메뉴 건너뛰기




Volumn 13, Issue , 2015, Pages 8-17

Machine learning applications in cancer prognosis and prediction

Author keywords

Cancer recurrence; Cancer survival; Cancer susceptibility; Machine learning; Predictive models

Indexed keywords

CANCER DIAGNOSIS; CANCER GROWTH; CANCER PROGNOSIS; CANCER RECURRENCE; CANCER RESEARCH; CANCER RISK; CANCER SURVIVAL; CANCER SUSCEPTIBILITY; HUMAN; MACHINE LEARNING; MALIGNANT NEOPLASTIC DISEASE; OUTCOME ASSESSMENT; PREDICTION; PRIORITY JOURNAL; REVIEW;

EID: 84942612935     PISSN: None     EISSN: 20010370     Source Type: Journal    
DOI: 10.1016/j.csbj.2014.11.005     Document Type: Review
Times cited : (2370)

References (71)
  • 1
    • 79952284127 scopus 로고    scopus 로고
    • Hallmarks of cancer: The next generation
    • D. Hanahan, and R.A. Weinberg Hallmarks of cancer: the next generation Cell 144 2011 646 674
    • (2011) Cell , vol.144 , pp. 646-674
    • Hanahan, D.1    Weinberg, R.A.2
  • 3
    • 33744961676 scopus 로고    scopus 로고
    • Applications of machine learning in cancer prediction and prognosis
    • J.A. Cruz, and D.S. Wishart Applications of machine learning in cancer prediction and prognosis Cancer Informat 2 2006 59
    • (2006) Cancer Informat , vol.2 , pp. 59
    • Cruz, J.A.1    Wishart, D.S.2
  • 4
    • 84896920819 scopus 로고    scopus 로고
    • Assessment of circulating microRNAs in plasma of lung cancer patients
    • O. Fortunato, M. Boeri, C. Verri, D. Conte, M. Mensah, P. Suatoni, and et al. Assessment of circulating microRNAs in plasma of lung cancer patients Molecules 19 2014 3038 3054
    • (2014) Molecules , vol.19 , pp. 3038-3054
    • Fortunato, O.1    Boeri, M.2    Verri, C.3    Conte, D.4    Mensah, M.5    Suatoni, P.6
  • 5
    • 77956652041 scopus 로고    scopus 로고
    • MiRNAs as biomarkers and therapeutic targets in cancer
    • H.M. Heneghan, N. Miller, and M.J. Kerin MiRNAs as biomarkers and therapeutic targets in cancer Curr Opin Pharmacol 10 2010 543 550
    • (2010) Curr Opin Pharmacol , vol.10 , pp. 543-550
    • Heneghan, H.M.1    Miller, N.2    Kerin, M.J.3
  • 6
    • 84883525890 scopus 로고    scopus 로고
    • Cancer diagnosis and prognosis decoded by blood-based circulating microRNA signatures
    • D. Madhavan, K. Cuk, B. Burwinkel, and R. Yang Cancer diagnosis and prognosis decoded by blood-based circulating microRNA signatures Front Genet 4 2013
    • (2013) Front Genet , vol.4
    • Madhavan, D.1    Cuk, K.2    Burwinkel, B.3    Yang, R.4
  • 7
    • 84863259319 scopus 로고    scopus 로고
    • Circulating microRNAs: A novel class of biomarkers to diagnose and monitor human cancers
    • K. Zen, and C.Y. Zhang Circulating microRNAs: a novel class of biomarkers to diagnose and monitor human cancers Med Res Rev 32 2012 326 348
    • (2012) Med Res Rev , vol.32 , pp. 326-348
    • Zen, K.1    Zhang, C.Y.2
  • 8
    • 77953004083 scopus 로고    scopus 로고
    • Why most gene expression signatures of tumors have not been useful in the clinic
    • 14 ps12-14 ps12
    • S. Koscielny Why most gene expression signatures of tumors have not been useful in the clinic Sci Transl Med 2 2010 [14 ps12-14 ps12]
    • (2010) Sci Transl Med , vol.2
    • Koscielny, S.1
  • 9
    • 13444249852 scopus 로고    scopus 로고
    • Prediction of cancer outcome with microarrays: A multiple random validation strategy
    • S. Michiels, S. Koscielny, and C. Hill Prediction of cancer outcome with microarrays: a multiple random validation strategy Lancet 365 2005 488 492
    • (2005) Lancet , vol.365 , pp. 488-492
    • Michiels, S.1    Koscielny, S.2    Hill, C.3
  • 13
    • 85137487254 scopus 로고    scopus 로고
    • Introduction to computational intelligence techniques and areas of their applications in medicine
    • A. Niknejad, and D. Petrovic Introduction to computational intelligence techniques and areas of their applications in medicine Med Appl Artif Intell 51 2013
    • (2013) Med Appl Artif Intell , vol.51
    • Niknejad, A.1    Petrovic, D.2
  • 15
    • 79952687473 scopus 로고    scopus 로고
    • Do two machine-learning based prognostic signatures for breast cancer capture the same biological processes?
    • Y. Drier, and E. Domany Do two machine-learning based prognostic signatures for breast cancer capture the same biological processes? PLoS One 6 2011 e17795
    • (2011) PLoS One , vol.6
    • Drier, Y.1    Domany, E.2
  • 16
    • 33846978784 scopus 로고    scopus 로고
    • Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting
    • A. Dupuy, and R.M. Simon Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting J Natl Cancer Inst 99 2007 147 157
    • (2007) J Natl Cancer Inst , vol.99 , pp. 147-157
    • Dupuy, A.1    Simon, R.M.2
  • 17
    • 13444282534 scopus 로고    scopus 로고
    • Outcome signature genes in breast cancer: Is there a unique set?
    • L. Ein-Dor, I. Kela, G. Getz, D. Givol, and E. Domany Outcome signature genes in breast cancer: is there a unique set? Bioinformatics 21 2005 171 178
    • (2005) Bioinformatics , vol.21 , pp. 171-178
    • Ein-Dor, L.1    Kela, I.2    Getz, G.3    Givol, D.4    Domany, E.5
  • 18
    • 33645825183 scopus 로고    scopus 로고
    • Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer
    • L. Ein-Dor, O. Zuk, and E. Domany Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer Proc Natl Acad Sci 103 2006 5923 5928
    • (2006) Proc Natl Acad Sci , vol.103 , pp. 5923-5928
    • Ein-Dor, L.1    Zuk, O.2    Domany, E.3
  • 19
    • 77954928071 scopus 로고    scopus 로고
    • Breast cancer risk estimation with artificial neural networks revisited
    • T. Ayer, O. Alagoz, J. Chhatwal, J.W. Shavlik, C.E. Kahn, and E.S. Burnside Breast cancer risk estimation with artificial neural networks revisited Cancer 116 2010 3310 3321
    • (2010) Cancer , vol.116 , pp. 3310-3321
    • Ayer, T.1    Alagoz, O.2    Chhatwal, J.3    Shavlik, J.W.4    Kahn, C.E.5    Burnside, E.S.6
  • 22
    • 0026604375 scopus 로고
    • Neural networks and diagnosis in the clinical laboratory: State of the art
    • D. Cicchetti Neural networks and diagnosis in the clinical laboratory: state of the art Clin Chem 38 1992 9 10
    • (1992) Clin Chem , vol.38 , pp. 9-10
    • Cicchetti, D.1
  • 23
    • 0031158062 scopus 로고    scopus 로고
    • Prediction of outcome for patients with cutaneous melanoma
    • A.J. Cochran Prediction of outcome for patients with cutaneous melanoma Pigment Cell Res 10 1997 162 167
    • (1997) Pigment Cell Res , vol.10 , pp. 162-167
    • Cochran, A.J.1
  • 24
    • 84870869328 scopus 로고    scopus 로고
    • Multiparametric decision support system for the prediction of oral cancer reoccurrence
    • K.P. Exarchos, Y. Goletsis, and D.I. Fotiadis Multiparametric decision support system for the prediction of oral cancer reoccurrence IEEE Trans Inf Technol Biomed 16 2012 1127 1134
    • (2012) IEEE Trans Inf Technol Biomed , vol.16 , pp. 1127-1134
    • Exarchos, K.P.1    Goletsis, Y.2    Fotiadis, D.I.3
  • 25
    • 0034922742 scopus 로고    scopus 로고
    • Machine learning for medical diagnosis: History, state of the art and perspective
    • I. Kononenko Machine learning for medical diagnosis: history, state of the art and perspective Artif Intell Med 23 2001 89 109
    • (2001) Artif Intell Med , vol.23 , pp. 89-109
    • Kononenko, I.1
  • 26
    • 84888389162 scopus 로고    scopus 로고
    • Robust predictive model for evaluating breast cancer survivability
    • K. Park, A. Ali, D. Kim, Y. An, M. Kim, and H. Shin Robust predictive model for evaluating breast cancer survivability Engl Appl Artif Intell 26 2013 2194 2205
    • (2013) Engl Appl Artif Intell , vol.26 , pp. 2194-2205
    • Park, K.1    Ali, A.2    Kim, D.3    An, Y.4    Kim, M.5    Shin, H.6
  • 27
    • 33845881963 scopus 로고    scopus 로고
    • Improved breast cancer prognosis through the combination of clinical and genetic markers
    • Y. Sun, S. Goodison, J. Li, L. Liu, and W. Farmerie Improved breast cancer prognosis through the combination of clinical and genetic markers Bioinformatics 23 2007 30 37
    • (2007) Bioinformatics , vol.23 , pp. 30-37
    • Sun, Y.1    Goodison, S.2    Li, J.3    Liu, L.4    Farmerie, W.5
  • 28
    • 0030743761 scopus 로고    scopus 로고
    • Artificial neural networks applied to outcome prediction for colorectal cancer patients in separate institutions
    • L. Bottaci, P.J. Drew, J.E. Hartley, M.B. Hadfield, R. Farouk, P.WR. Lee, and et al. Artificial neural networks applied to outcome prediction for colorectal cancer patients in separate institutions Lancet 350 1997 469 472
    • (1997) Lancet , vol.350 , pp. 469-472
    • Bottaci, L.1    Drew, P.J.2    Hartley, J.E.3    Hadfield, M.B.4    Farouk, R.5    Lee, P.W.R.6
  • 30
    • 0021914514 scopus 로고
    • Treatment selection for cancer patients: Application of statistical decision theory to the treatment of advanced ovarian cancer
    • R.J. Simes Treatment selection for cancer patients: application of statistical decision theory to the treatment of advanced ovarian cancer J Chronic Dis 38 1985 171 186
    • (1985) J Chronic Dis , vol.38 , pp. 171-186
    • Simes, R.J.1
  • 31
    • 56349089940 scopus 로고    scopus 로고
    • Support vector machines combined with feature selection for breast cancer diagnosis
    • M.F. Akay Support vector machines combined with feature selection for breast cancer diagnosis Expert Syst Appl 36 2009 3240 3247
    • (2009) Expert Syst Appl , vol.36 , pp. 3240-3247
    • Akay, M.F.1
  • 32
    • 84878374114 scopus 로고    scopus 로고
    • Oral cancer prognosis based on clinicopathologic and genomic markers using a hybrid of feature selection and machine learning methods
    • S.-W. Chang, S. Abdul-Kareem, A.F. Merican, and R.B. Zain Oral cancer prognosis based on clinicopathologic and genomic markers using a hybrid of feature selection and machine learning methods BMC Bioinforma 14 2013 170
    • (2013) BMC Bioinforma , vol.14 , pp. 170
    • Chang, S.-W.1    Abdul-Kareem, S.2    Merican, A.F.3    Zain, R.B.4
  • 35
    • 84869866634 scopus 로고    scopus 로고
    • A multiscale and multiparametric approach for modeling the progression of oral cancer
    • K.P. Exarchos, Y. Goletsis, and D.I. Fotiadis A multiscale and multiparametric approach for modeling the progression of oral cancer BMC Med Inform Decis Mak 12 2012 136
    • (2012) BMC Med Inform Decis Mak , vol.12 , pp. 136
    • Exarchos, K.P.1    Goletsis, Y.2    Fotiadis, D.I.3
  • 36
    • 84882786709 scopus 로고    scopus 로고
    • Breast cancer survivability prediction using labeled, unlabeled, and pseudo-labeled patient data
    • J. Kim, and H. Shin Breast cancer survivability prediction using labeled, unlabeled, and pseudo-labeled patient data J Am Med Inform Assoc 20 2013 613 618
    • (2013) J Am Med Inform Assoc , vol.20 , pp. 613-618
    • Kim, J.1    Shin, H.2
  • 37
    • 0026668490 scopus 로고
    • The future of prognostic factors in outcome prediction for patients with cancer
    • L.P. Fielding, C.M. Fenoglio-Preiser, and L.S. Freedman The future of prognostic factors in outcome prediction for patients with cancer Cancer 70 1992 2367 2377
    • (1992) Cancer , vol.70 , pp. 2367-2377
    • Fielding, L.P.1    Fenoglio-Preiser, C.M.2    Freedman, L.S.3
  • 41
    • 84876394716 scopus 로고    scopus 로고
    • EllipsoidFN: A tool for identifying a heterogeneous set of cancer biomarkers based on gene expressions
    • X. Ren, Y. Wang, L. Chen, X.-S. Zhang, and Q. Jin ellipsoidFN: a tool for identifying a heterogeneous set of cancer biomarkers based on gene expressions Nucleic Acids Res 41 2013 e53
    • (2013) Nucleic Acids Res , vol.41 , pp. e53
    • Ren, X.1    Wang, Y.2    Chen, L.3    Zhang, X.-S.4    Jin, Q.5
  • 42
    • 84881484048 scopus 로고    scopus 로고
    • IPcc: A novel feature extraction method for accurate disease class discovery and prediction
    • X. Ren, Y. Wang, X.-S. Zhang, and Q. Jin iPcc: a novel feature extraction method for accurate disease class discovery and prediction Nucleic Acids Res 2013 gkt343
    • (2013) Nucleic Acids Res , pp. gkt343
    • Ren, X.1    Wang, Y.2    Zhang, X.-S.3    Jin, Q.4
  • 43
    • 84863104938 scopus 로고    scopus 로고
    • Revealing metabolite biomarkers for acupuncture treatment by linear programming based feature selection
    • Y. Wang, Q.-F. Wu, C. Chen, L.-Y. Wu, X.-Z. Yan, S.-G. Yu, and et al. Revealing metabolite biomarkers for acupuncture treatment by linear programming based feature selection BMC Syst Biol 6 2012 S15
    • (2012) BMC Syst Biol , vol.6 , pp. S15
    • Wang, Y.1    Wu, Q.-F.2    Chen, C.3    Wu, L.-Y.4    Yan, X.-Z.5    Yu, S.-G.6
  • 44
    • 84880442608 scopus 로고    scopus 로고
    • Predicting cancer susceptibility from single-nucleotide polymorphism data: A case study in multiple myeloma
    • M. Waddell, D. Page, and J. Shaughnessy Jr. Predicting cancer susceptibility from single-nucleotide polymorphism data: a case study in multiple myeloma ACM 2005 21 28
    • (2005) ACM , pp. 21-28
    • Waddell, M.1    Page, D.2    Shaughnessy, J.3
  • 45
    • 11144355509 scopus 로고    scopus 로고
    • Predictive models for breast cancer susceptibility from multiple single nucleotide polymorphisms
    • J. Listgarten, S. Damaraju, B. Poulin, L. Cook, J. Dufour, A. Driga, and et al. Predictive models for breast cancer susceptibility from multiple single nucleotide polymorphisms Clin Cancer Res 10 2004 2725 2737
    • (2004) Clin Cancer Res , vol.10 , pp. 2725-2737
    • Listgarten, J.1    Damaraju, S.2    Poulin, B.3    Cook, L.4    Dufour, J.5    Driga, A.6
  • 46
    • 79952407655 scopus 로고    scopus 로고
    • Development of a Bayesian belief network model for personalized prognostic risk assessment in colon carcinomatosis
    • A. Stojadinovic, A. Nissan, J. Eberhardt, T.C. Chua, J.O.W Pelz, and J. Esquivel Development of a Bayesian belief network model for personalized prognostic risk assessment in colon carcinomatosis Am Surg 77 2011 221 230
    • (2011) Am Surg , vol.77 , pp. 221-230
    • Stojadinovic, A.1    Nissan, A.2    Eberhardt, J.3    Chua, T.C.4    Pelz, J.O.W.5    Esquivel, J.6
  • 47
    • 84865143565 scopus 로고    scopus 로고
    • Development of novel breast cancer recurrence prediction model using support vector machine
    • W. Kim, K.S. Kim, J.E. Lee, D.-Y. Noh, S.-W. Kim, Y.S. Jung, and et al. Development of novel breast cancer recurrence prediction model using support vector machine J Breast Cancer 15 2012 230 238
    • (2012) J Breast Cancer , vol.15 , pp. 230-238
    • Kim, W.1    Kim, K.S.2    Lee, J.E.3    Noh, D.-Y.4    Kim, S.-W.5    Jung, Y.S.6
  • 48
    • 84900305562 scopus 로고    scopus 로고
    • Integrative gene network construction to analyze cancer recurrence using semi-supervised learning
    • C. Park, J. Ahn, H. Kim, and S. Park Integrative gene network construction to analyze cancer recurrence using semi-supervised learning PLoS One 9 2014 e86309
    • (2014) PLoS One , vol.9
    • Park, C.1    Ahn, J.2    Kim, H.3    Park, S.4
  • 49
    • 84898006454 scopus 로고    scopus 로고
    • Application of machine learning to predict the recurrence-proneness for cervical cancer
    • C.-J. Tseng, C.-J. Lu, C.-C. Chang, and G.-D. Chen Application of machine learning to predict the recurrence-proneness for cervical cancer Neural Comput & Applic 24 2014 1311 1316
    • (2014) Neural Comput & Applic , vol.24 , pp. 1311-1316
    • Tseng, C.-J.1    Lu, C.-J.2    Chang, C.-C.3    Chen, G.-D.4
  • 50
    • 84896347638 scopus 로고    scopus 로고
    • Risk classification of cancer survival using ANN with gene expression data from multiple laboratories
    • Y.-C. Chen, W.-C. Ke, and H.-W. Chiu Risk classification of cancer survival using ANN with gene expression data from multiple laboratories Comput Biol Med 48 2014 1 7
    • (2014) Comput Biol Med , vol.48 , pp. 1-7
    • Chen, Y.-C.1    Ke, W.-C.2    Chiu, H.-W.3
  • 51
    • 84886377492 scopus 로고    scopus 로고
    • A gene signature for breast cancer prognosis using support vector machine
    • X. Xu, Y. Zhang, L. Zou, M. Wang, and A. Li A gene signature for breast cancer prognosis using support vector machine IEEE 2012 928 931
    • (2012) IEEE , pp. 928-931
    • Xu, X.1    Zhang, Y.2    Zou, L.3    Wang, M.4    Li, A.5
  • 52
    • 33747891871 scopus 로고    scopus 로고
    • Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks
    • O. Gevaert, F. De Smet, D. Timmerman, Y. Moreau, and B. De Moor Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks Bioinformatics 22 2006 e184 e190
    • (2006) Bioinformatics , vol.22 , pp. e184-e190
    • Gevaert, O.1    De Smet, F.2    Timmerman, D.3    Moreau, Y.4    De Moor, B.5
  • 53
    • 84885039741 scopus 로고    scopus 로고
    • Survival model in oral squamous cell carcinoma based on clinicopathological parameters, molecular markers and support vector machines
    • P. Rosado, P. Lequerica-Fernández, L. Villallaín, I. Peña, F. Sanchez-Lasheras, and J.C. de Vicente Survival model in oral squamous cell carcinoma based on clinicopathological parameters, molecular markers and support vector machines Expert Syst Appl 40 2013 4770 4776
    • (2013) Expert Syst Appl , vol.40 , pp. 4770-4776
    • Rosado, P.1    Lequerica-Fernández, P.2    Villallaín, L.3    Peña, I.4    Sanchez-Lasheras, F.5    De Vicente, J.C.6
  • 54
    • 19344364327 scopus 로고    scopus 로고
    • Predicting breast cancer survivability: A comparison of three data mining methods
    • D. Delen, G. Walker, and A. Kadam Predicting breast cancer survivability: a comparison of three data mining methods Artif Intell Med 34 2005 113 127
    • (2005) Artif Intell Med , vol.34 , pp. 113-127
    • Delen, D.1    Walker, G.2    Kadam, A.3
  • 55
    • 84882384758 scopus 로고    scopus 로고
    • Role of genetic heterogeneity and epistasis in bladder cancer susceptibility and outcome: A learning classifier system approach
    • R.J. Urbanowicz, A.S. Andrew, M.R. Karagas, and J.H. Moore Role of genetic heterogeneity and epistasis in bladder cancer susceptibility and outcome: a learning classifier system approach J Am Med Inform Assoc 20 2013 603 612
    • (2013) J Am Med Inform Assoc , vol.20 , pp. 603-612
    • Urbanowicz, R.J.1    Andrew, A.S.2    Karagas, M.R.3    Moore, J.H.4
  • 56
    • 84898627404 scopus 로고    scopus 로고
    • Integrating domain knowledge in supervised machine learning to assess the risk of breast cancer
    • A. Bochare, A. Gangopadhyay, Y. Yesha, A. Joshi, Y. Yesha, M. Brady, and et al. Integrating domain knowledge in supervised machine learning to assess the risk of breast cancer Int J Med Eng Inform 6 2014 87 99
    • (2014) Int J Med Eng Inform , vol.6 , pp. 87-99
    • Bochare, A.1    Gangopadhyay, A.2    Yesha, Y.3    Joshi, A.4    Yesha, Y.5    Brady, M.6
  • 57
    • 77955736694 scopus 로고    scopus 로고
    • A support vector machine for decision support in melanoma recognition
    • S. Gilmore, R. Hofmann-Wellenhof, and H.P. Soyer A support vector machine for decision support in melanoma recognition Exp Dermatol 19 2010 830 835
    • (2010) Exp Dermatol , vol.19 , pp. 830-835
    • Gilmore, S.1    Hofmann-Wellenhof, R.2    Soyer, H.P.3
  • 60
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi, and G.H. John Wrappers for feature subset selection Artif Intell 97 1997 273 324
    • (1997) Artif Intell , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 63
    • 75249101080 scopus 로고    scopus 로고
    • Evaluation of linguistic features useful in extraction of interactions from PubMed; Application to annotating known, high-throughput and predicted interactions in I2D
    • Y. Niu, D. Otasek, and I. Jurisica Evaluation of linguistic features useful in extraction of interactions from PubMed; application to annotating known, high-throughput and predicted interactions in I2D Bioinformatics 26 2010 111 119
    • (2010) Bioinformatics , vol.26 , pp. 111-119
    • Niu, Y.1    Otasek, D.2    Jurisica, I.3
  • 66
    • 53049094780 scopus 로고    scopus 로고
    • Improvement of microcalcification cluster detection in mammography utilizing image enhancement techniques
    • A. Papadopoulos, D.I. Fotiadis, and L. Costaridou Improvement of microcalcification cluster detection in mammography utilizing image enhancement techniques Comput Biol Med 38 2008 1045 1055
    • (2008) Comput Biol Med , vol.38 , pp. 1045-1055
    • Papadopoulos, A.1    Fotiadis, D.I.2    Costaridou, L.3
  • 67
    • 19344363582 scopus 로고    scopus 로고
    • Characterization of clustered microcalcifications in digitized mammograms using neural networks and support vector machines
    • A. Papadopoulos, D.I. Fotiadis, and A. Likas Characterization of clustered microcalcifications in digitized mammograms using neural networks and support vector machines Artif Intell Med 34 2005 141 150
    • (2005) Artif Intell Med , vol.34 , pp. 141-150
    • Papadopoulos, A.1    Fotiadis, D.I.2    Likas, A.3
  • 68
    • 84877734926 scopus 로고    scopus 로고
    • Improving breast cancer survival analysis through competition-based multidimensional modeling
    • E. Bilal, J. Dutkowski, J. Guinney, I.S. Jang, B.A. Logsdon, G. Pandey, and et al. Improving breast cancer survival analysis through competition-based multidimensional modeling PLoS Comput Biol 9 2013 e1003047
    • (2013) PLoS Comput Biol , vol.9
    • Bilal, E.1    Dutkowski, J.2    Guinney, J.3    Jang, I.S.4    Logsdon, B.A.5    Pandey, G.6
  • 69
    • 81155133281 scopus 로고    scopus 로고
    • Prognostic value of a combined estrogen receptor, progesterone receptor, Ki-67, and human epidermal growth factor receptor 2 immunohistochemical score and comparison with the Genomic Health recurrence score in early breast cancer
    • J. Cuzick, M. Dowsett, S. Pineda, C. Wale, J. Salter, E. Quinn, and et al. Prognostic value of a combined estrogen receptor, progesterone receptor, Ki-67, and human epidermal growth factor receptor 2 immunohistochemical score and comparison with the Genomic Health recurrence score in early breast cancer J Clin Oncol 29 2011 4273 4278
    • (2011) J Clin Oncol , vol.29 , pp. 4273-4278
    • Cuzick, J.1    Dowsett, M.2    Pineda, S.3    Wale, C.4    Salter, J.5    Quinn, E.6
  • 70
  • 71
    • 19944422061 scopus 로고    scopus 로고
    • A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer
    • S. Paik, S. Shak, G. Tang, C. Kim, J. Baker, M. Cronin, and et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer N Engl J Med 351 2004 2817 2826
    • (2004) N Engl J Med , vol.351 , pp. 2817-2826
    • Paik, S.1    Shak, S.2    Tang, G.3    Kim, C.4    Baker, J.5    Cronin, M.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.