S, An J. Amphiphilic triblock copolymer and a microfluidic device for porous microfiber fabrication. Soft Matter 2010;6:2200-7
-
(2010)
Soft Matter
, vol.6
, pp. 2200-2207
-
-
Marimuthu, M.1
Kim, S.2
An, J.3
-
113
-
-
84859073152
-
Microfluidic synthesis of microfibers for magnetic-responsive controlled drug release and cell culture
-
Lin YS, Huang KS, Yang CH. et al. Microfluidic synthesis of microfibers for magnetic-responsive controlled drug release and cell culture. PLoS One 2012;7:e33184 doi: 10.1371/journal.pone.0033184
-
(2012)
PLoS One
, vol.7
-
-
Lin, Y.S.1
Huang, K.S.2
Yang, C.H.3
-
114
-
-
80054956005
-
Digitally tunable physicochemical coding of material composition and topography in continuous microfibres
-
Kang E, Jeong GS, Choi YY. et al. Digitally tunable physicochemical coding of material composition and topography in continuous microfibres. Nat Mater 2011;10:877-83. doi: 10.1038/nmat3108
-
(2011)
Nat Mater
, vol.10
, pp. 877-883
-
-
Kang, E.1
Jeong, G.S.2
Choi, Y.Y.3
|