메뉴 건너뛰기




Volumn 148, Issue 5, 2016, Pages 375-392

Independent activation of ion conduction pores in the double-barreled calcium-activated chloride channel TMEM16A

Author keywords

[No Author keywords available]

Indexed keywords

CHLORIDE CHANNEL; PROTEIN SUBUNIT; TMEM16A PROTEIN, MOUSE;

EID: 84995920367     PISSN: 00221295     EISSN: 15407748     Source Type: Journal    
DOI: 10.1085/jgp.201611650     Document Type: Article
Times cited : (76)

References (42)
  • 1
    • 0029941550 scopus 로고    scopus 로고
    • Activation of calcium-dependent chloride channels in rat parotid acinar cells
    • Arreola, J., J.E. Melvin, and T. Begenisich. 1996. Activation of calcium-dependent chloride channels in rat parotid acinar cells. J. Gen. Physiol. 108:35-47. http://dx.doi.org/10.1085/jgp.108.1.35
    • (1996) J. Gen. Physiol , vol.108 , pp. 35-47
    • Arreola, J.1    Melvin, J.E.2    Begenisich, T.3
  • 2
    • 84918807150 scopus 로고    scopus 로고
    • X-ray structure of a calcium-activated TMEM16 lipid scramblase
    • Brunner, J.D., N.K. Lim, S. Schenck, A. Duerst, and R. Dutzler. 2014. X-ray structure of a calcium-activated TMEM16 lipid scramblase. Nature. 516:207-212. http://dx.doi.org/10.1038/nature13984
    • (2014) Nature , vol.516 , pp. 207-212
    • Brunner, J.D.1    Lim, N.K.2    Schenck, S.3    Duerst, A.4    Dutzler, R.5
  • 3
    • 84973330914 scopus 로고    scopus 로고
    • Structural basis for phospholipid scrambling in the TMEM16 family
    • Brunner, J.D., S. Schenck, and R. Dutzler. 2016. Structural basis for phospholipid scrambling in the TMEM16 family. Curr. Opin. Struct. Biol. 39:61-70. http://dx.doi.org/10.1016/j.sbi.2016.05.020
    • (2016) Curr. Opin. Struct. Biol , vol.39 , pp. 61-70
    • Brunner, J.D.1    Schenck, S.2    Dutzler, R.3
  • 5
    • 0023392945 scopus 로고
    • High-efficiency transformation of mammalian cells by plasmid DNA
    • Chen, C., and H. Okayama. 1987. High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7:2745-2752. http://dx.doi.org/10.1128/MCB.7.8.2745
    • (1987) Mol. Cell. Biol , vol.7 , pp. 2745-2752
    • Chen, C.1    Okayama, H.2
  • 6
    • 0042377364 scopus 로고    scopus 로고
    • Side-chain charge effects and conductance determinants in the pore of ClC-0 chloride channels
    • Chen, M.F., and T.Y. Chen. 2003. Side-chain charge effects and conductance determinants in the pore of ClC-0 chloride channels. J. Gen. Physiol. 122:133-145. http://dx.doi.org/10.1085/jgp.200308844
    • (2003) J. Gen. Physiol , vol.122 , pp. 133-145
    • Chen, M.F.1    Chen, T.Y.2
  • 9
    • 0037418859 scopus 로고    scopus 로고
    • Gating the selectivity filter in ClC chloride channels
    • Dutzler, R., E.B. Campbell, and R. MacKinnon. 2003. Gating the selectivity filter in ClC chloride channels. Science. 300:108-112. http://dx.doi.org/10.1126/science.1082708
    • (2003) Science , vol.300 , pp. 108-112
    • Dutzler, R.1    Campbell, E.B.2    MacKinnon, R.3
  • 11
    • 79953845449 scopus 로고    scopus 로고
    • A versatile and efficient high-throughput cloning tool for structural biology
    • Geertsma, E.R., and R. Dutzler. 2011. A versatile and efficient high-throughput cloning tool for structural biology. Biochemistry. 50:3272-3278. http://dx.doi.org/10.1021/bi200178z
    • (2011) Biochemistry , vol.50 , pp. 3272-3278
    • Geertsma, E.R.1    Dutzler, R.2
  • 12
    • 0019441262 scopus 로고
    • Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches
    • Hamill, O.P., A. Marty, E. Neher, B. Sakmann, and F.J. Sigworth. 1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391:85-100. http://dx.doi.org/10.1007/BF00656997
    • (1981) Pflugers Arch , vol.391 , pp. 85-100
    • Hamill, O.P.1    Marty, A.2    Neher, E.3    Sakmann, B.4    Sigworth, F.J.5
  • 13
    • 15244360606 scopus 로고    scopus 로고
    • Calcium-activated chloride channels
    • Hartzell, C., I. Putzier, and J. Arreola. 2005. Calcium-activated chloride channels. Annu. Rev. Physiol. 67:719-758. http://dx.doi.org/10.1146/annurev.physiol.67.032003.154341
    • (2005) Annu. Rev. Physiol , vol.67 , pp. 719-758
    • Hartzell, C.1    Putzier, I.2    Arreola, J.3
  • 14
    • 0026705256 scopus 로고
    • Nonstationary noise analysis and application to patch clamp recordings
    • Heinemann, S.H., and F. Conti. 1992. Nonstationary noise analysis and application to patch clamp recordings. Methods Enzymol. 207:131-148. http://dx.doi.org/10.1016/0076-6879(92)07009-D
    • (1992) Methods Enzymol , vol.207 , pp. 131-148
    • Heinemann, S.H.1    Conti, F.2
  • 16
    • 84995892124 scopus 로고    scopus 로고
    • Independent activation of distinct pores in dimeric TMEM16A channels
    • Jeng, G., M. Aggarwal, W.-P. Yu, and T.-Y. Chen. 2016. Independent activation of distinct pores in dimeric TMEM16A channels. J. Gen. Physiol. http://dx.doi.org/10.1085/jgp.201611651
    • J. Gen. Physiol
    • Jeng, G.1    Aggarwal, M.2    Yu, W.-P3    Chen, T.-Y.4
  • 18
    • 0033971365 scopus 로고    scopus 로고
    • Bimodal control of a Ca2+- activated Cl- channel by different Ca2+ signals
    • Kuruma, A., and H.C. Hartzell. 2000. Bimodal control of a Ca2+- activated Cl- channel by different Ca2+ signals. J. Gen. Physiol. 115:59-80. http://dx.doi.org/10.1085/jgp.115.1.59
    • (2000) J. Gen. Physiol , vol.115 , pp. 59-80
    • Kuruma, A.1    Hartzell, H.C.2
  • 19
    • 0029743660 scopus 로고    scopus 로고
    • Two physically distinct pores in the dimeric ClC-0 chloride channel
    • Ludewig, U., M. Pusch, and T.J. Jentsch. 1996. Two physically distinct pores in the dimeric ClC-0 chloride channel. Nature. 383:340-343. http://dx.doi.org/10.1038/383340a0
    • (1996) Nature , vol.383 , pp. 340-343
    • Ludewig, U.1    Pusch, M.2    Jentsch, T.J.3
  • 21
    • 0029661878 scopus 로고    scopus 로고
    • Homodimeric architecture of a ClC-type chloride ion channel
    • Middleton, R.E., D.J. Pheasant, and C. Miller. 1996. Homodimeric architecture of a ClC-type chloride ion channel. Nature. 383:337-340. http://dx.doi.org/10.1038/383337a0
    • (1996) Nature , vol.383 , pp. 337-340
    • Middleton, R.E.1    Pheasant, D.J.2    Miller, C.3
  • 22
    • 0020440405 scopus 로고
    • Open-state substructure of single chloride channels from Torpedo electroplax
    • Miller, C. 1982. Open-state substructure of single chloride channels from Torpedo electroplax. Philos. Trans. R. Soc. Lond. B Biol. Sci. 299:401-411. http://dx.doi.org/10.1098/rstb.1982.0140
    • (1982) Philos. Trans. R. Soc. Lond. B Biol. Sci , vol.299 , pp. 401-411
    • Miller, C.1
  • 23
    • 0038112088 scopus 로고    scopus 로고
    • Structure and gating mechanism of the acetylcholine receptor pore
    • Miyazawa, A., Y. Fujiyoshi, and N. Unwin. 2003. Structure and gating mechanism of the acetylcholine receptor pore. Nature. 423:949-955. http://dx.doi.org/10.1038/nature01748
    • (2003) Nature , vol.423 , pp. 949-955
    • Miyazawa, A.1    Fujiyoshi, Y.2    Unwin, N.3
  • 24
    • 84900460157 scopus 로고    scopus 로고
    • Activation and inhibition of TMEM16A calcium-activated chloride channels
    • Ni, Y.L., A.S. Kuan, and T.Y. Chen. 2014. Activation and inhibition of TMEM16A calcium-activated chloride channels. PLoS One. 9:e86734. http://dx.doi.org/10.1371/journal.pone.0086734
    • (2014) PLoS One , vol.9 , pp. e86734
    • Ni, Y.L.1    Kuan, A.S.2    Chen, T.Y.3
  • 25
    • 84900406113 scopus 로고    scopus 로고
    • Structure and function of TMEM16 proteins (anoctamins)
    • Pedemonte, N., and L.J. Galietta. 2014. Structure and function of TMEM16 proteins (anoctamins). Physiol. Rev. 94:419-459. http://dx.doi.org/10.1152/physrev.00039.2011
    • (2014) Physiol. Rev , vol.94 , pp. 419-459
    • Pedemonte, N.1    Galietta, L.J.2
  • 26
    • 84925321705 scopus 로고    scopus 로고
    • Four basic residues critical for the ion selectivity and pore blocker sensitivity of TMEM16A calcium-activated chloride channels
    • Peters, C.J., H. Yu, J. Tien, Y.N. Jan, M. Li, and L.Y. Jan. 2015. Four basic residues critical for the ion selectivity and pore blocker sensitivity of TMEM16A calcium-activated chloride channels. Proc. Natl. Acad. Sci. USA. 112:3547-3552. http://dx.doi.org/10.1073/pnas.1502291112
    • (2015) Proc. Natl. Acad. Sci. USA , vol.112 , pp. 3547-3552
    • Peters, C.J.1    Yu, H.2    Tien, J.3    Jan, Y.N.4    Li, M.5    Jan, L.Y.6
  • 27
    • 84919684864 scopus 로고    scopus 로고
    • TMEM16 proteins: unknown structure and confusing functions
    • Picollo, A., M. Malvezzi, and A. Accardi. 2015. TMEM16 proteins: unknown structure and confusing functions. J. Mol. Biol. 427:94-105. http://dx.doi.org/10.1016/j.jmb.2014.09.028
    • (2015) J. Mol. Biol , vol.427 , pp. 94-105
    • Picollo, A.1    Malvezzi, M.2    Accardi, A.3
  • 29
    • 0033664657 scopus 로고    scopus 로고
    • Anion permeation in Ca2+-activated Cl- channels
    • Qu, Z., and H.C. Hartzell. 2000. Anion permeation in Ca2+-activated Cl- channels. J. Gen. Physiol. 116:825-844. http://dx.doi.org/10.1085/jgp.116.6.825
    • (2000) J. Gen. Physiol , vol.116 , pp. 825-844
    • Qu, Z.1    Hartzell, H.C.2
  • 30
    • 51549120559 scopus 로고    scopus 로고
    • Expression cloning of TMEM16A as a calcium-activated chloride channel subunit
    • Schroeder, B.C., T. Cheng, Y.N. Jan, and L.Y. Jan. 2008. Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell. 134:1019-1029. http://dx.doi.org/10.1016/j.cell.2008.09.003
    • (2008) Cell , vol.134 , pp. 1019-1029
    • Schroeder, B.C.1    Cheng, T.2    Jan, Y.N.3    Jan, L.Y.4
  • 31
    • 0019229699 scopus 로고
    • The variance of sodium current fluctuations at the node of Ranvier
    • Sigworth, F.J. 1980. The variance of sodium current fluctuations at the node of Ranvier. J. Physiol. 307:97-129. http://dx.doi.org/10.1113/jphysiol.1980.sp013426
    • (1980) J. Physiol , vol.307 , pp. 97-129
    • Sigworth, F.J.1
  • 32
    • 78650172970 scopus 로고    scopus 로고
    • Calciumdependent phospholipid scrambling by TMEM16F
    • Suzuki, J., M. Umeda, P.J. Sims, and S. Nagata. 2010. Calciumdependent phospholipid scrambling by TMEM16F. Nature. 468:834-838. http://dx.doi.org/10.1038/nature09583
    • (2010) Nature , vol.468 , pp. 834-838
    • Suzuki, J.1    Umeda, M.2    Sims, P.J.3    Nagata, S.4
  • 33
    • 84877709762 scopus 로고    scopus 로고
    • Calcium-dependent phospholipid scramblase activity of TMEM16 protein family members
    • Suzuki, J., T. Fujii, T. Imao, K. Ishihara, H. Kuba, and S. Nagata. 2013. Calcium-dependent phospholipid scramblase activity of TMEM16 protein family members. J. Biol. Chem. 288:13305- 13316. http://dx.doi.org/10.1074/jbc.M113.457937
    • (2013) J. Biol. Chem , vol.288 , pp. 13305-13316
    • Suzuki, J.1    Fujii, T.2    Imao, T.3    Ishihara, K.4    Kuba, H.5    Nagata, S.6
  • 34
    • 84956595435 scopus 로고    scopus 로고
    • Mechanism of allosteric activation of TMEM16A/ ANO1 channels by a commonly used chloride channel blocker
    • Ta, C.M., A. Adomaviciene, N.J. Rorsman, H. Garnett, and P. Tammaro. 2016. Mechanism of allosteric activation of TMEM16A/ ANO1 channels by a commonly used chloride channel blocker. Br. J. Pharmacol. 173:511-528. http://dx.doi.org/10.1111/bph.13381
    • (2016) Br. J. Pharmacol , vol.173 , pp. 511-528
    • Ta, C.M.1    Adomaviciene, A.2    Rorsman, N.J.3    Garnett, H.4    Tammaro, P.5
  • 35
    • 84888323395 scopus 로고    scopus 로고
    • Purified TMEM16A is sufficient to form Ca2+-activated Cl- channels
    • Terashima, H., A. Picollo, and A. Accardi. 2013. Purified TMEM16A is sufficient to form Ca2+-activated Cl- channels. Proc. Natl. Acad. Sci. USA. 110:19354-19359. http://dx.doi.org/10.1073/pnas.1312014110
    • (2013) Proc. Natl. Acad. Sci. USA , vol.110 , pp. 19354-19359
    • Terashima, H.1    Picollo, A.2    Accardi, A.3
  • 36
    • 84905186544 scopus 로고    scopus 로고
    • A comprehensive search for calcium binding sites critical for TMEM16A calcium-activated chloride channel activity
    • Tien, J., C.J. Peters, X.M. Wong, T. Cheng, Y.N. Jan, L.Y. Jan, and H. Yang. 2014. A comprehensive search for calcium binding sites critical for TMEM16A calcium-activated chloride channel activity. eLife. 3:e02772. http://dx.doi.org/10.7554/eLife.02772
    • (2014) eLife , vol.3
    • Tien, J.1    Peters, C.J.2    Wong, X.M.3    Cheng, T.4    Jan, Y.N.5    Jan, L.Y.6    Yang, H.7
  • 37
    • 84957974690 scopus 로고    scopus 로고
    • A Pore Idea: the ion conduction pathway of TMEM16/ANO proteins is composed partly of lipid
    • Whitlock, J.M., and H.C. Hartzell. 2016. A Pore Idea: the ion conduction pathway of TMEM16/ANO proteins is composed partly of lipid. Pflugers Arch. 468:455-473. http://dx.doi.org/10.1007/s00424-015-1777-2
    • (2016) Pflugers Arch , vol.468 , pp. 455-473
    • Whitlock, J.M.1    Hartzell, H.C.2
  • 38
    • 79957786620 scopus 로고    scopus 로고
    • Voltage- and calcium-dependent gating of TMEM16A/Ano1 chloride channels are physically coupled by the first intracellular loop
    • Xiao, Q., K. Yu, P. Perez-Cornejo, Y. Cui, J. Arreola, and H.C. Hartzell. 2011. Voltage- and calcium-dependent gating of TMEM16A/Ano1 chloride channels are physically coupled by the first intracellular loop. Proc. Natl. Acad. Sci. USA. 108:8891- 8896. http://dx.doi.org/10.1073/pnas.1102147108
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 8891- 8896
    • Xiao, Q.1    Yu, K.2    Perez-Cornejo, P.3    Cui, Y.4    Arreola, J.5    Hartzell, H.C.6
  • 39
    • 84871860558 scopus 로고    scopus 로고
    • TMEM16F forms a Ca2+-activated cation channel required for lipid scrambling in platelets during blood coagulation
    • Yang, H., A. Kim, T. David, D. Palmer, T. Jin, J. Tien, F. Huang, T. Cheng, S.R. Coughlin, Y.N. Jan, and L.Y. Jan. 2012. TMEM16F forms a Ca2+-activated cation channel required for lipid scrambling in platelets during blood coagulation. Cell. 151:111-122. http://dx.doi.org/10.1016/j.cell.2012.07.036
    • (2012) Cell , vol.151 , pp. 111-122
    • Yang, H.1    Kim, A.2    David, T.3    Palmer, D.4    Jin, T.5    Tien, J.6    Huang, F.7    Cheng, T.8    Coughlin, S.R.9    Jan, Y.N.10    Jan, L.Y.11
  • 40
    • 55249091085 scopus 로고    scopus 로고
    • TMEM16A confers receptoractivated calcium-dependent chloride conductance
    • Yang, Y.D., H. Cho, J.Y. Koo, M.H. Tak, Y. Cho, W.S. Shim, S.P. Park, J. Lee, B. Lee, B.M. Kim, et al. 2008. TMEM16A confers receptoractivated calcium-dependent chloride conductance. Nature. 455:1210-1215. http://dx.doi.org/10.1038/nature07313
    • (2008) Nature , vol.455 , pp. 1210-1215
    • Yang, Y.D.1    Cho, H.2    Koo, J.Y.3    Tak, M.H.4    Cho, Y.5    Shim, W.S.6    Park, S.P.7    Lee, J.8    Lee, B.9    Kim, B.M.10
  • 41
    • 84859435658 scopus 로고    scopus 로고
    • Explaining calcium-dependent gating of anoctamin-1 chloride channels requires a revised topology
    • Yu, K., C. Duran, Z. Qu, Y.Y. Cui, and H.C. Hartzell. 2012. Explaining calcium-dependent gating of anoctamin-1 chloride channels requires a revised topology. Circ. Res. 110:990-999. http://dx.doi.org/10.1161/CIRCRESAHA.112.264440
    • (2012) Circ. Res , vol.110 , pp. 990-999
    • Yu, K.1    Duran, C.2    Qu, Z.3    Cui, Y.Y.4    Hartzell, H.C.5
  • 42
    • 84933046969 scopus 로고    scopus 로고
    • Identification of a lipid scrambling domain in ANO6/TMEM16F
    • Yu, K., J.M. Whitlock, K. Lee, E.A. Ortlund, Y.Y. Cui, and H.C. Hartzell. 2015. Identification of a lipid scrambling domain in ANO6/TMEM16F. eLife. 4:e06901. http://dx.doi.org/10.7554/eLife.06901
    • (2015) eLife , vol.4
    • Yu, K.1    Whitlock, J.M.2    Lee, K.3    Ortlund, E.A.4    Cui, Y.Y.5    Hartzell, H.C.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.