메뉴 건너뛰기




Volumn 3, Issue 2, 2016, Pages 87-98

Can microfluidics address biomanufacturing challenges in drug/gene/cell therapies?

Author keywords

Biomanufacturing; Microencapsulation; Microfiber; Microfluidics; Nanoparticle

Indexed keywords

DRUG PRODUCTS; MANUFACTURE; MICROENCAPSULATION; MICROFLUIDICS; NANOPARTICLES; TARGETED DRUG DELIVERY;

EID: 84996706137     PISSN: 20563418     EISSN: 20563426     Source Type: Journal    
DOI: 10.1093/RB/RBW009     Document Type: Review
Times cited : (33)

References (114)
  • 1
    • 84942931759 scopus 로고    scopus 로고
    • Cell-based therapy technology classifications and translational challenges
    • Mount NM, Ward SJ, Kefalas P. et al. Cell-based therapy technology classifications and translational challenges. Philos Trans R Soc Lond B Biol Sci 2015;370:20150017 doi: 10.1098/rstb.2015.0017
    • (2015) Philos Trans R Soc Lond B Biol Sci , vol.370
    • Mount, N.M.1    Ward, S.J.2    Kefalas, P.3
  • 2
    • 84893717170 scopus 로고    scopus 로고
    • Why commercialization of gene therapy stalled; examining the life cycles of gene therapy technologies
    • Ledley FD, McNamee LM, Uzdil V. et al. Why commercialization of gene therapy stalled; examining the life cycles of gene therapy technologies. Gene Ther 2014;21:188-94. doi: 10.1038/gt.2013.72
    • (2014) Gene Ther , vol.21 , pp. 188-194
    • Ledley, F.D.1    McNamee, L.M.2    Uzdil, V.3
  • 3
    • 85073764850 scopus 로고    scopus 로고
    • Glybera-The Most Expensive Drug in the world & First Approved Gene Therapy in the West
    • (20 December 2015, date last accessed)
    • Crasto AM. Glybera-The Most Expensive Drug in the world & First Approved Gene Therapy in the West. All About Drug. (20 December 2015, date last accessed)
    • All About Drug
    • Crasto, A.M.1
  • 4
    • 84937565249 scopus 로고    scopus 로고
    • Non viral vectors in gene therapy-an overview
    • Ramamoorth M, Narvekar A. Non viral vectors in gene therapy-an overview. J Clin Diagn Res 2015;9:GE01-6. doi: 10.7860/JCDR/2015/10443.5394
    • (2015) J Clin Diagn Res , vol.9 , pp. GE01-6
    • Ramamoorth, M.1    Narvekar, A.2
  • 5
    • 84873244450 scopus 로고    scopus 로고
    • Advanced materials and processing for drug delivery: the past and the future
    • Zhang Y, Chan HF, Leong KW. Advanced materials and processing for drug delivery: the past and the future. Adv Drug Deliv Rev 2013;65:104-20. doi: 10.1016/j.addr.2012.10.003
    • (2013) Adv Drug Deliv Rev , vol.65 , pp. 104-120
    • Zhang, Y.1    Chan, H.F.2    Leong, K.W.3
  • 6
    • 84887112373 scopus 로고    scopus 로고
    • Re-examining the size/charge paradigm: differing in vivo characteristics of size-and charge-matched mesoporous silica nanoparticles
    • Townson JL, Lin YS, Agola JO. et al. Re-examining the size/charge paradigm: differing in vivo characteristics of size-and charge-matched mesoporous silica nanoparticles. J Am Chem Soc 2013;135:16030-3. doi: 10.1021/ja4082414
    • (2013) J Am Chem Soc , vol.135 , pp. 16030-16033
    • Townson, J.L.1    Lin, Y.S.2    Agola, J.O.3
  • 7
    • 85009109516 scopus 로고    scopus 로고
    • The Office of the Federal Register; National Archives and Records Administration
    • Federal Register Devision. The Code of Federal Regulations of the United States of America. The Office of the Federal Register; National Archives and Records Administration, 1999
    • (1999) The Code of Federal Regulations of the United States of America
  • 8
    • 33747117373 scopus 로고    scopus 로고
    • The origins and the future of microfluidics
    • Whitesides GM. The origins and the future of microfluidics. Nature 2006;442:368-73. doi: 10.1038/nature05058
    • (2006) Nature , vol.442 , pp. 368-373
    • Whitesides, G.M.1
  • 9
    • 84891409244 scopus 로고    scopus 로고
    • Magnetoactive sponges for dynamic control of microfluidic flow patterns in microphysiological systems
    • Hong S, Jung Y, Yen R. et al. Magnetoactive sponges for dynamic control of microfluidic flow patterns in microphysiological systems. Lab Chip 2014;14:514-21. doi: 10.1039/c3lc51076j
    • (2014) Lab Chip , vol.14 , pp. 514-521
    • Hong, S.1    Jung, Y.2    Yen, R.3
  • 11
    • 38849155318 scopus 로고    scopus 로고
    • Droplet microfluidics
    • Teh SY, Lin R, Hung LH. et al. Droplet microfluidics. Lab Chip 2008;8:198-220. doi: 10.1039/b715524g
    • (2008) Lab Chip , vol.8 , pp. 198-220
    • Teh, S.Y.1    Lin, R.2    Hung, L.H.3
  • 12
    • 84899448669 scopus 로고    scopus 로고
    • Synthesis of fluorosurfactants for emulsion-based biological applications
    • Chiu YL, Chan HF, Phua KK. et al. Synthesis of fluorosurfactants for emulsion-based biological applications. ACS Nano 2014;8:3913-20. doi: 10.1021/nn500810n
    • (2014) ACS Nano , vol.8 , pp. 3913-3920
    • Chiu, Y.L.1    Chan, H.F.2    Phua, K.K.3
  • 13
    • 84871033897 scopus 로고    scopus 로고
    • Microfluidic technologies for accelerating the clinical translation of nanoparticles
    • Valencia PM, Farokhzad OC, Karnik R. et al. Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nat Nanotechnol 2012;7:623-9. doi: 10.1038/nnano.2012.168
    • (2012) Nat Nanotechnol , vol.7 , pp. 623-629
    • Valencia, P.M.1    Farokhzad, O.C.2    Karnik, R.3
  • 14
    • 67749133574 scopus 로고    scopus 로고
    • Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow-focusing device for controlled drug delivery
    • Xu Q, Hashimoto M, Dang TT. et al. Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow-focusing device for controlled drug delivery. Small 2009;5:1575-81. doi: 10.1002/smll.200801855
    • (2009) Small , vol.5 , pp. 1575-1581
    • Xu, Q.1    Hashimoto, M.2    Dang, T.T.3
  • 15
    • 84873444254 scopus 로고    scopus 로고
    • A vector-free microfluidic platform for intracellular delivery
    • Sharei A, Zoldan J, Adamo A et al. A vector-free microfluidic platform for intracellular delivery. Proc Natl Acad Sci U S A 2013;110:2082-7. doi: 10.1073/pnas.1218705110
    • (2013) Proc Natl Acad Sci U S A , vol.110 , pp. 2082-2087
    • Sharei, A.1    Zoldan, J.2    Adamo, A.3
  • 16
    • 34748901356 scopus 로고    scopus 로고
    • Monodisperse alginate hydrogel microbeads for cell encapsulation
    • Tan HW, Takeuchi S. Monodisperse alginate hydrogel microbeads for cell encapsulation. Adv Mater 2009;19:2696-701
    • (2009) Adv Mater , vol.19 , pp. 2696-2701
    • Tan, H.W.1    Takeuchi, S.2
  • 17
    • 84901938944 scopus 로고    scopus 로고
    • Microfluidic spinning of micro-and nanoscale fibers for tissue engineering
    • Jun Y, Kang E, Chae S. et al. Microfluidic spinning of micro-and nanoscale fibers for tissue engineering. Lab Chip 2014;14:2145-60. doi: 10.1039/c3lc51414e
    • (2014) Lab Chip , vol.14 , pp. 2145-2160
    • Jun, Y.1    Kang, E.2    Chae, S.3
  • 18
    • 22944443610 scopus 로고    scopus 로고
    • Sustained release of proteins from electrospun biodegradable fibers
    • Chew SY, Wen J, Yim EK. et al. Sustained release of proteins from electrospun biodegradable fibers. Biomacromolecules 2005;6:2017-24. doi: 10.1021/bm0501149
    • (2005) Biomacromolecules , vol.6 , pp. 2017-2024
    • Chew, S.Y.1    Wen, J.2    Yim, E.K.3
  • 19
    • 61349139614 scopus 로고    scopus 로고
    • Drug delivery and nanoparticles:applications and hazards
    • De Jong WH, Borm PJ. Drug delivery and nanoparticles:applications and hazards. Int J Nanomedicine 2008;3:133-49
    • (2008) Int J Nanomedicine , vol.3 , pp. 133-149
    • De Jong, W.H.1    Borm, P.J.2
  • 20
    • 84906241803 scopus 로고    scopus 로고
    • Optimizing the discovery and clinical translation of nanoparticles: could microfluidics hold the key?
    • Lim JM, Karnik R. Optimizing the discovery and clinical translation of nanoparticles: could microfluidics hold the key? Nanomed (Lond) 2014;9:1113-6. doi: 10.2217/nnm.14.73
    • (2014) Nanomed (Lond) , vol.9 , pp. 1113-1116
    • Lim, J.M.1    Karnik, R.2
  • 21
    • 58149465608 scopus 로고    scopus 로고
    • Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice
    • Schipper ML, Iyer G, Koh AL. et al. Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small 2009;5:126-34. doi: 10.1002/smll.200800003
    • (2009) Small , vol.5 , pp. 126-134
    • Schipper, M.L.1    Iyer, G.2    Koh, A.L.3
  • 22
    • 83555166219 scopus 로고    scopus 로고
    • Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size
    • Cabral H, Matsumoto Y, Mizuno K. et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol 2011;6:815-23. doi: 10.1038/nnano.2011.166
    • (2011) Nat Nanotechnol , vol.6 , pp. 815-823
    • Cabral, H.1    Matsumoto, Y.2    Mizuno, K.3
  • 23
    • 54549109219 scopus 로고    scopus 로고
    • Microfluidic platform for controlled synthesis of polymeric nanoparticles
    • Karnik R, Gu F, Basto P. et al. Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett 2008;8:2906-12. doi: 10.1021/nl801736q
    • (2008) Nano Lett , vol.8 , pp. 2906-2912
    • Karnik, R.1    Gu, F.2    Basto, P.3
  • 24
    • 0142089168 scopus 로고    scopus 로고
    • Mechanism for rapid self-assembly of block copolymer nanoparticles
    • Johnson BK, Prud'homme RK. Mechanism for rapid self-assembly of block copolymer nanoparticles. Phys Rev Lett 2003;91:118302 doi: 10.1103/PhysRevLett.91.118302
    • (2003) Phys Rev Lett , vol.91
    • Johnson, B.K.1    Prud'homme, R.K.2
  • 25
    • 79953058675 scopus 로고    scopus 로고
    • Synthesis of size-tunable polymeric nanoparticles enabled by 3D hydrodynamic flow focusing in single-layer microchannels
    • Rhee M, Valencia PM, Rodriguez MI. et al. Synthesis of size-tunable polymeric nanoparticles enabled by 3D hydrodynamic flow focusing in single-layer microchannels. Adv Mater 2011;23:H79-83. doi: 10.1002/adma.201004333
    • (2011) Adv Mater , vol.23 , pp. H79-H83
    • Rhee, M.1    Valencia, P.M.2    Rodriguez, M.I.3
  • 26
    • 0032901219 scopus 로고    scopus 로고
    • Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method
    • Barichello JM, Morishita M, Takayama K. et al. Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method. Drug Dev Ind Pharm 1999;25:471-6. doi: 10.1081/DDC-100102197
    • (1999) Drug Dev Ind Pharm , vol.25 , pp. 471-476
    • Barichello, J.M.1    Morishita, M.2    Takayama, K.3
  • 27
    • 84937239259 scopus 로고    scopus 로고
    • Recent trends in preparation of poly(lactide-co-glycolide) nanoparticles by mixing polymeric organic solution with antisolvent
    • Sah E, Sah H. Recent trends in preparation of poly(lactide-co-glycolide) nanoparticles by mixing polymeric organic solution with antisolvent. J Nanomater 2015;2015: 1-22
    • (2015) J Nanomater , vol.2015 , pp. 1-22
    • Sah, E.1    Sah, H.2
  • 28
    • 84856655429 scopus 로고    scopus 로고
    • Improved drug loading and antibacterial activity of minocycline-loaded PLGA nanoparticles prepared by solid/oil/water ion pairing method
    • Kashi TS, Eskandarion S, Esfandyari-Manesh M. et al. Improved drug loading and antibacterial activity of minocycline-loaded PLGA nanoparticles prepared by solid/oil/water ion pairing method. Int J Nanomed 2012;7:221-34. doi: 10.2147/IJN.S27709
    • (2012) Int J Nanomed , vol.7 , pp. 221-234
    • Kashi, T.S.1    Eskandarion, S.2    Esfandyari-Manesh, M.3
  • 29
    • 33645512835 scopus 로고    scopus 로고
    • Nanoprecipitation versus emulsionbased techniques for the encapsulation of proteins into biodegradable nanoparticles and process-related stability issues
    • Bilati U, Allemann E, Doelker E. Nanoprecipitation versus emulsionbased techniques for the encapsulation of proteins into biodegradable nanoparticles and process-related stability issues. AAPS PharmSciTech 2005;6:E594-604. doi: 10.1208/pt060474
    • (2005) AAPS PharmSciTech , vol.6 , pp. E594-E604
    • Bilati, U.1    Allemann, E.2    Doelker, E.3
  • 30
    • 84873038614 scopus 로고    scopus 로고
    • Biocompatible gemcitabine-based nanomedicine engineered by Flow Focusing for efficient antitumor activity
    • Martin-Banderas L, Saez-Fernandez E, Holgado MA. et al. Biocompatible gemcitabine-based nanomedicine engineered by Flow Focusing for efficient antitumor activity. Int J Pharm 2013;443:103-9. doi: 10.1016/j.ijpharm.2012.12.048
    • (2013) Int J Pharm , vol.443 , pp. 103-109
    • Martin-Banderas, L.1    Saez-Fernandez, E.2    Holgado, M.A.3
  • 31
    • 77954112372 scopus 로고    scopus 로고
    • PLGA micro/nanosphere synthesis by droplet microfluidic solvent evaporation and extraction approaches
    • Hung LH, Teh SY, Jester J. et al. PLGA micro/nanosphere synthesis by droplet microfluidic solvent evaporation and extraction approaches. Lab Chip 2010;10:1820-5. doi: 10.1039/c002866e
    • (2010) Lab Chip , vol.10 , pp. 1820-1825
    • Hung, L.H.1    Teh, S.Y.2    Jester, J.3
  • 32
    • 84892439853 scopus 로고    scopus 로고
    • Gene therapy and DNA delivery systems
    • Ibraheem D, Elaissari A, Fessi H. Gene therapy and DNA delivery systems. Int J Pharm2014;459:70-83. doi: 10.1016/j.ijpharm.2013.11.041
    • (2014) Int J Pharm , vol.459 , pp. 70-83
    • Ibraheem, D.1    Elaissari, A.2    Fessi, H.3
  • 33
    • 33748290173 scopus 로고    scopus 로고
    • Gene therapy progress and prospects: non-viral gene therapy by systemic delivery
    • Li SD, Huang L. Gene therapy progress and prospects: non-viral gene therapy by systemic delivery. Gene. Ther 2006;13:1313-9. doi: 10.1038/sj.gt.3302838
    • (2006) Gene. Ther , vol.13 , pp. 1313-1319
    • Li, S.D.1    Huang, L.2
  • 34
    • 22144447455 scopus 로고    scopus 로고
    • Design and development of polymers for gene delivery
    • Pack DW, Hoffman AS, Pun S. et al. Design and development of polymers for gene delivery. Nat Rev Drug Discov 2005;4:581-93. doi: 10.1038/nrd1775
    • (2005) Nat Rev Drug Discov , vol.4 , pp. 581-593
    • Pack, D.W.1    Hoffman, A.S.2    Pun, S.3
  • 35
    • 69549087912 scopus 로고    scopus 로고
    • Nonviral gene vector formation in monodispersed picolitre incubator for consistent gene delivery
    • Hsieh AT, Hori N, Massoudi R et al. Nonviral gene vector formation in monodispersed picolitre incubator for consistent gene delivery. Lab Chip 2009;9:2638-43. doi: 10.1039/b823191e
    • (2009) Lab Chip , vol.9 , pp. 2638-2643
    • Hsieh, A.T.1    Hori, N.2    Massoudi, R.3
  • 36
    • 79955907483 scopus 로고    scopus 로고
    • Tuning physical properties of nanocomplexes through microfluidics-assisted confinement
    • Ho YP, Grigsby CL, Zhao F. et al. Tuning physical properties of nanocomplexes through microfluidics-assisted confinement. Nano Lett 2011;11:2178-82. doi: 10.1021/nl200862n
    • (2011) Nano Lett , vol.11 , pp. 2178-2182
    • Ho, Y.P.1    Grigsby, C.L.2    Zhao, F.3
  • 37
    • 22244491275 scopus 로고    scopus 로고
    • A stopped-flow kinetic study of the assembly of nonviral gene delivery complexes
    • Braun CS, Fisher MT, Tomalia DA. et al. A stopped-flow kinetic study of the assembly of nonviral gene delivery complexes. Biophys J 2005;88:4146-58. doi: 10.1529/biophysj.104.055202
    • (2005) Biophys J , vol.88 , pp. 4146-4158
    • Braun, C.S.1    Fisher, M.T.2    Tomalia, D.A.3
  • 38
    • 65449165678 scopus 로고    scopus 로고
    • The convergence of quantum-dotmediated fluorescence resonance energy transfer and microfluidics for monitoring DNA polyplex self-assembly in real time
    • Ho YP, Chen HH, Leong KW. et al. The convergence of quantum-dotmediated fluorescence resonance energy transfer and microfluidics for monitoring DNA polyplex self-assembly in real time. Nanotechnology 2009;20:095103 doi: 10.1088/0957-4484/20/9/095103
    • (2009) Nanotechnology , vol.20
    • Ho, Y.P.1    Chen, H.H.2    Leong, K.W.3
  • 39
    • 84860722540 scopus 로고    scopus 로고
    • Challenges in development of nanoparticle-based therapeutics
    • Desai N. Challenges in development of nanoparticle-based therapeutics. Aaps J 2012;14:282-95. doi: 10.1208/s12248-012-9339-4
    • (2012) Aaps J , vol.14 , pp. 282-295
    • Desai, N.1
  • 40
    • 84889588946 scopus 로고    scopus 로고
    • Microfluidic preparation of polymernucleic acid nanocomplexes improves nonviral gene transfer
    • Grigsby CL, Ho YP, Lin C. et al. Microfluidic preparation of polymernucleic acid nanocomplexes improves nonviral gene transfer. Sci Rep 2013;3:3155 doi: 10.1038/srep03155
    • (2013) Sci Rep , vol.3 , pp. 3155
    • Grigsby, C.L.1    Ho, Y.P.2    Lin, C.3
  • 41
    • 84893511366 scopus 로고    scopus 로고
    • Three-dimensional hydrodynamic focusing method for polyplex synthesis
    • Lu M, Ho YP, Grigsby CL. et al. Three-dimensional hydrodynamic focusing method for polyplex synthesis. ACS Nano 2014;8:332-9. doi: 10.1021/nn404193e
    • (2014) ACS Nano , vol.8 , pp. 332-339
    • Lu, M.1    Ho, Y.P.2    Grigsby, C.L.3
  • 42
    • 84862842189 scopus 로고    scopus 로고
    • Optimized preparation of pDNA/poly(ethylene imine) polyplexes using a microfluidic system
    • Debus H, Beck-Broichsitter M, Kissel T. Optimized preparation of pDNA/poly(ethylene imine) polyplexes using a microfluidic system. Lab Chip 2012;12:2498-506. doi: 10.1039/c2lc40176b
    • (2012) Lab Chip , vol.12 , pp. 2498-2506
    • Debus, H.1    Beck-Broichsitter, M.2    Kissel, T.3
  • 43
    • 34248402413 scopus 로고    scopus 로고
    • Shape effects of filaments versus spherical particles in flow and drug delivery
    • Geng Y, Dalhaimer P, Cai S. et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2007;2:249-55. doi: 10.1038/nnano.2007.70
    • (2007) Nat Nanotechnol , vol.2 , pp. 249-255
    • Geng, Y.1    Dalhaimer, P.2    Cai, S.3
  • 44
    • 50149110878 scopus 로고    scopus 로고
    • The effect of particle design on cellular internalization pathways
    • Gratton SE, Ropp PA, Pohlhaus PD. et al. The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci U S A 2008;105:11613-8. doi: 10.1073/pnas.0801763105
    • (2008) Proc Natl Acad Sci U S A , vol.105 , pp. 11613-11618
    • Gratton, S.E.1    Ropp, P.A.2    Pohlhaus, P.D.3
  • 45
    • 22244460241 scopus 로고    scopus 로고
    • Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials
    • Rolland JP, Maynor BW, Euliss LE. et al. Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. J Am Chem Soc 2005;127:10096-100. doi: 10.1021/ja051977c
    • (2005) J Am Chem Soc , vol.127 , pp. 10096-10100
    • Rolland, J.P.1    Maynor, B.W.2    Euliss, L.E.3
  • 46
    • 33646475253 scopus 로고    scopus 로고
    • Continuous-flow lithography for high-throughput microparticle synthesis
    • Dendukuri D, Pregibon DC, Collins J. et al. Continuous-flow lithography for high-throughput microparticle synthesis. Nat Mater 2006;5:365-9. doi: 10.1038/nmat1617
    • (2006) Nat Mater , vol.5 , pp. 365-369
    • Dendukuri, D.1    Pregibon, D.C.2    Collins, J.3
  • 47
    • 34347254622 scopus 로고    scopus 로고
    • Stop-flow lithography in a microfluidic device
    • Dendukuri D, Gu SS, Pregibon DC. et al. Stop-flow lithography in a microfluidic device. Lab Chip 2007;7:818-28. doi: 10.1039/b703457a
    • (2007) Lab Chip , vol.7 , pp. 818-828
    • Dendukuri, D.1    Gu, S.S.2    Pregibon, D.C.3
  • 48
    • 84872120777 scopus 로고    scopus 로고
    • Plasmid-templated shape control of condensed DNA-block copolymer nanoparticles
    • Jiang X, Qu W, Pan D. et al. Plasmid-templated shape control of condensed DNA-block copolymer nanoparticles. Adv Mater 2013;25:227-32. doi: 10.1002/adma.201202932
    • (2013) Adv Mater , vol.25 , pp. 227-232
    • Jiang, X.1    Qu, W.2    Pan, D.3
  • 49
    • 77950152455 scopus 로고    scopus 로고
    • Single-step assembly of homogenous lipid-polymeric and lipid-quantum dot nanoparticles enabled by microfluidic rapid mixing
    • Valencia PM, Basto PA, Zhang L. et al. Single-step assembly of homogenous lipid-polymeric and lipid-quantum dot nanoparticles enabled by microfluidic rapid mixing. ACS Nano 2010;4:1671-9. doi: 10.1021/nn901433u
    • (2010) ACS Nano , vol.4 , pp. 1671-1679
    • Valencia, P.M.1    Basto, P.A.2    Zhang, L.3
  • 50
    • 84863854232 scopus 로고    scopus 로고
    • Mass production and size control of lipid-polymer hybrid nanoparticles through controlled microvortices
    • Kim Y, Lee Chung B, Ma M. et al. Mass production and size control of lipid-polymer hybrid nanoparticles through controlled microvortices. Nano Lett 2012;12:3587-91. doi: 10.1021/nl301253v
    • (2012) Nano Lett , vol.12 , pp. 3587-3591
    • Kim, Y.1    Lee Chung, B.2    Ma, M.3
  • 51
    • 84903478448 scopus 로고    scopus 로고
    • Ultra-high throughput synthesis of nanoparticles with homogeneous size distribution using a coaxial turbulent jet mixer
    • Lim JM, Swami A, Gilson LM. et al. Ultra-high throughput synthesis of nanoparticles with homogeneous size distribution using a coaxial turbulent jet mixer. ACS Nano 2014;8:6056-65. doi: 10.1021/nn501371n
    • (2014) ACS Nano , vol.8 , pp. 6056-6065
    • Lim, J.M.1    Swami, A.2    Gilson, L.M.3
  • 52
    • 84895071390 scopus 로고    scopus 로고
    • Parallel microfluidic synthesis of size-tunable polymeric nanoparticles using 3D flow focusing towards in vivo study
    • Lim JM, Bertrand N, Valencia PM. et al. Parallel microfluidic synthesis of size-tunable polymeric nanoparticles using 3D flow focusing towards in vivo study. Nanomedicine 2014;10:401-9. doi: 10.1016/j.nano.2013.08.003
    • (2014) Nanomedicine , vol.10 , pp. 401-409
    • Lim, J.M.1    Bertrand, N.2    Valencia, P.M.3
  • 53
    • 84891362991 scopus 로고    scopus 로고
    • Microfluidic platform for combinatorial synthesis and optimization of targeted nanoparticles for cancer therapy
    • Valencia PM, Pridgen EM, Rhee M. et al. Microfluidic platform for combinatorial synthesis and optimization of targeted nanoparticles for cancer therapy. ACS Nano 2013;7:10671-80. doi: 10.1021/nn403370e
    • (2013) ACS Nano , vol.7 , pp. 10671-10680
    • Valencia, P.M.1    Pridgen, E.M.2    Rhee, M.3
  • 54
    • 77955489520 scopus 로고    scopus 로고
    • Fabrication of PLGA nanoparticles with a fluidic nanoprecipitation system
    • Xie H, Smith JW. Fabrication of PLGA nanoparticles with a fluidic nanoprecipitation system. J Nanobiotechnol 2010;8:18 doi: 10.1186/1477-3155-8-18
    • (2010) J Nanobiotechnol , vol.8 , pp. 18
    • Xie, H.1    Smith, J.W.2
  • 55
    • 70350053403 scopus 로고    scopus 로고
    • Delivery of polyethylenimine/DNA complexes assembled in a microfluidics device
    • Koh CG, Kang X, Xie Y. et al. Delivery of polyethylenimine/DNA complexes assembled in a microfluidics device. Mol Pharm 2009;6:1333-42. doi: 10.1021/mp900016q
    • (2009) Mol Pharm , vol.6 , pp. 1333-1342
    • Koh, C.G.1    Kang, X.2    Xie, Y.3
  • 56
    • 77954970051 scopus 로고    scopus 로고
    • Dynamics of microfluidic droplets
    • Baroud CN, Gallaire F, Dangla R. Dynamics of microfluidic droplets. Lab Chip 2010;10:2032-45. doi: 10.1039/c001191f
    • (2010) Lab Chip , vol.10 , pp. 2032-2045
    • Baroud, C.N.1    Gallaire, F.2    Dangla, R.3
  • 57
    • 38849164275 scopus 로고    scopus 로고
    • Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles
    • Nisisako T, Torii T. Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles. Lab Chip 2008;8:287-93. doi: 10.1039/b713141k
    • (2008) Lab Chip , vol.8 , pp. 287-293
    • Nisisako, T.1    Torii, T.2
  • 58
    • 78349285166 scopus 로고    scopus 로고
    • Microparticles: protagonists of a novel communication network for intercellular information exchange
    • Mause SF, Weber C. Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ Res 2010;107:1047-57. doi: 10.1161/CIRCRESAHA.110.226456
    • (2010) Circ Res , vol.107 , pp. 1047-1057
    • Mause, S.F.1    Weber, C.2
  • 59
    • 79953184652 scopus 로고    scopus 로고
    • Microencapsulation: A promising technique for controlled drug delivery
    • Singh MN, Hemant KS, Ram M. et al. Microencapsulation: A promising technique for controlled drug delivery. Res Pharm Sci 2010;5:65-77
    • (2010) Res Pharm Sci , vol.5 , pp. 65-77
    • Singh, M.N.1    Hemant, K.S.2    Ram, M.3
  • 60
    • 0037130249 scopus 로고    scopus 로고
    • Precise control of PLG microsphere size provides enhanced control of drug release rate
    • Berkland C, King M, Cox A. et al. Precise control of PLG microsphere size provides enhanced control of drug release rate. J Control Release 2002;82:137-47
    • (2002) J Control Release , vol.82 , pp. 137-147
    • Berkland, C.1    King, M.2    Cox, A.3
  • 61
    • 69549119873 scopus 로고    scopus 로고
    • A comparative study of top-down and bottom-up approaches for the preparation of micro/nanosuspensions
    • Verma S, Gokhale R, Burgess DJ. A comparative study of top-down and bottom-up approaches for the preparation of micro/nanosuspensions. Int J Pharm 2009;380:216-22. doi: 10.1016/j.ijpharm.2009.07.005
    • (2009) Int J Pharm , vol.380 , pp. 216-222
    • Verma, S.1    Gokhale, R.2    Burgess, D.J.3
  • 62
    • 52649114442 scopus 로고    scopus 로고
    • Novel one-pot route to monodisperse thermosensitive hollow microcapsules in a microfluidic system
    • Choi CH, Jung JH, Kim DW. et al. Novel one-pot route to monodisperse thermosensitive hollow microcapsules in a microfluidic system. Lab Chip 2008;8:1544-51. doi: 10.1039/b804839h
    • (2008) Lab Chip , vol.8 , pp. 1544-1551
    • Choi, C.H.1    Jung, J.H.2    Kim, D.W.3
  • 63
    • 75749129486 scopus 로고    scopus 로고
    • Monodisperse stimuli-responsive colloidosomes by self-assembly of microgels in droplets
    • Shah RK, Kim JW, Weitz DA. Monodisperse stimuli-responsive colloidosomes by self-assembly of microgels in droplets. Langmuir 2010;26:1561-5. doi: 10.1021/la9041327
    • (2010) Langmuir , vol.26 , pp. 1561-1565
    • Shah, R.K.1    Kim, J.W.2    Weitz, D.A.3
  • 64
    • 79955671740 scopus 로고    scopus 로고
    • Monodisperse core-shell chitosan microcapsules for pH-responsive burst release of hydrophobic drugs
    • Liu L, Yang JP, Ju XJ. et al. Monodisperse core-shell chitosan microcapsules for pH-responsive burst release of hydrophobic drugs. Soft Matter 2011;7:4821-7
    • (2011) Soft Matter , vol.7 , pp. 4821-4827
    • Liu, L.1    Yang, J.P.2    Ju, X.J.3
  • 65
    • 78650325724 scopus 로고    scopus 로고
    • One-step formation of multiple emulsions in microfluidics
    • Abate AR, Thiele J, Weitz DA. One-step formation of multiple emulsions in microfluidics. Lab Chip 2011;11:253-8. doi: 10.1039/c0lc00236d
    • (2011) Lab Chip , vol.11 , pp. 253-258
    • Abate, A.R.1    Thiele, J.2    Weitz, D.A.3
  • 66
    • 84875873519 scopus 로고    scopus 로고
    • A programmable microenvironment for cellular studies via microfluidics-generated double emulsions
    • Zhang Y, Ho YP, Chiu YL. et al. A programmable microenvironment for cellular studies via microfluidics-generated double emulsions. Biomaterials 2013;34:4564-72. doi: 10.1016/j.biomaterials.2013. 03.002
    • (2013) Biomaterials , vol.34 , pp. 4564-4572
    • Zhang, Y.1    Ho, Y.P.2    Chiu, Y.L.3
  • 67
    • 84883355633 scopus 로고    scopus 로고
    • Microfluidic fabrication of polymeric core-shell microspheres for controlled release applications
    • Kong T, Wu J, Yeung KW. et al. Microfluidic fabrication of polymeric core-shell microspheres for controlled release applications. Biomicrofluidics 2013;7:44128 doi: 10.1063/1.4819274
    • (2013) Biomicrofluidics , vol.7 , pp. 44128
    • Kong, T.1    Wu, J.2    Yeung, K.W.3
  • 68
    • 84862177216 scopus 로고    scopus 로고
    • Microfluidic synthesis of advanced microparticles for encapsulation and controlled release
    • Duncanson WJ, Lin T, Abate AR. et al. Microfluidic synthesis of advanced microparticles for encapsulation and controlled release. Lab Chip 2012;12:2135-45. doi: 10.1039/c2lc21164e
    • (2012) Lab Chip , vol.12 , pp. 2135-2145
    • Duncanson, W.J.1    Lin, T.2    Abate, A.R.3
  • 69
    • 80053074605 scopus 로고    scopus 로고
    • Multiple polymersomes for programmed release of multiple components
    • Kim SH, Shum HC, Kim JW. et al. Multiple polymersomes for programmed release of multiple components. J Am Chem Soc 2011;133:15165-71. doi: 10.1021/ja205687k
    • (2011) J Am Chem Soc , vol.133 , pp. 15165-15171
    • Kim, S.H.1    Shum, H.C.2    Kim, J.W.3
  • 70
    • 33746372161 scopus 로고    scopus 로고
    • Janus and ternary particles generated by microfluidic synthesis: design, synthesis, and self-assembly
    • Nie Z, Li W, Seo M. et al. Janus and ternary particles generated by microfluidic synthesis: design, synthesis, and self-assembly. J Am Chem Soc 2006;128:9408-12. doi: 10.1021/ja060882n
    • (2006) J Am Chem Soc , vol.128 , pp. 9408-9412
    • Nie, Z.1    Li, W.2    Seo, M.3
  • 71
    • 77956588611 scopus 로고    scopus 로고
    • Janus microgels produced from functional precursor polymers
    • Seiffert S, Romanowsky MB, Weitz DA. Janus microgels produced from functional precursor polymers. Langmuir 2010;26:14842-7. doi: 10.1021/la101868w
    • (2010) Langmuir , vol.26 , pp. 14842-14847
    • Seiffert, S.1    Romanowsky, M.B.2    Weitz, D.A.3
  • 72
    • 84863263071 scopus 로고    scopus 로고
    • One-step fabrication of polymeric Janus nanoparticles for drug delivery
    • Xie H, She ZG, Wang S. et al. One-step fabrication of polymeric Janus nanoparticles for drug delivery. Langmuir 2012;28:4459-63. doi: 10.1021/la2042185
    • (2012) Langmuir , vol.28 , pp. 4459-4463
    • Xie, H.1    She, Z.G.2    Wang, S.3
  • 73
    • 84894250027 scopus 로고    scopus 로고
    • Droplet microfluidics for producing functional microparticles
    • Kim JH, Jeon TY, Choi TM. et al. Droplet microfluidics for producing functional microparticles. Langmuir 2014;30:1473-88. doi: 10.1021/la403220p
    • (2014) Langmuir , vol.30 , pp. 1473-1488
    • Kim, J.H.1    Jeon, T.Y.2    Choi, T.M.3
  • 74
    • 84902837097 scopus 로고    scopus 로고
    • Microfluidics-assisted engineering of polymeric microcapsules with high encapsulation efficiency for protein drug delivery
    • Pessi J, Santos HA, Miroshnyk I. et al. Microfluidics-assisted engineering of polymeric microcapsules with high encapsulation efficiency for protein drug delivery. Int J Pharm 2014;472:82-7. doi: 10.1016/j.ijpharm.2014.06.012
    • (2014) Int J Pharm , vol.472 , pp. 82-87
    • Pessi, J.1    Santos, H.A.2    Miroshnyk, I.3
  • 75
    • 84937046503 scopus 로고    scopus 로고
    • Simple microfluidic approach to fabricate monodisperse hollow microparticles for multidrug delivery
    • Vasiliauskas R, Liu D, Cito S. et al. Simple microfluidic approach to fabricate monodisperse hollow microparticles for multidrug delivery. ACS Appl Mater Interfaces 2015;7:14822-32. doi: 10.1021/acsami.5b04824
    • (2015) ACS Appl Mater Interfaces , vol.7 , pp. 14822-14832
    • Vasiliauskas, R.1    Liu, D.2    Cito, S.3
  • 76
    • 84856142118 scopus 로고    scopus 로고
    • High throughput production of single core double emulsions in a parallelized microfluidic device
    • Romanowsky MB, Abate AR, Rotem A. et al. High throughput production of single core double emulsions in a parallelized microfluidic device. Lab Chip 2012;12:802-7. doi: 10.1039/c2lc21033a
    • (2012) Lab Chip , vol.12 , pp. 802-807
    • Romanowsky, M.B.1    Abate, A.R.2    Rotem, A.3
  • 77
    • 84884416974 scopus 로고    scopus 로고
    • Engineering synthetic hydrogel microenvironments to instruct stem cells
    • Guvendiren M, Burdick JA. Engineering synthetic hydrogel microenvironments to instruct stem cells. Curr Opin Biotechnol 2013;24:841-6. doi: 10.1016/j.copbio.2013.03.009
    • (2013) Curr Opin Biotechnol , vol.24 , pp. 841-846
    • Guvendiren, M.1    Burdick, J.A.2
  • 78
    • 56349158571 scopus 로고    scopus 로고
    • Cell microencapsulation technology: towards clinical application
    • Murua A, Portero A, Orive G. et al. Cell microencapsulation technology: towards clinical application. J Control Release 2008;132:76-83. doi: 10.1016/j.jconrel.2008.08.010
    • (2008) J Control Release , vol.132 , pp. 76-83
    • Murua, A.1    Portero, A.2    Orive, G.3
  • 79
    • 84904603578 scopus 로고    scopus 로고
    • Device design and materials optimization of conformal coating for islets of Langerhans
    • Tomei AA, Manzoli V, Fraker CA. et al. Device design and materials optimization of conformal coating for islets of Langerhans. Proc Natl Acad Sci U S A 2014;111:10514-9. doi: 10.1073/pnas.1402216111
    • (2014) Proc Natl Acad Sci U S A , vol.111 , pp. 10514-10519
    • Tomei, A.A.1    Manzoli, V.2    Fraker, C.A.3
  • 80
    • 48249153806 scopus 로고    scopus 로고
    • Cell encapsulation in sub-mm sized gel modules using replica molding
    • McGuigan AP, Bruzewicz DA, Glavan A. et al. Cell encapsulation in sub-mm sized gel modules using replica molding. PLoS One 2008;3:e2258 doi: 10.1371/journal.pone.0002258
    • (2008) PLoS One , vol.3
    • McGuigan, A.P.1    Bruzewicz, D.A.2    Glavan, A.3
  • 81
    • 0026637063 scopus 로고
    • Xenografts of rat islets into diabetic mice. An evaluation of new smaller capsules
    • Lum ZP, Krestow M, Tai IT. et al. Xenografts of rat islets into diabetic mice. An evaluation of new smaller capsules. Transplantation 1992;53:1180-3
    • (1992) Transplantation , vol.53 , pp. 1180-1183
    • Lum, Z.P.1    Krestow, M.2    Tai, I.T.3
  • 82
    • 84862528024 scopus 로고    scopus 로고
    • Microfluidic-based synthesis of hydrogel particles for cell microencapsulation and cell-based drug delivery
    • Wan J. Microfluidic-based synthesis of hydrogel particles for cell microencapsulation and cell-based drug delivery. Polymers 2012;4:1084-108
    • (2012) Polymers , vol.4 , pp. 1084-1108
    • Wan, J.1
  • 83
    • 77951004006 scopus 로고    scopus 로고
    • Microfluidic encapsulation of cells in alginate capsules for high throughput screening
    • Trivedi V, Ereifej ES, Doshi A. et al. Microfluidic encapsulation of cells in alginate capsules for high throughput screening. Conf Proc IEEE Eng Med Biol Soc 2009;2009:7037-40. doi: 10.1109/IEMBS.2009.5333308
    • (2009) Conf Proc IEEE Eng Med Biol Soc , vol.2009 , pp. 7037-7040
    • Trivedi, V.1    Ereifej, E.S.2    Doshi, A.3
  • 84
    • 84938747686 scopus 로고    scopus 로고
    • Microfluidic generation of monodisperse, structurally homogeneous alginate microgels for cell encapsulation and 3D cell culture
    • Utech S, Prodanovic R, Mao AS. et al. Microfluidic generation of monodisperse, structurally homogeneous alginate microgels for cell encapsulation and 3D cell culture. Adv Healthc Mater 2015;4:1628-33. doi: 10.1002/adhm.201500021
    • (2015) Adv Healthc Mater , vol.4 , pp. 1628-1633
    • Utech, S.1    Prodanovic, R.2    Mao, A.S.3
  • 85
    • 84865213073 scopus 로고    scopus 로고
    • Collagen microsphere production on a chip
    • Hong S, Hsu HJ, Kaunas R. et al. Collagen microsphere production on a chip. Lab Chip 2012;12:3277-80. doi: 10.1039/c2lc40558j
    • (2012) Lab Chip , vol.12 , pp. 3277-3280
    • Hong, S.1    Hsu, H.J.2    Kaunas, R.3
  • 86
    • 78650271558 scopus 로고    scopus 로고
    • High-throughput generation of hydrogel microbeads with varying elasticity for cell encapsulation
    • Kumachev A, Greener J, Tumarkin E. et al. High-throughput generation of hydrogel microbeads with varying elasticity for cell encapsulation. Biomaterials 2011;32:1477-83. doi: 10.1016/j.biomaterials.2010.10.033
    • (2011) Biomaterials , vol.32 , pp. 1477-1483
    • Kumachev, A.1    Greener, J.2    Tumarkin, E.3
  • 87
    • 78650802851 scopus 로고    scopus 로고
    • Rapid monodisperse microencapsulation of single cells
    • Zhang X, Ohta AT, Garmire D. Rapid monodisperse microencapsulation of single cells. Conf Proc IEEE Eng Med Biol Soc 2010;2010:6518-21 doi: 10.1109/IEMBS.2010.5627084
    • (2010) Conf Proc IEEE Eng Med Biol Soc , vol.2010 , pp. 6518-6521
    • Zhang, X.1    Ohta, A.T.2    Garmire, D.3
  • 88
    • 79955614470 scopus 로고    scopus 로고
    • Encapsulating bacteria in agarose microparticles using microfluidics for high-throughput cell analysis and isolation
    • Eun YJ, Utada AS, Copeland MF. et al. Encapsulating bacteria in agarose microparticles using microfluidics for high-throughput cell analysis and isolation. ACS Chem Biol 2011;6:260-6. doi: 10.1021/cb100336p
    • (2011) ACS Chem Biol , vol.6 , pp. 260-266
    • Eun, Y.J.1    Utada, A.S.2    Copeland, M.F.3
  • 89
    • 79953272005 scopus 로고    scopus 로고
    • Cell-enclosing gelatin-based microcapsule production for tissue engineering using a microfluidic flow-focusing system
    • Sakai S, Ito S, Inagaki H. et al. Cell-enclosing gelatin-based microcapsule production for tissue engineering using a microfluidic flow-focusing system. Biomicrofluidics 2011;5:13402 doi: 10.1063/1.3516657
    • (2011) Biomicrofluidics , vol.5 , pp. 13402
    • Sakai, S.1    Ito, S.2    Inagaki, H.3
  • 90
    • 81255151150 scopus 로고    scopus 로고
    • Chemical transfection of cells in picoliter aqueous droplets in fluorocarbon oil
    • Chen F, Zhan Y, Geng T. et al. Chemical transfection of cells in picoliter aqueous droplets in fluorocarbon oil. Anal Chem 2011;83:8816-20. doi: 10.1021/ac2022794
    • (2011) Anal Chem , vol.83 , pp. 8816-8820
    • Chen, F.1    Zhan, Y.2    Geng, T.3
  • 91
    • 43149111583 scopus 로고    scopus 로고
    • Droplet-based microfluidic platforms for the encapsulation and screening of Mammalian cells and multicellular organisms
    • Clausell-Tormos J, Lieber D, Baret JC. et al. Droplet-based microfluidic platforms for the encapsulation and screening of Mammalian cells and multicellular organisms. Chem Biol 2008;15:427-37. doi: 10.1016/j.chembiol.2008.04.004
    • (2008) Chem Biol , vol.15 , pp. 427-437
    • Clausell-Tormos, J.1    Lieber, D.2    Baret, J.C.3
  • 92
    • 69549108398 scopus 로고    scopus 로고
    • Monodisperse semi-permeable microcapsules for continuous observation of cells
    • Morimoto Y, Tan WH, Tsuda Y. et al. Monodisperse semi-permeable microcapsules for continuous observation of cells. Lab Chip 2009;9:2217-23. doi: 10.1039/b900035f
    • (2009) Lab Chip , vol.9 , pp. 2217-2223
    • Morimoto, Y.1    Tan, W.H.2    Tsuda, Y.3
  • 93
    • 65349196129 scopus 로고    scopus 로고
    • Rapid exchange of oil-phase in microencapsulation chip to enhance cell viability
    • Kim C, Lee KS, Kim YE. et al. Rapid exchange of oil-phase in microencapsulation chip to enhance cell viability. Lab Chip 2009;9:1294-7. doi: 10.1039/b819044e
    • (2009) Lab Chip , vol.9 , pp. 1294-1297
    • Kim, C.1    Lee, K.S.2    Kim, Y.E.3
  • 94
    • 84898419600 scopus 로고    scopus 로고
    • The crucial role of mechanical heterogeneity in regulating follicle development and ovulation with engineered ovarian microtissue
    • Choi JK, Agarwal P, Huang H. et al. The crucial role of mechanical heterogeneity in regulating follicle development and ovulation with engineered ovarian microtissue. Biomaterials 2014;35:5122-8. doi: 10.1016/j.biomaterials.2014.03.028
    • (2014) Biomaterials , vol.35 , pp. 5122-5128
    • Choi, J.K.1    Agarwal, P.2    Huang, H.3
  • 95
    • 84890589120 scopus 로고    scopus 로고
    • Rapid formation of multicellular spheroids in double-emulsion droplets with controllable microenvironment
    • Chan HF, Zhang Y, Ho YP. et al. Rapid formation of multicellular spheroids in double-emulsion droplets with controllable microenvironment. Sci Rep 2013;3:3462. doi: 10.1038/srep03462
    • (2013) Sci Rep , vol.3 , pp. 3462
    • Chan, H.F.1    Zhang, Y.2    Ho, Y.P.3
  • 96
    • 84979488745 scopus 로고    scopus 로고
    • Efficient one-step production ofmicroencapsulated hepatocyte spheroids with enhanced functions
    • (In press)
    • Chan HF, Zhang Y, Leong KW. Efficient one-step production ofmicroencapsulated hepatocyte spheroids with enhanced functions. Small 2016; (In press)
    • (2016) Small
    • Chan, H.F.1    Zhang, Y.2    Leong, K.W.3
  • 97
    • 84878053506 scopus 로고    scopus 로고
    • A robust strategy for negative selection of Cre-loxP recombination-based excision of transgenes in induced pluripotent stem cells
    • Chakraborty S, Christoforou N, Fattahi A. et al. A robust strategy for negative selection of Cre-loxP recombination-based excision of transgenes in induced pluripotent stem cells. PLoS One 2013;8:e64342 doi: 10.1371/journal.pone.0064342
    • (2013) PLoS One , vol.8
    • Chakraborty, S.1    Christoforou, N.2    Fattahi, A.3
  • 98
    • 78650300353 scopus 로고    scopus 로고
    • Efficacy of engineered FVIII-producing skeletal muscle enhanced by growth factor-releasing co-axial electrospun fibers
    • Liao IC, Leong KW. Efficacy of engineered FVIII-producing skeletal muscle enhanced by growth factor-releasing co-axial electrospun fibers. Biomaterials 2011;32:1669-77. doi: 10.1016/j.biomaterials.2010.10.049
    • (2011) Biomaterials , vol.32 , pp. 1669-1677
    • Liao, I.C.1    Leong, K.W.2
  • 99
    • 0033800754 scopus 로고    scopus 로고
    • Transfected human dendritic cells to induce antitumor immunity
    • Rughetti A, Biffoni M, Sabbatucci M. et al. Transfected human dendritic cells to induce antitumor immunity. Gene Ther 2000;7:1458-66. doi: 10.1038/sj.gt.3301266
    • (2000) Gene Ther , vol.7 , pp. 1458-1466
    • Rughetti, A.1    Biffoni, M.2    Sabbatucci, M.3
  • 100
    • 84935851134 scopus 로고    scopus 로고
    • Engineering mesenchymal stem cells for regenerative medicine and drug delivery
    • Park JS, Suryaprakash S, Lao YH. et al. Engineering mesenchymal stem cells for regenerative medicine and drug delivery. Methods 2015;84:3-16 doi: 10.1016/j.ymeth.2015.03.002
    • (2015) Methods , vol.84 , pp. 3-16
    • Park, J.S.1    Suryaprakash, S.2    Lao, Y.H.3
  • 101
    • 64749092098 scopus 로고    scopus 로고
    • Electroporation of cells in microfluidic droplets
    • Zhan Y, Wang J, Bao N. et al. Electroporation of cells in microfluidic droplets. Anal Chem 2009;81:2027-31. doi: 10.1021/ac9001172
    • (2009) Anal Chem , vol.81 , pp. 2027-2031
    • Zhan, Y.1    Wang, J.2    Bao, N.3
  • 102
    • 85034700814 scopus 로고    scopus 로고
    • CRISPR-Cas9 delivery to hard-to-transfect cells via membrane deformation
    • Han X, Liu Z, Jo MC. et al. CRISPR-Cas9 delivery to hard-to-transfect cells via membrane deformation. Sci Adv 2015;1:e1500454 doi: 10.1126/sciadv.1500454
    • (2015) Sci Adv , vol.1
    • Han, X.1    Liu, Z.2    Jo, M.C.3
  • 103
    • 40049090999 scopus 로고    scopus 로고
    • Electrospinning: applications in drug delivery and tissue engineering
    • Sill TJ, von Recum HA. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 2008;29:1989-2006. doi: 10.1016/j.biomaterials.2008.01.011
    • (2008) Biomaterials , vol.29 , pp. 1989-2006
    • Sill, T.J.1    von Recum, H.A.2
  • 104
    • 84879412130 scopus 로고    scopus 로고
    • Fiber-based tissue engineering: Progress, challenges, and opportunities
    • Tamayol A, Akbari M, Annabi N. et al. Fiber-based tissue engineering: Progress, challenges, and opportunities. Biotechnol Adv 2013;31:669-87 doi: 10.1016/j.biotechadv.2012.11.007
    • (2013) Biotechnol Adv , vol.31 , pp. 669-687
    • Tamayol, A.1    Akbari, M.2    Annabi, N.3
  • 105
    • 80053927918 scopus 로고    scopus 로고
    • Mammalian cell viability in electrospun composite nanofiber structures
    • Canbolat MF, Tang C, Bernacki SH. et al. Mammalian cell viability in electrospun composite nanofiber structures. Macromol Biosci 2011;11:1346-56. doi: 10.1002/mabi.201100108
    • (2011) Macromol Biosci , vol.11 , pp. 1346-1356
    • Canbolat, M.F.1    Tang, C.2    Bernacki, S.H.3
  • 106
    • 84862780211 scopus 로고    scopus 로고
    • Dual drug release from electrospun poly(lacticco-glycolic acid)/mesoporous silica nanoparticles composite mats with distinct release profiles
    • Song B, Wu C, Chang J. Dual drug release from electrospun poly(lacticco-glycolic acid)/mesoporous silica nanoparticles composite mats with distinct release profiles. Acta Biomater 2012;8:1901-7. doi: 10.1016/j.actbio.2012.01.020
    • (2012) Acta Biomater , vol.8 , pp. 1901-1907
    • Song, B.1    Wu, C.2    Chang, J.3
  • 107
    • 33746901298 scopus 로고    scopus 로고
    • Electrospun micro-and nanofibers for sustained delivery of paclitaxel to treat C6 glioma in vitro
    • Xie J, Wang CH. Electrospun micro-and nanofibers for sustained delivery of paclitaxel to treat C6 glioma in vitro. Pharm Res 2006;23:1817-26. doi: 10.1007/s11095-006-9036-z
    • (2006) Pharm Res , vol.23 , pp. 1817-1826
    • Xie, J.1    Wang, C.H.2
  • 108
    • 84878836401 scopus 로고    scopus 로고
    • Micro/Nanometer-scale fiber with highly ordered structures by mimicking the spinning process of silkworm
    • Chae SK, Kang E, Khademhosseini A. et al. Micro/Nanometer-scale fiber with highly ordered structures by mimicking the spinning process of silkworm. Adv Mater 2013;25:3071-8. doi: 10.1002/adma.201300837
    • (2013) Adv Mater , vol.25 , pp. 3071-3078
    • Chae, S.K.1    Kang, E.2    Khademhosseini, A.3
  • 109
    • 84866169463 scopus 로고    scopus 로고
    • Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydrogel microfibers for long-term preservation of liver-specific functions
    • Yamada M, Utoh R, Ohashi K. et al. Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydrogel microfibers for long-term preservation of liver-specific functions. Biomaterials 2012;33:8304-15. doi: 10.1016/j.biomaterials.2012.07.068
    • (2012) Biomaterials , vol.33 , pp. 8304-8315
    • Yamada, M.1    Utoh, R.2    Ohashi, K.3
  • 110
    • 67349267337 scopus 로고    scopus 로고
    • Cell immobilization in gelatinhydroxyphenylpropionic acid hydrogel fibers
    • Hu M, Kurisawa M, Deng R. et al. Cell immobilization in gelatinhydroxyphenylpropionic acid hydrogel fibers. Biomaterials 2009;30: 3523-31. doi: 10.1016/j.biomaterials.2009.03.004
    • (2009) Biomaterials , vol.30 , pp. 3523-3531
    • Hu, M.1    Kurisawa, M.2    Deng, R.3
  • 111
    • 79955449302 scopus 로고    scopus 로고
    • Optimised production of multifunctional microfibres by microfluidic chip technology for tissue engineering applications
    • Mazzitelli S, Capretto L, Carugo D. et al. Optimised production of multifunctional microfibres by microfluidic chip technology for tissue engineering applications. Lab Chip 2011;11:1776-85. doi: 10.1039/c1lc20082h
    • (2011) Lab Chip , vol.11 , pp. 1776-1785
    • Mazzitelli, S.1    Capretto, L.2    Carugo, D.3
  • 112
    • 77952406649 scopus 로고    scopus 로고
    • Amphiphilic triblock copolymer and a microfluidic device for porous microfiber fabrication
    • Marimuthu M, Kim S, An J. Amphiphilic triblock copolymer and a microfluidic device for porous microfiber fabrication. Soft Matter 2010;6:2200-7
    • (2010) Soft Matter , vol.6 , pp. 2200-2207
    • Marimuthu, M.1    Kim, S.2    An, J.3
  • 113
    • 84859073152 scopus 로고    scopus 로고
    • Microfluidic synthesis of microfibers for magnetic-responsive controlled drug release and cell culture
    • Lin YS, Huang KS, Yang CH. et al. Microfluidic synthesis of microfibers for magnetic-responsive controlled drug release and cell culture. PLoS One 2012;7:e33184 doi: 10.1371/journal.pone.0033184
    • (2012) PLoS One , vol.7
    • Lin, Y.S.1    Huang, K.S.2    Yang, C.H.3
  • 114
    • 80054956005 scopus 로고    scopus 로고
    • Digitally tunable physicochemical coding of material composition and topography in continuous microfibres
    • Kang E, Jeong GS, Choi YY. et al. Digitally tunable physicochemical coding of material composition and topography in continuous microfibres. Nat Mater 2011;10:877-83. doi: 10.1038/nmat3108
    • (2011) Nat Mater , vol.10 , pp. 877-883
    • Kang, E.1    Jeong, G.S.2    Choi, Y.Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.