-
1
-
-
0035704411
-
Emerging issues of connexin channels: biophysics fills the gap
-
1 Harris, A.L., Emerging issues of connexin channels: biophysics fills the gap. Q. Rev. Biophys. 34 (2001), 325–472.
-
(2001)
Q. Rev. Biophys.
, vol.34
, pp. 325-472
-
-
Harris, A.L.1
-
2
-
-
33645002735
-
Life cycle of connexins in health and disease
-
2 Laird, D.W., Life cycle of connexins in health and disease. Biochem. J. 394 (2006), 527–543.
-
(2006)
Biochem. J.
, vol.394
, pp. 527-543
-
-
Laird, D.W.1
-
3
-
-
34249082403
-
Connexin channel permeability to cytoplasmic molecules
-
3 Harris, A.L., Connexin channel permeability to cytoplasmic molecules. Prog. Biophys. Mol. Biol. 94 (2007), 120–143.
-
(2007)
Prog. Biophys. Mol. Biol.
, vol.94
, pp. 120-143
-
-
Harris, A.L.1
-
4
-
-
0032555956
-
Rapid turnover of connexin43 in the adult rat heart
-
4 Beardslee, M.A., et al. Rapid turnover of connexin43 in the adult rat heart. Circ. Res. 83 (1998), 629–635.
-
(1998)
Circ. Res.
, vol.83
, pp. 629-635
-
-
Beardslee, M.A.1
-
5
-
-
75149159657
-
The gap junction proteome and its relationship to disease
-
5 Laird, D.W., The gap junction proteome and its relationship to disease. Trends Cell Biol. 20 (2010), 92–101.
-
(2010)
Trends Cell Biol.
, vol.20
, pp. 92-101
-
-
Laird, D.W.1
-
6
-
-
84870054442
-
The biochemistry and function of pannexin channels
-
6 Penuela, S., et al. The biochemistry and function of pannexin channels. Biochim. Biophys. Acta 1828 (2013), 15–22.
-
(2013)
Biochim. Biophys. Acta
, vol.1828
, pp. 15-22
-
-
Penuela, S.1
-
7
-
-
77955293473
-
Pannexin1 and Pannexin2 channels show quaternary similarities to connexons and different oligomerization numbers from each other
-
7 Ambrosi, C., et al. Pannexin1 and Pannexin2 channels show quaternary similarities to connexons and different oligomerization numbers from each other. J. Biol. Chem. 285 (2010), 24420–24431.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 24420-24431
-
-
Ambrosi, C.1
-
8
-
-
77950567390
-
Pannexin1 and pannexin3 delivery, cell surface dynamics, and cytoskeletal interactions
-
8 Bhalla-Gehi, R., et al. Pannexin1 and pannexin3 delivery, cell surface dynamics, and cytoskeletal interactions. J. Biol. Chem. 285 (2010), 9147–9160.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 9147-9160
-
-
Bhalla-Gehi, R.1
-
9
-
-
4143127920
-
Pannexin membrane channels are mechanosensitive conduits for ATP
-
9 Bao, L., et al. Pannexin membrane channels are mechanosensitive conduits for ATP. FEBS Lett. 572 (2004), 65–68.
-
(2004)
FEBS Lett.
, vol.572
, pp. 65-68
-
-
Bao, L.1
-
10
-
-
77957942834
-
Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis
-
10 Chekeni, F.B., et al. Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature 467 (2010), 863–867.
-
(2010)
Nature
, vol.467
, pp. 863-867
-
-
Chekeni, F.B.1
-
11
-
-
84871071111
-
Physiological mechanisms for the modulation of pannexin 1 channel activity
-
11 Sandilos, J.K., Bayliss, D.A., Physiological mechanisms for the modulation of pannexin 1 channel activity. J. Physiol. 590 (2012), 6257–6266.
-
(2012)
J. Physiol.
, vol.590
, pp. 6257-6266
-
-
Sandilos, J.K.1
Bayliss, D.A.2
-
12
-
-
84934434552
-
Mechanosensitive pannexin-1 channels mediate microvascular metastatic cell survival
-
12 Furlow, P.W., et al. Mechanosensitive pannexin-1 channels mediate microvascular metastatic cell survival. Nat. Cell Biol. 17 (2015), 943–952.
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 943-952
-
-
Furlow, P.W.1
-
13
-
-
84930277263
-
Mechanisms linking connexin mutations to human diseases
-
13 Kelly, J.J., et al. Mechanisms linking connexin mutations to human diseases. Cell Tissue Res. 360 (2015), 701–721.
-
(2015)
Cell Tissue Res.
, vol.360
, pp. 701-721
-
-
Kelly, J.J.1
-
14
-
-
84898888299
-
Syndromic and non-syndromic disease-linked Cx43 mutations
-
14 Laird, D.W., Syndromic and non-syndromic disease-linked Cx43 mutations. FEBS Lett. 588 (2014), 1339–1348.
-
(2014)
FEBS Lett.
, vol.588
, pp. 1339-1348
-
-
Laird, D.W.1
-
15
-
-
84904089253
-
Pannexin channels and their links to human disease
-
15 Penuela, S., et al. Pannexin channels and their links to human disease. Biochem. J. 461 (2014), 371–381.
-
(2014)
Biochem. J.
, vol.461
, pp. 371-381
-
-
Penuela, S.1
-
16
-
-
84895455467
-
Diverse post-translational modifications of the pannexin family of channel-forming proteins
-
16 Penuela, S., et al. Diverse post-translational modifications of the pannexin family of channel-forming proteins. Channels (Austin) 8 (2014), 124–130.
-
(2014)
Channels (Austin)
, vol.8
, pp. 124-130
-
-
Penuela, S.1
-
17
-
-
33745528139
-
The gap junction cellular internet: connexin hemichannels enter the signalling limelight
-
17 Evans, W.H., et al. The gap junction cellular internet: connexin hemichannels enter the signalling limelight. Biochem J 397 (2006), 1–14.
-
(2006)
Biochem J
, vol.397
, pp. 1-14
-
-
Evans, W.H.1
-
18
-
-
0037382614
-
Beyond the gap: functions of unpaired connexon channels
-
18 Goodenough, D.A., Paul, D.L., Beyond the gap: functions of unpaired connexon channels. Nat. Rev. Mol. Cell Biol. 4 (2003), 285–294.
-
(2003)
Nat. Rev. Mol. Cell Biol.
, vol.4
, pp. 285-294
-
-
Goodenough, D.A.1
Paul, D.L.2
-
19
-
-
84862166302
-
Biological role of connexin intercellular channels and hemichannels
-
19 Kar, R., et al. Biological role of connexin intercellular channels and hemichannels. Arch. Biochem. Biophys. 524 (2012), 2–15.
-
(2012)
Arch. Biochem. Biophys.
, vol.524
, pp. 2-15
-
-
Kar, R.1
-
20
-
-
84898894877
-
Hunting for connexin hemichannels
-
20 Saez, J.C., Leybaert, L., Hunting for connexin hemichannels. FEBS Lett. 588 (2014), 1205–1211.
-
(2014)
FEBS Lett.
, vol.588
, pp. 1205-1211
-
-
Saez, J.C.1
Leybaert, L.2
-
21
-
-
84938423002
-
Connexin 43 is an emerging therapeutic target in ischemia/reperfusion injury, cardioprotection and neuroprotection
-
21 Schulz, R., et al. Connexin 43 is an emerging therapeutic target in ischemia/reperfusion injury, cardioprotection and neuroprotection. Pharmacol. Ther. 153 (2015), 90–106.
-
(2015)
Pharmacol. Ther.
, vol.153
, pp. 90-106
-
-
Schulz, R.1
-
22
-
-
84907200743
-
Activation, permeability, and inhibition of astrocytic and neuronal large pore (hemi)channels
-
22 Hansen, D.B., et al. Activation, permeability, and inhibition of astrocytic and neuronal large pore (hemi)channels. J. Biol. Chem. 289 (2014), 26058–26073.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 26058-26073
-
-
Hansen, D.B.1
-
23
-
-
84899422740
-
Cx46 hemichannels contribute to the sodium leak conductance in lens fiber cells
-
23 Ebihara, L., et al. Cx46 hemichannels contribute to the sodium leak conductance in lens fiber cells. Am. J. Physiol. Cell Physiol. 306 (2014), C506–C513.
-
(2014)
Am. J. Physiol. Cell Physiol.
, vol.306
, pp. C506-C513
-
-
Ebihara, L.1
-
24
-
-
79953269941
-
Properties of connexin 46 hemichannels in dissociated lens fiber cells
-
24 Ebihara, L., et al. Properties of connexin 46 hemichannels in dissociated lens fiber cells. Invest. Ophthalmol. Vis. Sci. 52 (2011), 882–889.
-
(2011)
Invest. Ophthalmol. Vis. Sci.
, vol.52
, pp. 882-889
-
-
Ebihara, L.1
-
25
-
-
84855745647
-
Hyposmotic stress causes ATP release and stimulates Na, K-ATPase activity in porcine lens
-
25 Shahidullah, M., et al. Hyposmotic stress causes ATP release and stimulates Na, K-ATPase activity in porcine lens. J. Cell Physiol. 227 (2012), 1428–1437.
-
(2012)
J. Cell Physiol.
, vol.227
, pp. 1428-1437
-
-
Shahidullah, M.1
-
26
-
-
84862621270
-
TRPV4 in porcine lens epithelium regulates hemichannel-mediated ATP release and Na-K-ATPase activity
-
26 Shahidullah, M., et al. TRPV4 in porcine lens epithelium regulates hemichannel-mediated ATP release and Na-K-ATPase activity. Am. J. Physiol. Cell Physiol. 302 (2012), C1751–C1761.
-
(2012)
Am. J. Physiol. Cell Physiol.
, vol.302
, pp. C1751-C1761
-
-
Shahidullah, M.1
-
27
-
-
84908255566
-
The connexin43 mimetic peptide Gap19 inhibits hemichannels without altering gap junctional communication in astrocytes
-
27 Abudara, V., et al. The connexin43 mimetic peptide Gap19 inhibits hemichannels without altering gap junctional communication in astrocytes. Front. Cell Neurosci., 8, 2014, 306.
-
(2014)
Front. Cell Neurosci.
, vol.8
, pp. 306
-
-
Abudara, V.1
-
28
-
-
84958752299
-
General anesthetics have differential inhibitory effects on gap junction channels and hemichannels in astrocytes and neurons
-
28 Liu, X., et al. General anesthetics have differential inhibitory effects on gap junction channels and hemichannels in astrocytes and neurons. Glia 64 (2016), 524–536.
-
(2016)
Glia
, vol.64
, pp. 524-536
-
-
Liu, X.1
-
29
-
-
84928599358
-
Endocannabinoids regulate the activity of astrocytic hemichannels and the microglial response against an injury: in vivo studies
-
29 Vazquez, C., et al. Endocannabinoids regulate the activity of astrocytic hemichannels and the microglial response against an injury: in vivo studies. Neurobiol. Dis. 79 (2015), 41–50.
-
(2015)
Neurobiol. Dis.
, vol.79
, pp. 41-50
-
-
Vazquez, C.1
-
30
-
-
0345255097
-
Pannexins, a family of gap junction proteins expressed in brain
-
30 Bruzzone, R., et al. Pannexins, a family of gap junction proteins expressed in brain. Proc. Natl. Acad. Sci. U.S.A. 100 (2003), 13644–13649.
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 13644-13649
-
-
Bruzzone, R.1
-
31
-
-
84898886896
-
Differentiating connexin hemichannels and pannexin channels in cellular ATP release
-
31 Lohman, A.W., Isakson, B.E., Differentiating connexin hemichannels and pannexin channels in cellular ATP release. FEBS Lett. 588 (2014), 1379–1388.
-
(2014)
FEBS Lett.
, vol.588
, pp. 1379-1388
-
-
Lohman, A.W.1
Isakson, B.E.2
-
32
-
-
79955717821
-
Pannexin channels are not gap junction hemichannels
-
32 Sosinsky, G.E., et al. Pannexin channels are not gap junction hemichannels. Channels (Austin) 5 (2011), 193–197.
-
(2011)
Channels (Austin)
, vol.5
, pp. 193-197
-
-
Sosinsky, G.E.1
-
33
-
-
36549084087
-
Pannexin 1 and pannexin 3 are glycoproteins that exhibit many distinct characteristics from the connexin family of gap junction proteins
-
33 Penuela, S., et al. Pannexin 1 and pannexin 3 are glycoproteins that exhibit many distinct characteristics from the connexin family of gap junction proteins. J. Cell Sci. 120 (2007), 3772–3783.
-
(2007)
J. Cell Sci.
, vol.120
, pp. 3772-3783
-
-
Penuela, S.1
-
34
-
-
70350112277
-
Glycosylation regulates pannexin intermixing and cellular localization
-
34 Penuela, S., et al. Glycosylation regulates pannexin intermixing and cellular localization. Mol. Biol. Cell 20 (2009), 4313–4323.
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 4313-4323
-
-
Penuela, S.1
-
35
-
-
84874773135
-
Structural and functional similarities of calcium homeostasis modulator 1 (CALHM1) ion channel with connexins, pannexins, and innexins
-
35 Siebert, A.P., et al. Structural and functional similarities of calcium homeostasis modulator 1 (CALHM1) ion channel with connexins, pannexins, and innexins. J. Biol. Chem. 288 (2013), 6140–6153.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 6140-6153
-
-
Siebert, A.P.1
-
36
-
-
0032417621
-
Connexins regulate calcium signaling by controlling ATP release
-
36 Cotrina, M.L., et al. Connexins regulate calcium signaling by controlling ATP release. Proc. Natl. Acad. Sci. U.S.A. 95 (1998), 15735–15740.
-
(1998)
Proc. Natl. Acad. Sci. U.S.A.
, vol.95
, pp. 15735-15740
-
-
Cotrina, M.L.1
-
37
-
-
0030776894
-
ATP- and gap junction-dependent intercellular calcium signaling in osteoblastic cells
-
37 Jorgensen, N.R., et al. ATP- and gap junction-dependent intercellular calcium signaling in osteoblastic cells. J. Cell Biol. 139 (1997), 497–506.
-
(1997)
J. Cell Biol.
, vol.139
, pp. 497-506
-
-
Jorgensen, N.R.1
-
38
-
-
4444222881
-
Calcium waves propagate through radial glial cells and modulate proliferation in the developing neocortex
-
38 Weissman, T.A., et al. Calcium waves propagate through radial glial cells and modulate proliferation in the developing neocortex. Neuron 43 (2004), 647–661.
-
(2004)
Neuron
, vol.43
, pp. 647-661
-
-
Weissman, T.A.1
-
39
-
-
0034106797
-
Selective permeability of different connexin channels to the second messenger inositol 1,4,5-trisphosphate
-
39 Niessen, H., et al. Selective permeability of different connexin channels to the second messenger inositol 1,4,5-trisphosphate. J. Cell Sci. 113:Pt 8 (2000), 1365–1372.
-
(2000)
J. Cell Sci.
, vol.113
, pp. 1365-1372
-
-
Niessen, H.1
-
40
-
-
0033971981
-
Strongly decreased gap junctional permeability to inositol 1,4, 5-trisphosphate in connexin32 deficient hepatocytes
-
40 Niessen, H., Willecke, K., Strongly decreased gap junctional permeability to inositol 1,4, 5-trisphosphate in connexin32 deficient hepatocytes. FEBS Lett. 466 (2000), 112–114.
-
(2000)
FEBS Lett.
, vol.466
, pp. 112-114
-
-
Niessen, H.1
Willecke, K.2
-
41
-
-
34247886163
-
Unitary permeability of gap junction channels to second messengers measured by FRET microscopy
-
41 Hernandez, V.H., et al. Unitary permeability of gap junction channels to second messengers measured by FRET microscopy. Nat. Methods 4 (2007), 353–358.
-
(2007)
Nat. Methods
, vol.4
, pp. 353-358
-
-
Hernandez, V.H.1
-
42
-
-
0033224243
-
Selective transfer of endogenous metabolites through gap junctions composed of different connexins
-
42 Goldberg, G.S., et al. Selective transfer of endogenous metabolites through gap junctions composed of different connexins. Nat. Cell Biol. 1 (1999), 457–459.
-
(1999)
Nat. Cell Biol.
, vol.1
, pp. 457-459
-
-
Goldberg, G.S.1
-
43
-
-
84898880200
-
Distinct permeation profiles of the connexin 30 and 43 hemichannels
-
43 Hansen, D.B., et al. Distinct permeation profiles of the connexin 30 and 43 hemichannels. FEBS Lett. 588 (2014), 1446–1457.
-
(2014)
FEBS Lett.
, vol.588
, pp. 1446-1457
-
-
Hansen, D.B.1
-
44
-
-
57749100300
-
ATP release through connexin hemichannels and gap junction transfer of second messengers propagate Ca2+ signals across the inner ear
-
44 Anselmi, F., et al. ATP release through connexin hemichannels and gap junction transfer of second messengers propagate Ca2+ signals across the inner ear. Proc. Natl. Acad. Sci. U.S.A. 105 (2008), 18770–18775.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 18770-18775
-
-
Anselmi, F.1
-
45
-
-
84929593739
-
Critical role of gap junction communication, calcium and nitric oxide signaling in bystander responses to focal photodynamic injury
-
45 Cali, B., et al. Critical role of gap junction communication, calcium and nitric oxide signaling in bystander responses to focal photodynamic injury. Oncotarget 6 (2015), 10161–10174.
-
(2015)
Oncotarget
, vol.6
, pp. 10161-10174
-
-
Cali, B.1
-
46
-
-
84869491250
-
Low extracellular Ca2+ conditions induce an increase in brain endothelial permeability that involves intercellular Ca2+ waves
-
46 De Bock, M., et al. Low extracellular Ca2+ conditions induce an increase in brain endothelial permeability that involves intercellular Ca2+ waves. Brain Res. 1487 (2012), 78–87.
-
(2012)
Brain Res.
, vol.1487
, pp. 78-87
-
-
De Bock, M.1
-
47
-
-
84859491380
-
Connexin 43 hemichannels contribute to cytoplasmic Ca2+ oscillations by providing a bimodal Ca2+-dependent Ca2+ entry pathway
-
47 De Bock, M., et al. Connexin 43 hemichannels contribute to cytoplasmic Ca2+ oscillations by providing a bimodal Ca2+-dependent Ca2+ entry pathway. J. Biol. Chem. 287 (2012), 12250–12266.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 12250-12266
-
-
De Bock, M.1
-
48
-
-
84860722401
-
Transfer of IP(3) through gap junctions is critical, but not sufficient, for the spread of apoptosis
-
48 Decrock, E., et al. Transfer of IP(3) through gap junctions is critical, but not sufficient, for the spread of apoptosis. Cell Death Differ. 19 (2012), 947–957.
-
(2012)
Cell Death Differ.
, vol.19
, pp. 947-957
-
-
Decrock, E.1
-
49
-
-
77955172146
-
ATP-mediated cell-cell signaling in the organ of Corti: the role of connexin channels
-
49 Majumder, P., et al. ATP-mediated cell-cell signaling in the organ of Corti: the role of connexin channels. Purinergic Signal. 6 (2010), 167–187.
-
(2010)
Purinergic Signal.
, vol.6
, pp. 167-187
-
-
Majumder, P.1
-
50
-
-
57749121610
-
Coordinated control of connexin 26 and connexin 30 at the regulatory and functional level in the inner ear
-
50 Ortolano, S., et al. Coordinated control of connexin 26 and connexin 30 at the regulatory and functional level in the inner ear. Proc. Natl. Acad. Sci. U.S.A. 105 (2008), 18776–18781.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 18776-18781
-
-
Ortolano, S.1
-
51
-
-
84901693714
-
NO, via its target Cx37, modulates calcium signal propagation selectively at myoendothelial gap junctions
-
51 Pogoda, K., et al. NO, via its target Cx37, modulates calcium signal propagation selectively at myoendothelial gap junctions. Cell Commun. Signal., 12, 2014, 33.
-
(2014)
Cell Commun. Signal.
, vol.12
, pp. 33
-
-
Pogoda, K.1
-
52
-
-
27644502287
-
Connexin-specific cell-to-cell transfer of short interfering RNA by gap junctions
-
52 Valiunas, V., et al. Connexin-specific cell-to-cell transfer of short interfering RNA by gap junctions. J. Physiol. 568 (2005), 459–468.
-
(2005)
J. Physiol.
, vol.568
, pp. 459-468
-
-
Valiunas, V.1
-
53
-
-
84934301671
-
A comparison of two cellular delivery mechanisms for small interfering RNA
-
53 Valiunas, V., et al. A comparison of two cellular delivery mechanisms for small interfering RNA. Physiol. Rep., 3, 2015, e12286.
-
(2015)
Physiol. Rep.
, vol.3
, pp. e12286
-
-
Valiunas, V.1
-
54
-
-
84929902258
-
MicroRNA biogenesis pathways in cancer
-
54 Lin, S., Gregory, R.I., MicroRNA biogenesis pathways in cancer. Nat. Rev. Cancer 15 (2015), 321–333.
-
(2015)
Nat. Rev. Cancer
, vol.15
, pp. 321-333
-
-
Lin, S.1
Gregory, R.I.2
-
55
-
-
84890327208
-
MicroRNAs transfer from human macrophages to hepato-carcinoma cells and inhibit proliferation
-
55 Aucher, A., et al. MicroRNAs transfer from human macrophages to hepato-carcinoma cells and inhibit proliferation. J. Immunol. 191 (2013), 6250–6260.
-
(2013)
J. Immunol.
, vol.191
, pp. 6250-6260
-
-
Aucher, A.1
-
56
-
-
84934343396
-
Gap junctions modulate glioma invasion by direct transfer of microRNA
-
56 Hong, X., et al. Gap junctions modulate glioma invasion by direct transfer of microRNA. Oncotarget 6 (2015), 15566–15577.
-
(2015)
Oncotarget
, vol.6
, pp. 15566-15577
-
-
Hong, X.1
-
57
-
-
84885411385
-
The mircrine mechanism controlling cardiac stem cell fate
-
57 Hosoda, T., The mircrine mechanism controlling cardiac stem cell fate. Front. Genet., 4, 2013, 204.
-
(2013)
Front. Genet.
, vol.4
, pp. 204
-
-
Hosoda, T.1
-
58
-
-
79954629901
-
Human cardiac stem cell differentiation is regulated by a mircrine mechanism
-
58 Hosoda, T., et al. Human cardiac stem cell differentiation is regulated by a mircrine mechanism. Circulation 123 (2011), 1287–1296.
-
(2011)
Circulation
, vol.123
, pp. 1287-1296
-
-
Hosoda, T.1
-
59
-
-
78449307957
-
Functional microRNA is transferred between glioma cells
-
59 Katakowski, M., et al. Functional microRNA is transferred between glioma cells. Cancer Res. 70 (2010), 8259–8263.
-
(2010)
Cancer Res.
, vol.70
, pp. 8259-8263
-
-
Katakowski, M.1
-
60
-
-
70249104621
-
Non-cell-autonomous effects of vector-expressed regulatory RNAs in mammalian heart cells
-
60 Kizana, E., et al. Non-cell-autonomous effects of vector-expressed regulatory RNAs in mammalian heart cells. Gene Ther. 16 (2009), 1163–1168.
-
(2009)
Gene Ther.
, vol.16
, pp. 1163-1168
-
-
Kizana, E.1
-
61
-
-
84875784259
-
Mesenchymal stem cells deliver synthetic microRNA mimics to glioma cells and glioma stem cells and inhibit their cell migration and self-renewal
-
61 Lee, H.K., et al. Mesenchymal stem cells deliver synthetic microRNA mimics to glioma cells and glioma stem cells and inhibit their cell migration and self-renewal. Oncotarget 4 (2013), 346–361.
-
(2013)
Oncotarget
, vol.4
, pp. 346-361
-
-
Lee, H.K.1
-
62
-
-
84943641974
-
Gap junctional shuttling of miRNA – a novel pathway of intercellular gene regulation and its prospects in clinical application
-
62 Lemcke, H., et al. Gap junctional shuttling of miRNA – a novel pathway of intercellular gene regulation and its prospects in clinical application. Cell Signal. 27 (2015), 2506–2514.
-
(2015)
Cell Signal.
, vol.27
, pp. 2506-2514
-
-
Lemcke, H.1
-
63
-
-
79952219931
-
Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells
-
63 Lim, P.K., et al. Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Res. 71 (2011), 1550–1560.
-
(2011)
Cancer Res.
, vol.71
, pp. 1550-1560
-
-
Lim, P.K.1
-
64
-
-
84944931387
-
Connexin26 gap junction mediates miRNA intercellular genetic communication in the cochlea and is required for inner ear development
-
64 Zhu, Y., et al. Connexin26 gap junction mediates miRNA intercellular genetic communication in the cochlea and is required for inner ear development. Sci. Rep., 5, 2015, 15647.
-
(2015)
Sci. Rep.
, vol.5
, pp. 15647
-
-
Zhu, Y.1
-
65
-
-
84861638114
-
Can gap junctions deliver?
-
65 Brink, P.R., et al. Can gap junctions deliver?. Biochim. Biophys. Acta 1818 (2012), 2076–2081.
-
(2012)
Biochim. Biophys. Acta
, vol.1818
, pp. 2076-2081
-
-
Brink, P.R.1
-
66
-
-
84864368905
-
Changes in connexin43 expression and localization during pancreatic cancer progression
-
66 Solan, J.L., et al. Changes in connexin43 expression and localization during pancreatic cancer progression. J. Membr. Biol. 245 (2012), 255–262.
-
(2012)
J. Membr. Biol.
, vol.245
, pp. 255-262
-
-
Solan, J.L.1
-
67
-
-
51749110724
-
Remodelling of gap junctions and connexin expression in diseased myocardium
-
67 Severs, N.J., et al. Remodelling of gap junctions and connexin expression in diseased myocardium. Cardiovasc. Res. 80 (2008), 9–19.
-
(2008)
Cardiovasc. Res.
, vol.80
, pp. 9-19
-
-
Severs, N.J.1
-
68
-
-
34147188924
-
Loss of ischemic preconditioning's cardioprotection in aged mouse hearts is associated with reduced gap junctional and mitochondrial levels of connexin 43
-
68 Boengler, K., et al. Loss of ischemic preconditioning's cardioprotection in aged mouse hearts is associated with reduced gap junctional and mitochondrial levels of connexin 43. Am. J. Physiol. Heart Circ. Physiol. 292 (2007), H1764–H1769.
-
(2007)
Am. J. Physiol. Heart Circ. Physiol.
, vol.292
, pp. H1764-H1769
-
-
Boengler, K.1
-
69
-
-
62249090215
-
Presence of connexin 43 in subsarcolemmal, but not in interfibrillar cardiomyocyte mitochondria
-
69 Boengler, K., et al. Presence of connexin 43 in subsarcolemmal, but not in interfibrillar cardiomyocyte mitochondria. Basic Res. Cardiol. 104 (2009), 141–147.
-
(2009)
Basic Res. Cardiol.
, vol.104
, pp. 141-147
-
-
Boengler, K.1
-
70
-
-
84928558139
-
Targeted disruption of PDE3B, but not PDE3A, protects murine heart from ischemia/reperfusion injury
-
70 Chung, Y.W., et al. Targeted disruption of PDE3B, but not PDE3A, protects murine heart from ischemia/reperfusion injury. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), E2253–E2262.
-
(2015)
Proc. Natl. Acad. Sci. U.S.A.
, vol.112
, pp. E2253-E2262
-
-
Chung, Y.W.1
-
71
-
-
79955767520
-
Cholesterol diet leads to attenuation of ischemic preconditioning-induced cardiac protection: the role of connexin 43
-
71 Gorbe, A., et al. Cholesterol diet leads to attenuation of ischemic preconditioning-induced cardiac protection: the role of connexin 43. Am. J. Physiol. Heart Circ. Physiol. 300 (2011), H1907–H1913.
-
(2011)
Am. J. Physiol. Heart Circ. Physiol.
, vol.300
, pp. H1907-H1913
-
-
Gorbe, A.1
-
72
-
-
84925943084
-
Interaction between connexin 43 and nitric oxide synthase in mice heart mitochondria
-
72 Kirca, M., et al. Interaction between connexin 43 and nitric oxide synthase in mice heart mitochondria. J. Cell Mol. Med. 19 (2015), 815–825.
-
(2015)
J. Cell Mol. Med.
, vol.19
, pp. 815-825
-
-
Kirca, M.1
-
73
-
-
84947556404
-
Role of connexin 43 in cardiovascular diseases
-
73 Michela, P., et al. Role of connexin 43 in cardiovascular diseases. Eur. J. Pharmacol. 768 (2015), 71–76.
-
(2015)
Eur. J. Pharmacol.
, vol.768
, pp. 71-76
-
-
Michela, P.1
-
74
-
-
33746207800
-
Translocation of connexin 43 to the inner mitochondrial membrane of cardiomyocytes through the heat shock protein 90-dependent TOM pathway and its importance for cardioprotection
-
74 Rodriguez-Sinovas, A., et al. Translocation of connexin 43 to the inner mitochondrial membrane of cardiomyocytes through the heat shock protein 90-dependent TOM pathway and its importance for cardioprotection. Circ. Res. 99 (2006), 93–101.
-
(2006)
Circ. Res.
, vol.99
, pp. 93-101
-
-
Rodriguez-Sinovas, A.1
-
75
-
-
84894246682
-
Ischemic preconditioning protects cardiomyocyte mitochondria through mechanisms independent of cytosol
-
75 Ruiz-Meana, M., et al. Ischemic preconditioning protects cardiomyocyte mitochondria through mechanisms independent of cytosol. J. Mol. Cell Cardiol. 68 (2014), 79–88.
-
(2014)
J. Mol. Cell Cardiol.
, vol.68
, pp. 79-88
-
-
Ruiz-Meana, M.1
-
76
-
-
38849201088
-
Mitochondrial connexin43 as a new player in the pathophysiology of myocardial ischaemia-reperfusion injury
-
76 Ruiz-Meana, M., et al. Mitochondrial connexin43 as a new player in the pathophysiology of myocardial ischaemia-reperfusion injury. Cardiovasc. Res. 77 (2008), 325–333.
-
(2008)
Cardiovasc. Res.
, vol.77
, pp. 325-333
-
-
Ruiz-Meana, M.1
-
77
-
-
35848941299
-
Connexin 43 in ischemic pre- and postconditioning
-
77 Schulz, R., et al. Connexin 43 in ischemic pre- and postconditioning. Heart Fail. Rev. 12 (2007), 261–266.
-
(2007)
Heart Fail. Rev.
, vol.12
, pp. 261-266
-
-
Schulz, R.1
-
78
-
-
84904015361
-
The FGF-2-triggered protection of cardiac subsarcolemmal mitochondria from calcium overload is mitochondrial connexin 43-dependent
-
78 Srisakuldee, W., et al. The FGF-2-triggered protection of cardiac subsarcolemmal mitochondria from calcium overload is mitochondrial connexin 43-dependent. Cardiovasc. Res. 103 (2014), 72–80.
-
(2014)
Cardiovasc. Res.
, vol.103
, pp. 72-80
-
-
Srisakuldee, W.1
-
79
-
-
84929071944
-
Ischaemic preconditioning preferentially increases protein S-nitrosylation in subsarcolemmal mitochondria
-
79 Sun, J., et al. Ischaemic preconditioning preferentially increases protein S-nitrosylation in subsarcolemmal mitochondria. Cardiovasc. Res. 106 (2015), 227–236.
-
(2015)
Cardiovasc. Res.
, vol.106
, pp. 227-236
-
-
Sun, J.1
-
80
-
-
84901848186
-
Protein kinase C (PKC) mediated interaction between conexin43 (Cx43) and K(+)(ATP) channel subunit (Kir6.1) in cardiomyocyte mitochondria: Implications in cytoprotection against hypoxia induced cell apoptosis
-
80 Waza, A.A., et al. Protein kinase C (PKC) mediated interaction between conexin43 (Cx43) and K(+)(ATP) channel subunit (Kir6.1) in cardiomyocyte mitochondria: Implications in cytoprotection against hypoxia induced cell apoptosis. Cell Signal. 26 (2014), 1909–1917.
-
(2014)
Cell Signal.
, vol.26
, pp. 1909-1917
-
-
Waza, A.A.1
-
81
-
-
68949140963
-
Phosphorylation of connexin-43 at serine 262 promotes a cardiac injury-resistant state
-
81 Srisakuldee, W., et al. Phosphorylation of connexin-43 at serine 262 promotes a cardiac injury-resistant state. Cardiovasc. Res. 83 (2009), 672–681.
-
(2009)
Cardiovasc. Res.
, vol.83
, pp. 672-681
-
-
Srisakuldee, W.1
-
82
-
-
0037281030
-
The carboxy-tail of connexin-43 localizes to the nucleus and inhibits cell growth
-
82 Dang, X., et al. The carboxy-tail of connexin-43 localizes to the nucleus and inhibits cell growth. Mol. Cell Biochem. 242 (2003), 35–38.
-
(2003)
Mol. Cell Biochem.
, vol.242
, pp. 35-38
-
-
Dang, X.1
-
83
-
-
84958280049
-
Dynamic changes in protein interaction between AKAP95 and Cx43 during cell cycle progression of A549 cells
-
83 Chen, X., et al. Dynamic changes in protein interaction between AKAP95 and Cx43 during cell cycle progression of A549 cells. Sci. Rep., 6, 2016, 21224.
-
(2016)
Sci. Rep.
, vol.6
, pp. 21224
-
-
Chen, X.1
-
84
-
-
48449084041
-
Diverse subcellular distribution profiles of pannexin 1 and pannexin 3
-
84 Penuela, S., et al. Diverse subcellular distribution profiles of pannexin 1 and pannexin 3. Cell Commun. Adhes. 15 (2008), 133–142.
-
(2008)
Cell Commun. Adhes.
, vol.15
, pp. 133-142
-
-
Penuela, S.1
-
85
-
-
77951148608
-
Implications of pannexin 1 and pannexin 3 for keratinocyte differentiation
-
85 Celetti, S.J., et al. Implications of pannexin 1 and pannexin 3 for keratinocyte differentiation. J. Cell Sci. 123 (2010), 1363–1372.
-
(2010)
J. Cell Sci.
, vol.123
, pp. 1363-1372
-
-
Celetti, S.J.1
-
86
-
-
79960212462
-
Pannexin 3 functions as an ER Ca(2+) channel, hemichannel, and gap junction to promote osteoblast differentiation
-
86 Ishikawa, M., et al. Pannexin 3 functions as an ER Ca(2+) channel, hemichannel, and gap junction to promote osteoblast differentiation. J. Cell Biol. 193 (2011), 1257–1274.
-
(2011)
J. Cell Biol.
, vol.193
, pp. 1257-1274
-
-
Ishikawa, M.1
-
87
-
-
84944469243
-
Pannexin2 oligomers localize in the membranes of endosomal vesicles in mammalian cells while Pannexin1 channels traffic to the plasma membrane
-
87 Boassa, D., et al. Pannexin2 oligomers localize in the membranes of endosomal vesicles in mammalian cells while Pannexin1 channels traffic to the plasma membrane. Front. Cell Neurosci., 8, 2014, 468.
-
(2014)
Front. Cell Neurosci.
, vol.8
, pp. 468
-
-
Boassa, D.1
-
88
-
-
84912524105
-
Pannexin 2 protein expression is not restricted to the CNS
-
88 Le Vasseur, M., et al. Pannexin 2 protein expression is not restricted to the CNS. Front. Cell Neurosci., 8, 2014, 392.
-
(2014)
Front. Cell Neurosci.
, vol.8
, pp. 392
-
-
Le Vasseur, M.1
-
89
-
-
84964471119
-
The “tail” of Connexin43: an unexpected journey from alternative translation to trafficking
-
89 Basheer, W., Shaw, R., The “tail” of Connexin43: an unexpected journey from alternative translation to trafficking. Biochim. Biophys. Acta 1863 (2016), 1848–1856.
-
(2016)
Biochim. Biophys. Acta
, vol.1863
, pp. 1848-1856
-
-
Basheer, W.1
Shaw, R.2
-
90
-
-
84934932335
-
Post-transcriptional regulation of connexins
-
90 Salat-Canela, C., et al. Post-transcriptional regulation of connexins. Biochem. Soc. Trans 43 (2015), 465–470.
-
(2015)
Biochem. Soc. Trans
, vol.43
, pp. 465-470
-
-
Salat-Canela, C.1
-
91
-
-
84900565631
-
Internal translation of the connexin 43 transcript
-
91 Salat-Canela, C., et al. Internal translation of the connexin 43 transcript. Cell Commun. Signal., 12, 2014, 31.
-
(2014)
Cell Commun. Signal.
, vol.12
, pp. 31
-
-
Salat-Canela, C.1
-
92
-
-
84887608899
-
Autoregulation of connexin43 gap junction formation by internally translated isoforms
-
92 Smyth, J.W., Shaw, R.M., Autoregulation of connexin43 gap junction formation by internally translated isoforms. Cell Rep. 5 (2013), 611–618.
-
(2013)
Cell Rep.
, vol.5
, pp. 611-618
-
-
Smyth, J.W.1
Shaw, R.M.2
-
93
-
-
84869501605
-
Connexins and Cap-independent translation: role of internal ribosome entry sites
-
93 Ul-Hussain, M., et al. Connexins and Cap-independent translation: role of internal ribosome entry sites. Brain Res. 1487 (2012), 99–106.
-
(2012)
Brain Res.
, vol.1487
, pp. 99-106
-
-
Ul-Hussain, M.1
-
94
-
-
55649092272
-
Characterization of the internal IRES element of the zebrafish connexin55.5 reveals functional implication of the polypyrimidine tract binding protein
-
94 Ul-Hussain, M., et al. Characterization of the internal IRES element of the zebrafish connexin55.5 reveals functional implication of the polypyrimidine tract binding protein. BMC Mol. Biol., 9, 2008, 92.
-
(2008)
BMC Mol. Biol.
, vol.9
, pp. 92
-
-
Ul-Hussain, M.1
-
95
-
-
84905398904
-
Internal ribosomal entry site (IRES) activity generates endogenous carboxyl-terminal domains of Cx43 and is responsive to hypoxic conditions
-
95 Ul-Hussain, M., et al. Internal ribosomal entry site (IRES) activity generates endogenous carboxyl-terminal domains of Cx43 and is responsive to hypoxic conditions. J. Biol. Chem. 289 (2014), 20979–20990.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 20979-20990
-
-
Ul-Hussain, M.1
-
96
-
-
46049087514
-
IRES-mediated translation of the carboxy-terminal domain of the horizontal cell specific connexin Cx55.5 in vivo and in vitro
-
96 Ul-Hussain, M., et al. IRES-mediated translation of the carboxy-terminal domain of the horizontal cell specific connexin Cx55.5 in vivo and in vitro. BMC Mol. Biol., 9, 2008, 52.
-
(2008)
BMC Mol. Biol.
, vol.9
, pp. 52
-
-
Ul-Hussain, M.1
-
97
-
-
34547653650
-
Evidence for the presence of a free C-terminal fragment of cx43 in cultured cells
-
97 Joshi-Mukherjee, R., et al. Evidence for the presence of a free C-terminal fragment of cx43 in cultured cells. Cell Commun. Adhes. 14 (2007), 75–84.
-
(2007)
Cell Commun. Adhes.
, vol.14
, pp. 75-84
-
-
Joshi-Mukherjee, R.1
-
98
-
-
84928893620
-
The carboxyl tail of connexin32 regulates gap junction assembly in human prostate and pancreatic cancer cells
-
98 Katoch, P., et al. The carboxyl tail of connexin32 regulates gap junction assembly in human prostate and pancreatic cancer cells. J. Biol. Chem. 290 (2015), 4647–4662.
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 4647-4662
-
-
Katoch, P.1
-
99
-
-
0347126477
-
A carboxyl terminal domain of connexin43 is critical for gap junction plaque formation but not for homo- or hetero-oligomerization
-
99 Martinez, A.D., et al. A carboxyl terminal domain of connexin43 is critical for gap junction plaque formation but not for homo- or hetero-oligomerization. Cell Commun. Adhes. 10 (2003), 323–328.
-
(2003)
Cell Commun. Adhes.
, vol.10
, pp. 323-328
-
-
Martinez, A.D.1
-
100
-
-
84928253795
-
Targeting connexin 43 with alpha-connexin carboxyl-terminal (ACT1) peptide enhances the activity of the targeted inhibitors, tamoxifen and lapatinib, in breast cancer: clinical implication for ACT1
-
100 Grek, C.L., et al. Targeting connexin 43 with alpha-connexin carboxyl-terminal (ACT1) peptide enhances the activity of the targeted inhibitors, tamoxifen and lapatinib, in breast cancer: clinical implication for ACT1. BMC Cancer, 15, 2015, 296.
-
(2015)
BMC Cancer
, vol.15
, pp. 296
-
-
Grek, C.L.1
-
101
-
-
0029781699
-
pH regulation of connexin43: molecular analysis of the gating particle
-
101 Ek-Vitorin, J.F., et al. pH regulation of connexin43: molecular analysis of the gating particle. Biophys. J. 71 (1996), 1273–1284.
-
(1996)
Biophys. J.
, vol.71
, pp. 1273-1284
-
-
Ek-Vitorin, J.F.1
-
102
-
-
0030050142
-
Intramolecular interactions mediate pH regulation of connexin43 channels
-
102 Morley, G.E., et al. Intramolecular interactions mediate pH regulation of connexin43 channels. Biophys. J. 70 (1996), 1294–1302.
-
(1996)
Biophys. J.
, vol.70
, pp. 1294-1302
-
-
Morley, G.E.1
-
103
-
-
0023141815
-
The cardiac gap junction protein (Mr 47,000) has a tissue-specific cytoplasmic domain of Mr 17,000 at its carboxy-terminus
-
103 Manjunath, C.K., et al. The cardiac gap junction protein (Mr 47,000) has a tissue-specific cytoplasmic domain of Mr 17,000 at its carboxy-terminus. Biochem. Biophys. Res. Commun. 142 (1987), 228–234.
-
(1987)
Biochem. Biophys. Res. Commun.
, vol.142
, pp. 228-234
-
-
Manjunath, C.K.1
-
104
-
-
59649088329
-
Pharmacological characterization of pannexin-1 currents expressed in mammalian cells
-
104 Ma, W., et al. Pharmacological characterization of pannexin-1 currents expressed in mammalian cells. J. Pharmacol. Exp. Ther. 328 (2009), 409–418.
-
(2009)
J. Pharmacol. Exp. Ther.
, vol.328
, pp. 409-418
-
-
Ma, W.1
-
105
-
-
80054112857
-
Characterization of novel Pannexin 1 isoforms from rat pituitary cells and their association with ATP-gated P2X channels
-
105 Li, S., et al. Characterization of novel Pannexin 1 isoforms from rat pituitary cells and their association with ATP-gated P2X channels. Gen. Comp. Endocrinol. 174 (2011), 202–210.
-
(2011)
Gen. Comp. Endocrinol.
, vol.174
, pp. 202-210
-
-
Li, S.1
-
106
-
-
77955570389
-
Gap junctions in inherited human disease
-
106 Zoidl, G., Dermietzel, R., Gap junctions in inherited human disease. Pflugers Arch. 460 (2010), 451–466.
-
(2010)
Pflugers Arch.
, vol.460
, pp. 451-466
-
-
Zoidl, G.1
Dermietzel, R.2
-
107
-
-
84945966507
-
Manipulating Cx43 expression triggers gene reprogramming events in dermal fibroblasts from oculodentodigital dysplasia patients
-
107 Esseltine, J.L., et al. Manipulating Cx43 expression triggers gene reprogramming events in dermal fibroblasts from oculodentodigital dysplasia patients. Biochem. J. 472 (2015), 55–69.
-
(2015)
Biochem. J.
, vol.472
, pp. 55-69
-
-
Esseltine, J.L.1
-
108
-
-
66749106316
-
GJA1 mutations, variants, and connexin 43 dysfunction as it relates to the oculodentodigital dysplasia phenotype
-
108 Paznekas, W.A., et al. GJA1 mutations, variants, and connexin 43 dysfunction as it relates to the oculodentodigital dysplasia phenotype. Hum. Mutat. 30 (2009), 724–733.
-
(2009)
Hum. Mutat.
, vol.30
, pp. 724-733
-
-
Paznekas, W.A.1
-
109
-
-
84859897711
-
Cardiac connexins, mutations and arrhythmias
-
109 Delmar, M., Makita, N., Cardiac connexins, mutations and arrhythmias. Curr. Opin. Cardiol. 27 (2012), 236–241.
-
(2012)
Curr. Opin. Cardiol.
, vol.27
, pp. 236-241
-
-
Delmar, M.1
Makita, N.2
-
110
-
-
0037320927
-
Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia
-
110 Paznekas, W.A., et al. Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia. Am. J. Hum. Genet. 72 (2003), 408–418.
-
(2003)
Am. J. Hum. Genet.
, vol.72
, pp. 408-418
-
-
Paznekas, W.A.1
-
111
-
-
84929660440
-
Connexins, gap junctions and peripheral neuropathy
-
111 Kleopa, K.A., Sargiannidou, I., Connexins, gap junctions and peripheral neuropathy. Neurosci. Lett. 596 (2015), 27–32.
-
(2015)
Neurosci. Lett.
, vol.596
, pp. 27-32
-
-
Kleopa, K.A.1
Sargiannidou, I.2
-
112
-
-
84959252696
-
Connexin channels in congenital skin disorders
-
112 Lilly, E., et al. Connexin channels in congenital skin disorders. Semin. Cell Dev. Biol. 50 (2016), 4–12.
-
(2016)
Semin. Cell Dev. Biol.
, vol.50
, pp. 4-12
-
-
Lilly, E.1
-
113
-
-
84930631869
-
Cellular and deafness mechanisms underlying connexin mutation-induced hearing loss – a common hereditary deafness
-
113 Wingard, J.C., Zhao, H.B., Cellular and deafness mechanisms underlying connexin mutation-induced hearing loss – a common hereditary deafness. Front. Cell Neurosci., 9, 2015, 202.
-
(2015)
Front. Cell Neurosci.
, vol.9
, pp. 202
-
-
Wingard, J.C.1
Zhao, H.B.2
-
114
-
-
84892902885
-
GJB2-associated hearing loss: systematic review of worldwide prevalence, genotype, and auditory phenotype
-
114 Chan, D.K., Chang, K.W., GJB2-associated hearing loss: systematic review of worldwide prevalence, genotype, and auditory phenotype. Laryngoscope 124 (2014), E34–E53.
-
(2014)
Laryngoscope
, vol.124
, pp. E34-E53
-
-
Chan, D.K.1
Chang, K.W.2
-
115
-
-
62849118980
-
Phenotypic variability of patients homozygous for the GJB2 mutation 35delG cannot be explained by the influence of one major modifier gene
-
115 Hilgert, N., et al. Phenotypic variability of patients homozygous for the GJB2 mutation 35delG cannot be explained by the influence of one major modifier gene. Eur. J. Hum. Genet. 17 (2009), 517–524.
-
(2009)
Eur. J. Hum. Genet.
, vol.17
, pp. 517-524
-
-
Hilgert, N.1
-
116
-
-
0036654536
-
GJB2 (connexin 26) variants and nonsyndromic sensorineural hearing loss: a HuGE review
-
116 Kenneson, A., et al. GJB2 (connexin 26) variants and nonsyndromic sensorineural hearing loss: a HuGE review. Genet. Med. 4 (2002), 258–274.
-
(2002)
Genet. Med.
, vol.4
, pp. 258-274
-
-
Kenneson, A.1
-
117
-
-
70350502856
-
Statistical study of 35delG mutation of GJB2 gene: a meta-analysis of carrier frequency
-
117 Mahdieh, N., Rabbani, B., Statistical study of 35delG mutation of GJB2 gene: a meta-analysis of carrier frequency. Int. J. Audiol. 48 (2009), 363–370.
-
(2009)
Int. J. Audiol.
, vol.48
, pp. 363-370
-
-
Mahdieh, N.1
Rabbani, B.2
-
119
-
-
84974530680
-
A germline variant in PANX1 has reduced channel function and is associated with multisystem dysfunction
-
119 Shao, Q., et al. A germline variant in PANX1 has reduced channel function and is associated with multisystem dysfunction. J. Biol. Chem. 291 (2016), 12432–12443.
-
(2016)
J. Biol. Chem.
, vol.291
, pp. 12432-12443
-
-
Shao, Q.1
-
120
-
-
84959199404
-
Translating connexin biology into therapeutics
-
120 Becker, D.L., et al. Translating connexin biology into therapeutics. Semin. Cell Dev. Biol. 50 (2016), 49–58.
-
(2016)
Semin. Cell Dev. Biol.
, vol.50
, pp. 49-58
-
-
Becker, D.L.1
-
121
-
-
84939486737
-
Pannexin-1 channels and their emerging functions in cardiovascular diseases
-
121 Li, L., et al. Pannexin-1 channels and their emerging functions in cardiovascular diseases. Acta Biochim. Biophys. Sin. (Shanghai) 47 (2015), 391–396.
-
(2015)
Acta Biochim. Biophys. Sin. (Shanghai)
, vol.47
, pp. 391-396
-
-
Li, L.1
-
122
-
-
84959078246
-
Metabotropic NMDA receptor signaling couples Src family kinases to pannexin-1 during excitotoxicity
-
122 Weilinger, N.L., et al. Metabotropic NMDA receptor signaling couples Src family kinases to pannexin-1 during excitotoxicity. Nat. Neurosci. 19 (2016), 432–442.
-
(2016)
Nat. Neurosci.
, vol.19
, pp. 432-442
-
-
Weilinger, N.L.1
-
123
-
-
84923093408
-
A molecular signature in the pannexin1 intracellular loop confers channel activation by the alpha1 adrenoreceptor in smooth muscle cells
-
123 Billaud, M., et al. A molecular signature in the pannexin1 intracellular loop confers channel activation by the alpha1 adrenoreceptor in smooth muscle cells. Sci. Signal., 8, 2015, ra17.
-
(2015)
Sci. Signal.
, vol.8
, pp. ra17
-
-
Billaud, M.1
-
124
-
-
84938931625
-
Pannexin 1 channels regulate leukocyte emigration through the venous endothelium during acute inflammation
-
124 Lohman, A.W., et al. Pannexin 1 channels regulate leukocyte emigration through the venous endothelium during acute inflammation. Nat. Commun., 6, 2015, 7965.
-
(2015)
Nat. Commun.
, vol.6
, pp. 7965
-
-
Lohman, A.W.1
-
125
-
-
84932640293
-
Novel insights into osteoarthritis joint pathology from studies in mice
-
125 Moon, P.M., Beier, F., Novel insights into osteoarthritis joint pathology from studies in mice. Curr. Rheumatol. Rep., 17, 2015, 50.
-
(2015)
Curr. Rheumatol. Rep.
, vol.17
, pp. 50
-
-
Moon, P.M.1
Beier, F.2
-
126
-
-
84937975694
-
Deletion of Panx3 prevents the development of surgically induced osteoarthritis
-
126 Moon, P.M., et al. Deletion of Panx3 prevents the development of surgically induced osteoarthritis. J. Mol. Med. (Berl) 93 (2015), 845–856.
-
(2015)
J. Mol. Med. (Berl)
, vol.93
, pp. 845-856
-
-
Moon, P.M.1
-
127
-
-
84880227000
-
Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells
-
127 Lundy, S.D., et al. Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cells Dev. 22 (2013), 1991–2002.
-
(2013)
Stem Cells Dev.
, vol.22
, pp. 1991-2002
-
-
Lundy, S.D.1
-
128
-
-
84877883437
-
Connexin 43 is involved in the generation of human-induced pluripotent stem cells
-
128 Ke, Q., et al. Connexin 43 is involved in the generation of human-induced pluripotent stem cells. Hum. Mol. Genet. 22 (2013), 2221–2233.
-
(2013)
Hum. Mol. Genet.
, vol.22
, pp. 2221-2233
-
-
Ke, Q.1
-
129
-
-
84881576252
-
Connexin expression and gap-junctional intercellular communication in ES cells and iPS cells
-
129 Oyamada, M., et al. Connexin expression and gap-junctional intercellular communication in ES cells and iPS cells. Front. Pharmacol., 4, 2013, 85.
-
(2013)
Front. Pharmacol.
, vol.4
, pp. 85
-
-
Oyamada, M.1
-
130
-
-
84866235162
-
De novo reestablishment of gap junctional intercellular communications during reprogramming to pluripotency and differentiation
-
130 Sharovskaya, Y.Y., et al. De novo reestablishment of gap junctional intercellular communications during reprogramming to pluripotency and differentiation. Stem Cells Dev. 21 (2012), 2623–2629.
-
(2012)
Stem Cells Dev.
, vol.21
, pp. 2623-2629
-
-
Sharovskaya, Y.Y.1
-
131
-
-
37349002749
-
Gap junctional intercellular communication is required to maintain embryonic stem cells in a non-differentiated and proliferative state
-
131 Todorova, M.G., et al. Gap junctional intercellular communication is required to maintain embryonic stem cells in a non-differentiated and proliferative state. J. Cell Physiol. 214 (2008), 354–362.
-
(2008)
J. Cell Physiol.
, vol.214
, pp. 354-362
-
-
Todorova, M.G.1
|