메뉴 건너뛰기




Volumn 26, Issue 12, 2016, Pages 944-955

Next-Generation Connexin and Pannexin Cell Biology

Author keywords

connexin; gap junctional intercellular communication; large pore channels; pannexin

Indexed keywords

GAP JUNCTION PROTEIN; PANNEXIN; PROTEIN; UNCLASSIFIED DRUG; NERVE PROTEIN;

EID: 84995639334     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2016.06.003     Document Type: Review
Times cited : (109)

References (131)
  • 1
    • 0035704411 scopus 로고    scopus 로고
    • Emerging issues of connexin channels: biophysics fills the gap
    • 1 Harris, A.L., Emerging issues of connexin channels: biophysics fills the gap. Q. Rev. Biophys. 34 (2001), 325–472.
    • (2001) Q. Rev. Biophys. , vol.34 , pp. 325-472
    • Harris, A.L.1
  • 2
    • 33645002735 scopus 로고    scopus 로고
    • Life cycle of connexins in health and disease
    • 2 Laird, D.W., Life cycle of connexins in health and disease. Biochem. J. 394 (2006), 527–543.
    • (2006) Biochem. J. , vol.394 , pp. 527-543
    • Laird, D.W.1
  • 3
    • 34249082403 scopus 로고    scopus 로고
    • Connexin channel permeability to cytoplasmic molecules
    • 3 Harris, A.L., Connexin channel permeability to cytoplasmic molecules. Prog. Biophys. Mol. Biol. 94 (2007), 120–143.
    • (2007) Prog. Biophys. Mol. Biol. , vol.94 , pp. 120-143
    • Harris, A.L.1
  • 4
    • 0032555956 scopus 로고    scopus 로고
    • Rapid turnover of connexin43 in the adult rat heart
    • 4 Beardslee, M.A., et al. Rapid turnover of connexin43 in the adult rat heart. Circ. Res. 83 (1998), 629–635.
    • (1998) Circ. Res. , vol.83 , pp. 629-635
    • Beardslee, M.A.1
  • 5
    • 75149159657 scopus 로고    scopus 로고
    • The gap junction proteome and its relationship to disease
    • 5 Laird, D.W., The gap junction proteome and its relationship to disease. Trends Cell Biol. 20 (2010), 92–101.
    • (2010) Trends Cell Biol. , vol.20 , pp. 92-101
    • Laird, D.W.1
  • 6
    • 84870054442 scopus 로고    scopus 로고
    • The biochemistry and function of pannexin channels
    • 6 Penuela, S., et al. The biochemistry and function of pannexin channels. Biochim. Biophys. Acta 1828 (2013), 15–22.
    • (2013) Biochim. Biophys. Acta , vol.1828 , pp. 15-22
    • Penuela, S.1
  • 7
    • 77955293473 scopus 로고    scopus 로고
    • Pannexin1 and Pannexin2 channels show quaternary similarities to connexons and different oligomerization numbers from each other
    • 7 Ambrosi, C., et al. Pannexin1 and Pannexin2 channels show quaternary similarities to connexons and different oligomerization numbers from each other. J. Biol. Chem. 285 (2010), 24420–24431.
    • (2010) J. Biol. Chem. , vol.285 , pp. 24420-24431
    • Ambrosi, C.1
  • 8
    • 77950567390 scopus 로고    scopus 로고
    • Pannexin1 and pannexin3 delivery, cell surface dynamics, and cytoskeletal interactions
    • 8 Bhalla-Gehi, R., et al. Pannexin1 and pannexin3 delivery, cell surface dynamics, and cytoskeletal interactions. J. Biol. Chem. 285 (2010), 9147–9160.
    • (2010) J. Biol. Chem. , vol.285 , pp. 9147-9160
    • Bhalla-Gehi, R.1
  • 9
    • 4143127920 scopus 로고    scopus 로고
    • Pannexin membrane channels are mechanosensitive conduits for ATP
    • 9 Bao, L., et al. Pannexin membrane channels are mechanosensitive conduits for ATP. FEBS Lett. 572 (2004), 65–68.
    • (2004) FEBS Lett. , vol.572 , pp. 65-68
    • Bao, L.1
  • 10
    • 77957942834 scopus 로고    scopus 로고
    • Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis
    • 10 Chekeni, F.B., et al. Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature 467 (2010), 863–867.
    • (2010) Nature , vol.467 , pp. 863-867
    • Chekeni, F.B.1
  • 11
    • 84871071111 scopus 로고    scopus 로고
    • Physiological mechanisms for the modulation of pannexin 1 channel activity
    • 11 Sandilos, J.K., Bayliss, D.A., Physiological mechanisms for the modulation of pannexin 1 channel activity. J. Physiol. 590 (2012), 6257–6266.
    • (2012) J. Physiol. , vol.590 , pp. 6257-6266
    • Sandilos, J.K.1    Bayliss, D.A.2
  • 12
    • 84934434552 scopus 로고    scopus 로고
    • Mechanosensitive pannexin-1 channels mediate microvascular metastatic cell survival
    • 12 Furlow, P.W., et al. Mechanosensitive pannexin-1 channels mediate microvascular metastatic cell survival. Nat. Cell Biol. 17 (2015), 943–952.
    • (2015) Nat. Cell Biol. , vol.17 , pp. 943-952
    • Furlow, P.W.1
  • 13
    • 84930277263 scopus 로고    scopus 로고
    • Mechanisms linking connexin mutations to human diseases
    • 13 Kelly, J.J., et al. Mechanisms linking connexin mutations to human diseases. Cell Tissue Res. 360 (2015), 701–721.
    • (2015) Cell Tissue Res. , vol.360 , pp. 701-721
    • Kelly, J.J.1
  • 14
    • 84898888299 scopus 로고    scopus 로고
    • Syndromic and non-syndromic disease-linked Cx43 mutations
    • 14 Laird, D.W., Syndromic and non-syndromic disease-linked Cx43 mutations. FEBS Lett. 588 (2014), 1339–1348.
    • (2014) FEBS Lett. , vol.588 , pp. 1339-1348
    • Laird, D.W.1
  • 15
    • 84904089253 scopus 로고    scopus 로고
    • Pannexin channels and their links to human disease
    • 15 Penuela, S., et al. Pannexin channels and their links to human disease. Biochem. J. 461 (2014), 371–381.
    • (2014) Biochem. J. , vol.461 , pp. 371-381
    • Penuela, S.1
  • 16
    • 84895455467 scopus 로고    scopus 로고
    • Diverse post-translational modifications of the pannexin family of channel-forming proteins
    • 16 Penuela, S., et al. Diverse post-translational modifications of the pannexin family of channel-forming proteins. Channels (Austin) 8 (2014), 124–130.
    • (2014) Channels (Austin) , vol.8 , pp. 124-130
    • Penuela, S.1
  • 17
    • 33745528139 scopus 로고    scopus 로고
    • The gap junction cellular internet: connexin hemichannels enter the signalling limelight
    • 17 Evans, W.H., et al. The gap junction cellular internet: connexin hemichannels enter the signalling limelight. Biochem J 397 (2006), 1–14.
    • (2006) Biochem J , vol.397 , pp. 1-14
    • Evans, W.H.1
  • 18
    • 0037382614 scopus 로고    scopus 로고
    • Beyond the gap: functions of unpaired connexon channels
    • 18 Goodenough, D.A., Paul, D.L., Beyond the gap: functions of unpaired connexon channels. Nat. Rev. Mol. Cell Biol. 4 (2003), 285–294.
    • (2003) Nat. Rev. Mol. Cell Biol. , vol.4 , pp. 285-294
    • Goodenough, D.A.1    Paul, D.L.2
  • 19
    • 84862166302 scopus 로고    scopus 로고
    • Biological role of connexin intercellular channels and hemichannels
    • 19 Kar, R., et al. Biological role of connexin intercellular channels and hemichannels. Arch. Biochem. Biophys. 524 (2012), 2–15.
    • (2012) Arch. Biochem. Biophys. , vol.524 , pp. 2-15
    • Kar, R.1
  • 20
    • 84898894877 scopus 로고    scopus 로고
    • Hunting for connexin hemichannels
    • 20 Saez, J.C., Leybaert, L., Hunting for connexin hemichannels. FEBS Lett. 588 (2014), 1205–1211.
    • (2014) FEBS Lett. , vol.588 , pp. 1205-1211
    • Saez, J.C.1    Leybaert, L.2
  • 21
    • 84938423002 scopus 로고    scopus 로고
    • Connexin 43 is an emerging therapeutic target in ischemia/reperfusion injury, cardioprotection and neuroprotection
    • 21 Schulz, R., et al. Connexin 43 is an emerging therapeutic target in ischemia/reperfusion injury, cardioprotection and neuroprotection. Pharmacol. Ther. 153 (2015), 90–106.
    • (2015) Pharmacol. Ther. , vol.153 , pp. 90-106
    • Schulz, R.1
  • 22
    • 84907200743 scopus 로고    scopus 로고
    • Activation, permeability, and inhibition of astrocytic and neuronal large pore (hemi)channels
    • 22 Hansen, D.B., et al. Activation, permeability, and inhibition of astrocytic and neuronal large pore (hemi)channels. J. Biol. Chem. 289 (2014), 26058–26073.
    • (2014) J. Biol. Chem. , vol.289 , pp. 26058-26073
    • Hansen, D.B.1
  • 23
    • 84899422740 scopus 로고    scopus 로고
    • Cx46 hemichannels contribute to the sodium leak conductance in lens fiber cells
    • 23 Ebihara, L., et al. Cx46 hemichannels contribute to the sodium leak conductance in lens fiber cells. Am. J. Physiol. Cell Physiol. 306 (2014), C506–C513.
    • (2014) Am. J. Physiol. Cell Physiol. , vol.306 , pp. C506-C513
    • Ebihara, L.1
  • 24
    • 79953269941 scopus 로고    scopus 로고
    • Properties of connexin 46 hemichannels in dissociated lens fiber cells
    • 24 Ebihara, L., et al. Properties of connexin 46 hemichannels in dissociated lens fiber cells. Invest. Ophthalmol. Vis. Sci. 52 (2011), 882–889.
    • (2011) Invest. Ophthalmol. Vis. Sci. , vol.52 , pp. 882-889
    • Ebihara, L.1
  • 25
    • 84855745647 scopus 로고    scopus 로고
    • Hyposmotic stress causes ATP release and stimulates Na, K-ATPase activity in porcine lens
    • 25 Shahidullah, M., et al. Hyposmotic stress causes ATP release and stimulates Na, K-ATPase activity in porcine lens. J. Cell Physiol. 227 (2012), 1428–1437.
    • (2012) J. Cell Physiol. , vol.227 , pp. 1428-1437
    • Shahidullah, M.1
  • 26
    • 84862621270 scopus 로고    scopus 로고
    • TRPV4 in porcine lens epithelium regulates hemichannel-mediated ATP release and Na-K-ATPase activity
    • 26 Shahidullah, M., et al. TRPV4 in porcine lens epithelium regulates hemichannel-mediated ATP release and Na-K-ATPase activity. Am. J. Physiol. Cell Physiol. 302 (2012), C1751–C1761.
    • (2012) Am. J. Physiol. Cell Physiol. , vol.302 , pp. C1751-C1761
    • Shahidullah, M.1
  • 27
    • 84908255566 scopus 로고    scopus 로고
    • The connexin43 mimetic peptide Gap19 inhibits hemichannels without altering gap junctional communication in astrocytes
    • 27 Abudara, V., et al. The connexin43 mimetic peptide Gap19 inhibits hemichannels without altering gap junctional communication in astrocytes. Front. Cell Neurosci., 8, 2014, 306.
    • (2014) Front. Cell Neurosci. , vol.8 , pp. 306
    • Abudara, V.1
  • 28
    • 84958752299 scopus 로고    scopus 로고
    • General anesthetics have differential inhibitory effects on gap junction channels and hemichannels in astrocytes and neurons
    • 28 Liu, X., et al. General anesthetics have differential inhibitory effects on gap junction channels and hemichannels in astrocytes and neurons. Glia 64 (2016), 524–536.
    • (2016) Glia , vol.64 , pp. 524-536
    • Liu, X.1
  • 29
    • 84928599358 scopus 로고    scopus 로고
    • Endocannabinoids regulate the activity of astrocytic hemichannels and the microglial response against an injury: in vivo studies
    • 29 Vazquez, C., et al. Endocannabinoids regulate the activity of astrocytic hemichannels and the microglial response against an injury: in vivo studies. Neurobiol. Dis. 79 (2015), 41–50.
    • (2015) Neurobiol. Dis. , vol.79 , pp. 41-50
    • Vazquez, C.1
  • 30
    • 0345255097 scopus 로고    scopus 로고
    • Pannexins, a family of gap junction proteins expressed in brain
    • 30 Bruzzone, R., et al. Pannexins, a family of gap junction proteins expressed in brain. Proc. Natl. Acad. Sci. U.S.A. 100 (2003), 13644–13649.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 13644-13649
    • Bruzzone, R.1
  • 31
    • 84898886896 scopus 로고    scopus 로고
    • Differentiating connexin hemichannels and pannexin channels in cellular ATP release
    • 31 Lohman, A.W., Isakson, B.E., Differentiating connexin hemichannels and pannexin channels in cellular ATP release. FEBS Lett. 588 (2014), 1379–1388.
    • (2014) FEBS Lett. , vol.588 , pp. 1379-1388
    • Lohman, A.W.1    Isakson, B.E.2
  • 32
    • 79955717821 scopus 로고    scopus 로고
    • Pannexin channels are not gap junction hemichannels
    • 32 Sosinsky, G.E., et al. Pannexin channels are not gap junction hemichannels. Channels (Austin) 5 (2011), 193–197.
    • (2011) Channels (Austin) , vol.5 , pp. 193-197
    • Sosinsky, G.E.1
  • 33
    • 36549084087 scopus 로고    scopus 로고
    • Pannexin 1 and pannexin 3 are glycoproteins that exhibit many distinct characteristics from the connexin family of gap junction proteins
    • 33 Penuela, S., et al. Pannexin 1 and pannexin 3 are glycoproteins that exhibit many distinct characteristics from the connexin family of gap junction proteins. J. Cell Sci. 120 (2007), 3772–3783.
    • (2007) J. Cell Sci. , vol.120 , pp. 3772-3783
    • Penuela, S.1
  • 34
    • 70350112277 scopus 로고    scopus 로고
    • Glycosylation regulates pannexin intermixing and cellular localization
    • 34 Penuela, S., et al. Glycosylation regulates pannexin intermixing and cellular localization. Mol. Biol. Cell 20 (2009), 4313–4323.
    • (2009) Mol. Biol. Cell , vol.20 , pp. 4313-4323
    • Penuela, S.1
  • 35
    • 84874773135 scopus 로고    scopus 로고
    • Structural and functional similarities of calcium homeostasis modulator 1 (CALHM1) ion channel with connexins, pannexins, and innexins
    • 35 Siebert, A.P., et al. Structural and functional similarities of calcium homeostasis modulator 1 (CALHM1) ion channel with connexins, pannexins, and innexins. J. Biol. Chem. 288 (2013), 6140–6153.
    • (2013) J. Biol. Chem. , vol.288 , pp. 6140-6153
    • Siebert, A.P.1
  • 36
    • 0032417621 scopus 로고    scopus 로고
    • Connexins regulate calcium signaling by controlling ATP release
    • 36 Cotrina, M.L., et al. Connexins regulate calcium signaling by controlling ATP release. Proc. Natl. Acad. Sci. U.S.A. 95 (1998), 15735–15740.
    • (1998) Proc. Natl. Acad. Sci. U.S.A. , vol.95 , pp. 15735-15740
    • Cotrina, M.L.1
  • 37
    • 0030776894 scopus 로고    scopus 로고
    • ATP- and gap junction-dependent intercellular calcium signaling in osteoblastic cells
    • 37 Jorgensen, N.R., et al. ATP- and gap junction-dependent intercellular calcium signaling in osteoblastic cells. J. Cell Biol. 139 (1997), 497–506.
    • (1997) J. Cell Biol. , vol.139 , pp. 497-506
    • Jorgensen, N.R.1
  • 38
    • 4444222881 scopus 로고    scopus 로고
    • Calcium waves propagate through radial glial cells and modulate proliferation in the developing neocortex
    • 38 Weissman, T.A., et al. Calcium waves propagate through radial glial cells and modulate proliferation in the developing neocortex. Neuron 43 (2004), 647–661.
    • (2004) Neuron , vol.43 , pp. 647-661
    • Weissman, T.A.1
  • 39
    • 0034106797 scopus 로고    scopus 로고
    • Selective permeability of different connexin channels to the second messenger inositol 1,4,5-trisphosphate
    • 39 Niessen, H., et al. Selective permeability of different connexin channels to the second messenger inositol 1,4,5-trisphosphate. J. Cell Sci. 113:Pt 8 (2000), 1365–1372.
    • (2000) J. Cell Sci. , vol.113 , pp. 1365-1372
    • Niessen, H.1
  • 40
    • 0033971981 scopus 로고    scopus 로고
    • Strongly decreased gap junctional permeability to inositol 1,4, 5-trisphosphate in connexin32 deficient hepatocytes
    • 40 Niessen, H., Willecke, K., Strongly decreased gap junctional permeability to inositol 1,4, 5-trisphosphate in connexin32 deficient hepatocytes. FEBS Lett. 466 (2000), 112–114.
    • (2000) FEBS Lett. , vol.466 , pp. 112-114
    • Niessen, H.1    Willecke, K.2
  • 41
    • 34247886163 scopus 로고    scopus 로고
    • Unitary permeability of gap junction channels to second messengers measured by FRET microscopy
    • 41 Hernandez, V.H., et al. Unitary permeability of gap junction channels to second messengers measured by FRET microscopy. Nat. Methods 4 (2007), 353–358.
    • (2007) Nat. Methods , vol.4 , pp. 353-358
    • Hernandez, V.H.1
  • 42
    • 0033224243 scopus 로고    scopus 로고
    • Selective transfer of endogenous metabolites through gap junctions composed of different connexins
    • 42 Goldberg, G.S., et al. Selective transfer of endogenous metabolites through gap junctions composed of different connexins. Nat. Cell Biol. 1 (1999), 457–459.
    • (1999) Nat. Cell Biol. , vol.1 , pp. 457-459
    • Goldberg, G.S.1
  • 43
    • 84898880200 scopus 로고    scopus 로고
    • Distinct permeation profiles of the connexin 30 and 43 hemichannels
    • 43 Hansen, D.B., et al. Distinct permeation profiles of the connexin 30 and 43 hemichannels. FEBS Lett. 588 (2014), 1446–1457.
    • (2014) FEBS Lett. , vol.588 , pp. 1446-1457
    • Hansen, D.B.1
  • 44
    • 57749100300 scopus 로고    scopus 로고
    • ATP release through connexin hemichannels and gap junction transfer of second messengers propagate Ca2+ signals across the inner ear
    • 44 Anselmi, F., et al. ATP release through connexin hemichannels and gap junction transfer of second messengers propagate Ca2+ signals across the inner ear. Proc. Natl. Acad. Sci. U.S.A. 105 (2008), 18770–18775.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 18770-18775
    • Anselmi, F.1
  • 45
    • 84929593739 scopus 로고    scopus 로고
    • Critical role of gap junction communication, calcium and nitric oxide signaling in bystander responses to focal photodynamic injury
    • 45 Cali, B., et al. Critical role of gap junction communication, calcium and nitric oxide signaling in bystander responses to focal photodynamic injury. Oncotarget 6 (2015), 10161–10174.
    • (2015) Oncotarget , vol.6 , pp. 10161-10174
    • Cali, B.1
  • 46
    • 84869491250 scopus 로고    scopus 로고
    • Low extracellular Ca2+ conditions induce an increase in brain endothelial permeability that involves intercellular Ca2+ waves
    • 46 De Bock, M., et al. Low extracellular Ca2+ conditions induce an increase in brain endothelial permeability that involves intercellular Ca2+ waves. Brain Res. 1487 (2012), 78–87.
    • (2012) Brain Res. , vol.1487 , pp. 78-87
    • De Bock, M.1
  • 47
    • 84859491380 scopus 로고    scopus 로고
    • Connexin 43 hemichannels contribute to cytoplasmic Ca2+ oscillations by providing a bimodal Ca2+-dependent Ca2+ entry pathway
    • 47 De Bock, M., et al. Connexin 43 hemichannels contribute to cytoplasmic Ca2+ oscillations by providing a bimodal Ca2+-dependent Ca2+ entry pathway. J. Biol. Chem. 287 (2012), 12250–12266.
    • (2012) J. Biol. Chem. , vol.287 , pp. 12250-12266
    • De Bock, M.1
  • 48
    • 84860722401 scopus 로고    scopus 로고
    • Transfer of IP(3) through gap junctions is critical, but not sufficient, for the spread of apoptosis
    • 48 Decrock, E., et al. Transfer of IP(3) through gap junctions is critical, but not sufficient, for the spread of apoptosis. Cell Death Differ. 19 (2012), 947–957.
    • (2012) Cell Death Differ. , vol.19 , pp. 947-957
    • Decrock, E.1
  • 49
    • 77955172146 scopus 로고    scopus 로고
    • ATP-mediated cell-cell signaling in the organ of Corti: the role of connexin channels
    • 49 Majumder, P., et al. ATP-mediated cell-cell signaling in the organ of Corti: the role of connexin channels. Purinergic Signal. 6 (2010), 167–187.
    • (2010) Purinergic Signal. , vol.6 , pp. 167-187
    • Majumder, P.1
  • 50
    • 57749121610 scopus 로고    scopus 로고
    • Coordinated control of connexin 26 and connexin 30 at the regulatory and functional level in the inner ear
    • 50 Ortolano, S., et al. Coordinated control of connexin 26 and connexin 30 at the regulatory and functional level in the inner ear. Proc. Natl. Acad. Sci. U.S.A. 105 (2008), 18776–18781.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 18776-18781
    • Ortolano, S.1
  • 51
    • 84901693714 scopus 로고    scopus 로고
    • NO, via its target Cx37, modulates calcium signal propagation selectively at myoendothelial gap junctions
    • 51 Pogoda, K., et al. NO, via its target Cx37, modulates calcium signal propagation selectively at myoendothelial gap junctions. Cell Commun. Signal., 12, 2014, 33.
    • (2014) Cell Commun. Signal. , vol.12 , pp. 33
    • Pogoda, K.1
  • 52
    • 27644502287 scopus 로고    scopus 로고
    • Connexin-specific cell-to-cell transfer of short interfering RNA by gap junctions
    • 52 Valiunas, V., et al. Connexin-specific cell-to-cell transfer of short interfering RNA by gap junctions. J. Physiol. 568 (2005), 459–468.
    • (2005) J. Physiol. , vol.568 , pp. 459-468
    • Valiunas, V.1
  • 53
    • 84934301671 scopus 로고    scopus 로고
    • A comparison of two cellular delivery mechanisms for small interfering RNA
    • 53 Valiunas, V., et al. A comparison of two cellular delivery mechanisms for small interfering RNA. Physiol. Rep., 3, 2015, e12286.
    • (2015) Physiol. Rep. , vol.3 , pp. e12286
    • Valiunas, V.1
  • 54
    • 84929902258 scopus 로고    scopus 로고
    • MicroRNA biogenesis pathways in cancer
    • 54 Lin, S., Gregory, R.I., MicroRNA biogenesis pathways in cancer. Nat. Rev. Cancer 15 (2015), 321–333.
    • (2015) Nat. Rev. Cancer , vol.15 , pp. 321-333
    • Lin, S.1    Gregory, R.I.2
  • 55
    • 84890327208 scopus 로고    scopus 로고
    • MicroRNAs transfer from human macrophages to hepato-carcinoma cells and inhibit proliferation
    • 55 Aucher, A., et al. MicroRNAs transfer from human macrophages to hepato-carcinoma cells and inhibit proliferation. J. Immunol. 191 (2013), 6250–6260.
    • (2013) J. Immunol. , vol.191 , pp. 6250-6260
    • Aucher, A.1
  • 56
    • 84934343396 scopus 로고    scopus 로고
    • Gap junctions modulate glioma invasion by direct transfer of microRNA
    • 56 Hong, X., et al. Gap junctions modulate glioma invasion by direct transfer of microRNA. Oncotarget 6 (2015), 15566–15577.
    • (2015) Oncotarget , vol.6 , pp. 15566-15577
    • Hong, X.1
  • 57
    • 84885411385 scopus 로고    scopus 로고
    • The mircrine mechanism controlling cardiac stem cell fate
    • 57 Hosoda, T., The mircrine mechanism controlling cardiac stem cell fate. Front. Genet., 4, 2013, 204.
    • (2013) Front. Genet. , vol.4 , pp. 204
    • Hosoda, T.1
  • 58
    • 79954629901 scopus 로고    scopus 로고
    • Human cardiac stem cell differentiation is regulated by a mircrine mechanism
    • 58 Hosoda, T., et al. Human cardiac stem cell differentiation is regulated by a mircrine mechanism. Circulation 123 (2011), 1287–1296.
    • (2011) Circulation , vol.123 , pp. 1287-1296
    • Hosoda, T.1
  • 59
    • 78449307957 scopus 로고    scopus 로고
    • Functional microRNA is transferred between glioma cells
    • 59 Katakowski, M., et al. Functional microRNA is transferred between glioma cells. Cancer Res. 70 (2010), 8259–8263.
    • (2010) Cancer Res. , vol.70 , pp. 8259-8263
    • Katakowski, M.1
  • 60
    • 70249104621 scopus 로고    scopus 로고
    • Non-cell-autonomous effects of vector-expressed regulatory RNAs in mammalian heart cells
    • 60 Kizana, E., et al. Non-cell-autonomous effects of vector-expressed regulatory RNAs in mammalian heart cells. Gene Ther. 16 (2009), 1163–1168.
    • (2009) Gene Ther. , vol.16 , pp. 1163-1168
    • Kizana, E.1
  • 61
    • 84875784259 scopus 로고    scopus 로고
    • Mesenchymal stem cells deliver synthetic microRNA mimics to glioma cells and glioma stem cells and inhibit their cell migration and self-renewal
    • 61 Lee, H.K., et al. Mesenchymal stem cells deliver synthetic microRNA mimics to glioma cells and glioma stem cells and inhibit their cell migration and self-renewal. Oncotarget 4 (2013), 346–361.
    • (2013) Oncotarget , vol.4 , pp. 346-361
    • Lee, H.K.1
  • 62
    • 84943641974 scopus 로고    scopus 로고
    • Gap junctional shuttling of miRNA – a novel pathway of intercellular gene regulation and its prospects in clinical application
    • 62 Lemcke, H., et al. Gap junctional shuttling of miRNA – a novel pathway of intercellular gene regulation and its prospects in clinical application. Cell Signal. 27 (2015), 2506–2514.
    • (2015) Cell Signal. , vol.27 , pp. 2506-2514
    • Lemcke, H.1
  • 63
    • 79952219931 scopus 로고    scopus 로고
    • Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells
    • 63 Lim, P.K., et al. Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Res. 71 (2011), 1550–1560.
    • (2011) Cancer Res. , vol.71 , pp. 1550-1560
    • Lim, P.K.1
  • 64
    • 84944931387 scopus 로고    scopus 로고
    • Connexin26 gap junction mediates miRNA intercellular genetic communication in the cochlea and is required for inner ear development
    • 64 Zhu, Y., et al. Connexin26 gap junction mediates miRNA intercellular genetic communication in the cochlea and is required for inner ear development. Sci. Rep., 5, 2015, 15647.
    • (2015) Sci. Rep. , vol.5 , pp. 15647
    • Zhu, Y.1
  • 65
    • 84861638114 scopus 로고    scopus 로고
    • Can gap junctions deliver?
    • 65 Brink, P.R., et al. Can gap junctions deliver?. Biochim. Biophys. Acta 1818 (2012), 2076–2081.
    • (2012) Biochim. Biophys. Acta , vol.1818 , pp. 2076-2081
    • Brink, P.R.1
  • 66
    • 84864368905 scopus 로고    scopus 로고
    • Changes in connexin43 expression and localization during pancreatic cancer progression
    • 66 Solan, J.L., et al. Changes in connexin43 expression and localization during pancreatic cancer progression. J. Membr. Biol. 245 (2012), 255–262.
    • (2012) J. Membr. Biol. , vol.245 , pp. 255-262
    • Solan, J.L.1
  • 67
    • 51749110724 scopus 로고    scopus 로고
    • Remodelling of gap junctions and connexin expression in diseased myocardium
    • 67 Severs, N.J., et al. Remodelling of gap junctions and connexin expression in diseased myocardium. Cardiovasc. Res. 80 (2008), 9–19.
    • (2008) Cardiovasc. Res. , vol.80 , pp. 9-19
    • Severs, N.J.1
  • 68
    • 34147188924 scopus 로고    scopus 로고
    • Loss of ischemic preconditioning's cardioprotection in aged mouse hearts is associated with reduced gap junctional and mitochondrial levels of connexin 43
    • 68 Boengler, K., et al. Loss of ischemic preconditioning's cardioprotection in aged mouse hearts is associated with reduced gap junctional and mitochondrial levels of connexin 43. Am. J. Physiol. Heart Circ. Physiol. 292 (2007), H1764–H1769.
    • (2007) Am. J. Physiol. Heart Circ. Physiol. , vol.292 , pp. H1764-H1769
    • Boengler, K.1
  • 69
    • 62249090215 scopus 로고    scopus 로고
    • Presence of connexin 43 in subsarcolemmal, but not in interfibrillar cardiomyocyte mitochondria
    • 69 Boengler, K., et al. Presence of connexin 43 in subsarcolemmal, but not in interfibrillar cardiomyocyte mitochondria. Basic Res. Cardiol. 104 (2009), 141–147.
    • (2009) Basic Res. Cardiol. , vol.104 , pp. 141-147
    • Boengler, K.1
  • 70
    • 84928558139 scopus 로고    scopus 로고
    • Targeted disruption of PDE3B, but not PDE3A, protects murine heart from ischemia/reperfusion injury
    • 70 Chung, Y.W., et al. Targeted disruption of PDE3B, but not PDE3A, protects murine heart from ischemia/reperfusion injury. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), E2253–E2262.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , pp. E2253-E2262
    • Chung, Y.W.1
  • 71
    • 79955767520 scopus 로고    scopus 로고
    • Cholesterol diet leads to attenuation of ischemic preconditioning-induced cardiac protection: the role of connexin 43
    • 71 Gorbe, A., et al. Cholesterol diet leads to attenuation of ischemic preconditioning-induced cardiac protection: the role of connexin 43. Am. J. Physiol. Heart Circ. Physiol. 300 (2011), H1907–H1913.
    • (2011) Am. J. Physiol. Heart Circ. Physiol. , vol.300 , pp. H1907-H1913
    • Gorbe, A.1
  • 72
    • 84925943084 scopus 로고    scopus 로고
    • Interaction between connexin 43 and nitric oxide synthase in mice heart mitochondria
    • 72 Kirca, M., et al. Interaction between connexin 43 and nitric oxide synthase in mice heart mitochondria. J. Cell Mol. Med. 19 (2015), 815–825.
    • (2015) J. Cell Mol. Med. , vol.19 , pp. 815-825
    • Kirca, M.1
  • 73
    • 84947556404 scopus 로고    scopus 로고
    • Role of connexin 43 in cardiovascular diseases
    • 73 Michela, P., et al. Role of connexin 43 in cardiovascular diseases. Eur. J. Pharmacol. 768 (2015), 71–76.
    • (2015) Eur. J. Pharmacol. , vol.768 , pp. 71-76
    • Michela, P.1
  • 74
    • 33746207800 scopus 로고    scopus 로고
    • Translocation of connexin 43 to the inner mitochondrial membrane of cardiomyocytes through the heat shock protein 90-dependent TOM pathway and its importance for cardioprotection
    • 74 Rodriguez-Sinovas, A., et al. Translocation of connexin 43 to the inner mitochondrial membrane of cardiomyocytes through the heat shock protein 90-dependent TOM pathway and its importance for cardioprotection. Circ. Res. 99 (2006), 93–101.
    • (2006) Circ. Res. , vol.99 , pp. 93-101
    • Rodriguez-Sinovas, A.1
  • 75
    • 84894246682 scopus 로고    scopus 로고
    • Ischemic preconditioning protects cardiomyocyte mitochondria through mechanisms independent of cytosol
    • 75 Ruiz-Meana, M., et al. Ischemic preconditioning protects cardiomyocyte mitochondria through mechanisms independent of cytosol. J. Mol. Cell Cardiol. 68 (2014), 79–88.
    • (2014) J. Mol. Cell Cardiol. , vol.68 , pp. 79-88
    • Ruiz-Meana, M.1
  • 76
    • 38849201088 scopus 로고    scopus 로고
    • Mitochondrial connexin43 as a new player in the pathophysiology of myocardial ischaemia-reperfusion injury
    • 76 Ruiz-Meana, M., et al. Mitochondrial connexin43 as a new player in the pathophysiology of myocardial ischaemia-reperfusion injury. Cardiovasc. Res. 77 (2008), 325–333.
    • (2008) Cardiovasc. Res. , vol.77 , pp. 325-333
    • Ruiz-Meana, M.1
  • 77
    • 35848941299 scopus 로고    scopus 로고
    • Connexin 43 in ischemic pre- and postconditioning
    • 77 Schulz, R., et al. Connexin 43 in ischemic pre- and postconditioning. Heart Fail. Rev. 12 (2007), 261–266.
    • (2007) Heart Fail. Rev. , vol.12 , pp. 261-266
    • Schulz, R.1
  • 78
    • 84904015361 scopus 로고    scopus 로고
    • The FGF-2-triggered protection of cardiac subsarcolemmal mitochondria from calcium overload is mitochondrial connexin 43-dependent
    • 78 Srisakuldee, W., et al. The FGF-2-triggered protection of cardiac subsarcolemmal mitochondria from calcium overload is mitochondrial connexin 43-dependent. Cardiovasc. Res. 103 (2014), 72–80.
    • (2014) Cardiovasc. Res. , vol.103 , pp. 72-80
    • Srisakuldee, W.1
  • 79
    • 84929071944 scopus 로고    scopus 로고
    • Ischaemic preconditioning preferentially increases protein S-nitrosylation in subsarcolemmal mitochondria
    • 79 Sun, J., et al. Ischaemic preconditioning preferentially increases protein S-nitrosylation in subsarcolemmal mitochondria. Cardiovasc. Res. 106 (2015), 227–236.
    • (2015) Cardiovasc. Res. , vol.106 , pp. 227-236
    • Sun, J.1
  • 80
    • 84901848186 scopus 로고    scopus 로고
    • Protein kinase C (PKC) mediated interaction between conexin43 (Cx43) and K(+)(ATP) channel subunit (Kir6.1) in cardiomyocyte mitochondria: Implications in cytoprotection against hypoxia induced cell apoptosis
    • 80 Waza, A.A., et al. Protein kinase C (PKC) mediated interaction between conexin43 (Cx43) and K(+)(ATP) channel subunit (Kir6.1) in cardiomyocyte mitochondria: Implications in cytoprotection against hypoxia induced cell apoptosis. Cell Signal. 26 (2014), 1909–1917.
    • (2014) Cell Signal. , vol.26 , pp. 1909-1917
    • Waza, A.A.1
  • 81
    • 68949140963 scopus 로고    scopus 로고
    • Phosphorylation of connexin-43 at serine 262 promotes a cardiac injury-resistant state
    • 81 Srisakuldee, W., et al. Phosphorylation of connexin-43 at serine 262 promotes a cardiac injury-resistant state. Cardiovasc. Res. 83 (2009), 672–681.
    • (2009) Cardiovasc. Res. , vol.83 , pp. 672-681
    • Srisakuldee, W.1
  • 82
    • 0037281030 scopus 로고    scopus 로고
    • The carboxy-tail of connexin-43 localizes to the nucleus and inhibits cell growth
    • 82 Dang, X., et al. The carboxy-tail of connexin-43 localizes to the nucleus and inhibits cell growth. Mol. Cell Biochem. 242 (2003), 35–38.
    • (2003) Mol. Cell Biochem. , vol.242 , pp. 35-38
    • Dang, X.1
  • 83
    • 84958280049 scopus 로고    scopus 로고
    • Dynamic changes in protein interaction between AKAP95 and Cx43 during cell cycle progression of A549 cells
    • 83 Chen, X., et al. Dynamic changes in protein interaction between AKAP95 and Cx43 during cell cycle progression of A549 cells. Sci. Rep., 6, 2016, 21224.
    • (2016) Sci. Rep. , vol.6 , pp. 21224
    • Chen, X.1
  • 84
    • 48449084041 scopus 로고    scopus 로고
    • Diverse subcellular distribution profiles of pannexin 1 and pannexin 3
    • 84 Penuela, S., et al. Diverse subcellular distribution profiles of pannexin 1 and pannexin 3. Cell Commun. Adhes. 15 (2008), 133–142.
    • (2008) Cell Commun. Adhes. , vol.15 , pp. 133-142
    • Penuela, S.1
  • 85
    • 77951148608 scopus 로고    scopus 로고
    • Implications of pannexin 1 and pannexin 3 for keratinocyte differentiation
    • 85 Celetti, S.J., et al. Implications of pannexin 1 and pannexin 3 for keratinocyte differentiation. J. Cell Sci. 123 (2010), 1363–1372.
    • (2010) J. Cell Sci. , vol.123 , pp. 1363-1372
    • Celetti, S.J.1
  • 86
    • 79960212462 scopus 로고    scopus 로고
    • Pannexin 3 functions as an ER Ca(2+) channel, hemichannel, and gap junction to promote osteoblast differentiation
    • 86 Ishikawa, M., et al. Pannexin 3 functions as an ER Ca(2+) channel, hemichannel, and gap junction to promote osteoblast differentiation. J. Cell Biol. 193 (2011), 1257–1274.
    • (2011) J. Cell Biol. , vol.193 , pp. 1257-1274
    • Ishikawa, M.1
  • 87
    • 84944469243 scopus 로고    scopus 로고
    • Pannexin2 oligomers localize in the membranes of endosomal vesicles in mammalian cells while Pannexin1 channels traffic to the plasma membrane
    • 87 Boassa, D., et al. Pannexin2 oligomers localize in the membranes of endosomal vesicles in mammalian cells while Pannexin1 channels traffic to the plasma membrane. Front. Cell Neurosci., 8, 2014, 468.
    • (2014) Front. Cell Neurosci. , vol.8 , pp. 468
    • Boassa, D.1
  • 88
    • 84912524105 scopus 로고    scopus 로고
    • Pannexin 2 protein expression is not restricted to the CNS
    • 88 Le Vasseur, M., et al. Pannexin 2 protein expression is not restricted to the CNS. Front. Cell Neurosci., 8, 2014, 392.
    • (2014) Front. Cell Neurosci. , vol.8 , pp. 392
    • Le Vasseur, M.1
  • 89
    • 84964471119 scopus 로고    scopus 로고
    • The “tail” of Connexin43: an unexpected journey from alternative translation to trafficking
    • 89 Basheer, W., Shaw, R., The “tail” of Connexin43: an unexpected journey from alternative translation to trafficking. Biochim. Biophys. Acta 1863 (2016), 1848–1856.
    • (2016) Biochim. Biophys. Acta , vol.1863 , pp. 1848-1856
    • Basheer, W.1    Shaw, R.2
  • 90
    • 84934932335 scopus 로고    scopus 로고
    • Post-transcriptional regulation of connexins
    • 90 Salat-Canela, C., et al. Post-transcriptional regulation of connexins. Biochem. Soc. Trans 43 (2015), 465–470.
    • (2015) Biochem. Soc. Trans , vol.43 , pp. 465-470
    • Salat-Canela, C.1
  • 91
    • 84900565631 scopus 로고    scopus 로고
    • Internal translation of the connexin 43 transcript
    • 91 Salat-Canela, C., et al. Internal translation of the connexin 43 transcript. Cell Commun. Signal., 12, 2014, 31.
    • (2014) Cell Commun. Signal. , vol.12 , pp. 31
    • Salat-Canela, C.1
  • 92
    • 84887608899 scopus 로고    scopus 로고
    • Autoregulation of connexin43 gap junction formation by internally translated isoforms
    • 92 Smyth, J.W., Shaw, R.M., Autoregulation of connexin43 gap junction formation by internally translated isoforms. Cell Rep. 5 (2013), 611–618.
    • (2013) Cell Rep. , vol.5 , pp. 611-618
    • Smyth, J.W.1    Shaw, R.M.2
  • 93
    • 84869501605 scopus 로고    scopus 로고
    • Connexins and Cap-independent translation: role of internal ribosome entry sites
    • 93 Ul-Hussain, M., et al. Connexins and Cap-independent translation: role of internal ribosome entry sites. Brain Res. 1487 (2012), 99–106.
    • (2012) Brain Res. , vol.1487 , pp. 99-106
    • Ul-Hussain, M.1
  • 94
    • 55649092272 scopus 로고    scopus 로고
    • Characterization of the internal IRES element of the zebrafish connexin55.5 reveals functional implication of the polypyrimidine tract binding protein
    • 94 Ul-Hussain, M., et al. Characterization of the internal IRES element of the zebrafish connexin55.5 reveals functional implication of the polypyrimidine tract binding protein. BMC Mol. Biol., 9, 2008, 92.
    • (2008) BMC Mol. Biol. , vol.9 , pp. 92
    • Ul-Hussain, M.1
  • 95
    • 84905398904 scopus 로고    scopus 로고
    • Internal ribosomal entry site (IRES) activity generates endogenous carboxyl-terminal domains of Cx43 and is responsive to hypoxic conditions
    • 95 Ul-Hussain, M., et al. Internal ribosomal entry site (IRES) activity generates endogenous carboxyl-terminal domains of Cx43 and is responsive to hypoxic conditions. J. Biol. Chem. 289 (2014), 20979–20990.
    • (2014) J. Biol. Chem. , vol.289 , pp. 20979-20990
    • Ul-Hussain, M.1
  • 96
    • 46049087514 scopus 로고    scopus 로고
    • IRES-mediated translation of the carboxy-terminal domain of the horizontal cell specific connexin Cx55.5 in vivo and in vitro
    • 96 Ul-Hussain, M., et al. IRES-mediated translation of the carboxy-terminal domain of the horizontal cell specific connexin Cx55.5 in vivo and in vitro. BMC Mol. Biol., 9, 2008, 52.
    • (2008) BMC Mol. Biol. , vol.9 , pp. 52
    • Ul-Hussain, M.1
  • 97
    • 34547653650 scopus 로고    scopus 로고
    • Evidence for the presence of a free C-terminal fragment of cx43 in cultured cells
    • 97 Joshi-Mukherjee, R., et al. Evidence for the presence of a free C-terminal fragment of cx43 in cultured cells. Cell Commun. Adhes. 14 (2007), 75–84.
    • (2007) Cell Commun. Adhes. , vol.14 , pp. 75-84
    • Joshi-Mukherjee, R.1
  • 98
    • 84928893620 scopus 로고    scopus 로고
    • The carboxyl tail of connexin32 regulates gap junction assembly in human prostate and pancreatic cancer cells
    • 98 Katoch, P., et al. The carboxyl tail of connexin32 regulates gap junction assembly in human prostate and pancreatic cancer cells. J. Biol. Chem. 290 (2015), 4647–4662.
    • (2015) J. Biol. Chem. , vol.290 , pp. 4647-4662
    • Katoch, P.1
  • 99
    • 0347126477 scopus 로고    scopus 로고
    • A carboxyl terminal domain of connexin43 is critical for gap junction plaque formation but not for homo- or hetero-oligomerization
    • 99 Martinez, A.D., et al. A carboxyl terminal domain of connexin43 is critical for gap junction plaque formation but not for homo- or hetero-oligomerization. Cell Commun. Adhes. 10 (2003), 323–328.
    • (2003) Cell Commun. Adhes. , vol.10 , pp. 323-328
    • Martinez, A.D.1
  • 100
    • 84928253795 scopus 로고    scopus 로고
    • Targeting connexin 43 with alpha-connexin carboxyl-terminal (ACT1) peptide enhances the activity of the targeted inhibitors, tamoxifen and lapatinib, in breast cancer: clinical implication for ACT1
    • 100 Grek, C.L., et al. Targeting connexin 43 with alpha-connexin carboxyl-terminal (ACT1) peptide enhances the activity of the targeted inhibitors, tamoxifen and lapatinib, in breast cancer: clinical implication for ACT1. BMC Cancer, 15, 2015, 296.
    • (2015) BMC Cancer , vol.15 , pp. 296
    • Grek, C.L.1
  • 101
    • 0029781699 scopus 로고    scopus 로고
    • pH regulation of connexin43: molecular analysis of the gating particle
    • 101 Ek-Vitorin, J.F., et al. pH regulation of connexin43: molecular analysis of the gating particle. Biophys. J. 71 (1996), 1273–1284.
    • (1996) Biophys. J. , vol.71 , pp. 1273-1284
    • Ek-Vitorin, J.F.1
  • 102
    • 0030050142 scopus 로고    scopus 로고
    • Intramolecular interactions mediate pH regulation of connexin43 channels
    • 102 Morley, G.E., et al. Intramolecular interactions mediate pH regulation of connexin43 channels. Biophys. J. 70 (1996), 1294–1302.
    • (1996) Biophys. J. , vol.70 , pp. 1294-1302
    • Morley, G.E.1
  • 103
    • 0023141815 scopus 로고
    • The cardiac gap junction protein (Mr 47,000) has a tissue-specific cytoplasmic domain of Mr 17,000 at its carboxy-terminus
    • 103 Manjunath, C.K., et al. The cardiac gap junction protein (Mr 47,000) has a tissue-specific cytoplasmic domain of Mr 17,000 at its carboxy-terminus. Biochem. Biophys. Res. Commun. 142 (1987), 228–234.
    • (1987) Biochem. Biophys. Res. Commun. , vol.142 , pp. 228-234
    • Manjunath, C.K.1
  • 104
    • 59649088329 scopus 로고    scopus 로고
    • Pharmacological characterization of pannexin-1 currents expressed in mammalian cells
    • 104 Ma, W., et al. Pharmacological characterization of pannexin-1 currents expressed in mammalian cells. J. Pharmacol. Exp. Ther. 328 (2009), 409–418.
    • (2009) J. Pharmacol. Exp. Ther. , vol.328 , pp. 409-418
    • Ma, W.1
  • 105
    • 80054112857 scopus 로고    scopus 로고
    • Characterization of novel Pannexin 1 isoforms from rat pituitary cells and their association with ATP-gated P2X channels
    • 105 Li, S., et al. Characterization of novel Pannexin 1 isoforms from rat pituitary cells and their association with ATP-gated P2X channels. Gen. Comp. Endocrinol. 174 (2011), 202–210.
    • (2011) Gen. Comp. Endocrinol. , vol.174 , pp. 202-210
    • Li, S.1
  • 106
    • 77955570389 scopus 로고    scopus 로고
    • Gap junctions in inherited human disease
    • 106 Zoidl, G., Dermietzel, R., Gap junctions in inherited human disease. Pflugers Arch. 460 (2010), 451–466.
    • (2010) Pflugers Arch. , vol.460 , pp. 451-466
    • Zoidl, G.1    Dermietzel, R.2
  • 107
    • 84945966507 scopus 로고    scopus 로고
    • Manipulating Cx43 expression triggers gene reprogramming events in dermal fibroblasts from oculodentodigital dysplasia patients
    • 107 Esseltine, J.L., et al. Manipulating Cx43 expression triggers gene reprogramming events in dermal fibroblasts from oculodentodigital dysplasia patients. Biochem. J. 472 (2015), 55–69.
    • (2015) Biochem. J. , vol.472 , pp. 55-69
    • Esseltine, J.L.1
  • 108
    • 66749106316 scopus 로고    scopus 로고
    • GJA1 mutations, variants, and connexin 43 dysfunction as it relates to the oculodentodigital dysplasia phenotype
    • 108 Paznekas, W.A., et al. GJA1 mutations, variants, and connexin 43 dysfunction as it relates to the oculodentodigital dysplasia phenotype. Hum. Mutat. 30 (2009), 724–733.
    • (2009) Hum. Mutat. , vol.30 , pp. 724-733
    • Paznekas, W.A.1
  • 109
    • 84859897711 scopus 로고    scopus 로고
    • Cardiac connexins, mutations and arrhythmias
    • 109 Delmar, M., Makita, N., Cardiac connexins, mutations and arrhythmias. Curr. Opin. Cardiol. 27 (2012), 236–241.
    • (2012) Curr. Opin. Cardiol. , vol.27 , pp. 236-241
    • Delmar, M.1    Makita, N.2
  • 110
    • 0037320927 scopus 로고    scopus 로고
    • Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia
    • 110 Paznekas, W.A., et al. Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia. Am. J. Hum. Genet. 72 (2003), 408–418.
    • (2003) Am. J. Hum. Genet. , vol.72 , pp. 408-418
    • Paznekas, W.A.1
  • 111
    • 84929660440 scopus 로고    scopus 로고
    • Connexins, gap junctions and peripheral neuropathy
    • 111 Kleopa, K.A., Sargiannidou, I., Connexins, gap junctions and peripheral neuropathy. Neurosci. Lett. 596 (2015), 27–32.
    • (2015) Neurosci. Lett. , vol.596 , pp. 27-32
    • Kleopa, K.A.1    Sargiannidou, I.2
  • 112
    • 84959252696 scopus 로고    scopus 로고
    • Connexin channels in congenital skin disorders
    • 112 Lilly, E., et al. Connexin channels in congenital skin disorders. Semin. Cell Dev. Biol. 50 (2016), 4–12.
    • (2016) Semin. Cell Dev. Biol. , vol.50 , pp. 4-12
    • Lilly, E.1
  • 113
    • 84930631869 scopus 로고    scopus 로고
    • Cellular and deafness mechanisms underlying connexin mutation-induced hearing loss – a common hereditary deafness
    • 113 Wingard, J.C., Zhao, H.B., Cellular and deafness mechanisms underlying connexin mutation-induced hearing loss – a common hereditary deafness. Front. Cell Neurosci., 9, 2015, 202.
    • (2015) Front. Cell Neurosci. , vol.9 , pp. 202
    • Wingard, J.C.1    Zhao, H.B.2
  • 114
    • 84892902885 scopus 로고    scopus 로고
    • GJB2-associated hearing loss: systematic review of worldwide prevalence, genotype, and auditory phenotype
    • 114 Chan, D.K., Chang, K.W., GJB2-associated hearing loss: systematic review of worldwide prevalence, genotype, and auditory phenotype. Laryngoscope 124 (2014), E34–E53.
    • (2014) Laryngoscope , vol.124 , pp. E34-E53
    • Chan, D.K.1    Chang, K.W.2
  • 115
    • 62849118980 scopus 로고    scopus 로고
    • Phenotypic variability of patients homozygous for the GJB2 mutation 35delG cannot be explained by the influence of one major modifier gene
    • 115 Hilgert, N., et al. Phenotypic variability of patients homozygous for the GJB2 mutation 35delG cannot be explained by the influence of one major modifier gene. Eur. J. Hum. Genet. 17 (2009), 517–524.
    • (2009) Eur. J. Hum. Genet. , vol.17 , pp. 517-524
    • Hilgert, N.1
  • 116
    • 0036654536 scopus 로고    scopus 로고
    • GJB2 (connexin 26) variants and nonsyndromic sensorineural hearing loss: a HuGE review
    • 116 Kenneson, A., et al. GJB2 (connexin 26) variants and nonsyndromic sensorineural hearing loss: a HuGE review. Genet. Med. 4 (2002), 258–274.
    • (2002) Genet. Med. , vol.4 , pp. 258-274
    • Kenneson, A.1
  • 117
    • 70350502856 scopus 로고    scopus 로고
    • Statistical study of 35delG mutation of GJB2 gene: a meta-analysis of carrier frequency
    • 117 Mahdieh, N., Rabbani, B., Statistical study of 35delG mutation of GJB2 gene: a meta-analysis of carrier frequency. Int. J. Audiol. 48 (2009), 363–370.
    • (2009) Int. J. Audiol. , vol.48 , pp. 363-370
    • Mahdieh, N.1    Rabbani, B.2
  • 118
    • 65849522497 scopus 로고    scopus 로고
    • Cystic fibrosis
    • 118 O'Sullivan, B.P., Freedman, S.D., Cystic fibrosis. Lancet 373 (2009), 1891–1904.
    • (2009) Lancet , vol.373 , pp. 1891-1904
    • O'Sullivan, B.P.1    Freedman, S.D.2
  • 119
    • 84974530680 scopus 로고    scopus 로고
    • A germline variant in PANX1 has reduced channel function and is associated with multisystem dysfunction
    • 119 Shao, Q., et al. A germline variant in PANX1 has reduced channel function and is associated with multisystem dysfunction. J. Biol. Chem. 291 (2016), 12432–12443.
    • (2016) J. Biol. Chem. , vol.291 , pp. 12432-12443
    • Shao, Q.1
  • 120
    • 84959199404 scopus 로고    scopus 로고
    • Translating connexin biology into therapeutics
    • 120 Becker, D.L., et al. Translating connexin biology into therapeutics. Semin. Cell Dev. Biol. 50 (2016), 49–58.
    • (2016) Semin. Cell Dev. Biol. , vol.50 , pp. 49-58
    • Becker, D.L.1
  • 121
    • 84939486737 scopus 로고    scopus 로고
    • Pannexin-1 channels and their emerging functions in cardiovascular diseases
    • 121 Li, L., et al. Pannexin-1 channels and their emerging functions in cardiovascular diseases. Acta Biochim. Biophys. Sin. (Shanghai) 47 (2015), 391–396.
    • (2015) Acta Biochim. Biophys. Sin. (Shanghai) , vol.47 , pp. 391-396
    • Li, L.1
  • 122
    • 84959078246 scopus 로고    scopus 로고
    • Metabotropic NMDA receptor signaling couples Src family kinases to pannexin-1 during excitotoxicity
    • 122 Weilinger, N.L., et al. Metabotropic NMDA receptor signaling couples Src family kinases to pannexin-1 during excitotoxicity. Nat. Neurosci. 19 (2016), 432–442.
    • (2016) Nat. Neurosci. , vol.19 , pp. 432-442
    • Weilinger, N.L.1
  • 123
    • 84923093408 scopus 로고    scopus 로고
    • A molecular signature in the pannexin1 intracellular loop confers channel activation by the alpha1 adrenoreceptor in smooth muscle cells
    • 123 Billaud, M., et al. A molecular signature in the pannexin1 intracellular loop confers channel activation by the alpha1 adrenoreceptor in smooth muscle cells. Sci. Signal., 8, 2015, ra17.
    • (2015) Sci. Signal. , vol.8 , pp. ra17
    • Billaud, M.1
  • 124
    • 84938931625 scopus 로고    scopus 로고
    • Pannexin 1 channels regulate leukocyte emigration through the venous endothelium during acute inflammation
    • 124 Lohman, A.W., et al. Pannexin 1 channels regulate leukocyte emigration through the venous endothelium during acute inflammation. Nat. Commun., 6, 2015, 7965.
    • (2015) Nat. Commun. , vol.6 , pp. 7965
    • Lohman, A.W.1
  • 125
    • 84932640293 scopus 로고    scopus 로고
    • Novel insights into osteoarthritis joint pathology from studies in mice
    • 125 Moon, P.M., Beier, F., Novel insights into osteoarthritis joint pathology from studies in mice. Curr. Rheumatol. Rep., 17, 2015, 50.
    • (2015) Curr. Rheumatol. Rep. , vol.17 , pp. 50
    • Moon, P.M.1    Beier, F.2
  • 126
    • 84937975694 scopus 로고    scopus 로고
    • Deletion of Panx3 prevents the development of surgically induced osteoarthritis
    • 126 Moon, P.M., et al. Deletion of Panx3 prevents the development of surgically induced osteoarthritis. J. Mol. Med. (Berl) 93 (2015), 845–856.
    • (2015) J. Mol. Med. (Berl) , vol.93 , pp. 845-856
    • Moon, P.M.1
  • 127
    • 84880227000 scopus 로고    scopus 로고
    • Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells
    • 127 Lundy, S.D., et al. Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cells Dev. 22 (2013), 1991–2002.
    • (2013) Stem Cells Dev. , vol.22 , pp. 1991-2002
    • Lundy, S.D.1
  • 128
    • 84877883437 scopus 로고    scopus 로고
    • Connexin 43 is involved in the generation of human-induced pluripotent stem cells
    • 128 Ke, Q., et al. Connexin 43 is involved in the generation of human-induced pluripotent stem cells. Hum. Mol. Genet. 22 (2013), 2221–2233.
    • (2013) Hum. Mol. Genet. , vol.22 , pp. 2221-2233
    • Ke, Q.1
  • 129
    • 84881576252 scopus 로고    scopus 로고
    • Connexin expression and gap-junctional intercellular communication in ES cells and iPS cells
    • 129 Oyamada, M., et al. Connexin expression and gap-junctional intercellular communication in ES cells and iPS cells. Front. Pharmacol., 4, 2013, 85.
    • (2013) Front. Pharmacol. , vol.4 , pp. 85
    • Oyamada, M.1
  • 130
    • 84866235162 scopus 로고    scopus 로고
    • De novo reestablishment of gap junctional intercellular communications during reprogramming to pluripotency and differentiation
    • 130 Sharovskaya, Y.Y., et al. De novo reestablishment of gap junctional intercellular communications during reprogramming to pluripotency and differentiation. Stem Cells Dev. 21 (2012), 2623–2629.
    • (2012) Stem Cells Dev. , vol.21 , pp. 2623-2629
    • Sharovskaya, Y.Y.1
  • 131
    • 37349002749 scopus 로고    scopus 로고
    • Gap junctional intercellular communication is required to maintain embryonic stem cells in a non-differentiated and proliferative state
    • 131 Todorova, M.G., et al. Gap junctional intercellular communication is required to maintain embryonic stem cells in a non-differentiated and proliferative state. J. Cell Physiol. 214 (2008), 354–362.
    • (2008) J. Cell Physiol. , vol.214 , pp. 354-362
    • Todorova, M.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.