메뉴 건너뛰기




Volumn 5306 LNAI, Issue , 2008, Pages 272-282

Feature selection based on the rough set theory and expectation- maximization clustering algorithm

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTERING ALGORITHMS; COMPUTATION THEORY; EQUIVALENCE CLASSES; FEATURE EXTRACTION; MAXIMUM PRINCIPLE;

EID: 57049180269     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-88425-5_28     Document Type: Conference Paper
Times cited : (29)

References (35)
  • 1
    • 36948999941 scopus 로고    scopus 로고
    • University of California, School of Information and Computer Science, Irvine
    • Asuncion, A., Newman, D.J.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine (2007), http://www.ics.uci.edu/~mlearn/MLRepository.html
    • (2007) UCI Machine Learning Repository
    • Asuncion, A.1    Newman, D.J.2
  • 3
    • 0038589151 scopus 로고    scopus 로고
    • Scaling EM clustering to large databases
    • Technical report, Microsoft Research
    • Bradley, P., Fayyad, U., Reina, C.: Scaling EM clustering to large databases. Technical report, Microsoft Research (1999)
    • (1999)
    • Bradley, P.1    Fayyad, U.2    Reina, C.3
  • 4
    • 0242322799 scopus 로고    scopus 로고
    • Rough Set-Aided Keyword Reduction for Text Categorisation
    • Chouchoulas, A., Shen, Q.: Rough Set-Aided Keyword Reduction for Text Categorisation. Applied Artificial Intelligence 15, 843-873 (2001)
    • (2001) Applied Artificial Intelligence , vol.15 , pp. 843-873
    • Chouchoulas, A.1    Shen, Q.2
  • 6
    • 9444268140 scopus 로고    scopus 로고
    • On the Correspondence between Approximations and Similarity
    • Tsumoto, S, Slowiński, R, Komorowski, J, Grzymala-Busse, J.W, eds, RSCTC 2004, Springer, Heidelberg
    • Doherty, P., Szalas, A.: On the Correspondence between Approximations and Similarity. In: Tsumoto, S., Slowiński, R., Komorowski, J., Grzymala-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 143-152. Springer, Heidelberg (2004)
    • (2004) LNCS (LNAI , vol.3066 , pp. 143-152
    • Doherty, P.1    Szalas, A.2
  • 7
    • 0037983742 scopus 로고    scopus 로고
    • Data dimensionality reduction with application to simplifying rbf network structure and improving classification performance
    • Fu, X., Wang, L.: Data dimensionality reduction with application to simplifying rbf network structure and improving classification performance. IEEE Transactions on Systems, Man, and Cybernetics, Part B 33, 399-409 (2003)
    • (2003) IEEE Transactions on Systems, Man, and Cybernetics, Part B , vol.33 , pp. 399-409
    • Fu, X.1    Wang, L.2
  • 9
    • 57049150440 scopus 로고    scopus 로고
    • Human perception and principal components analysis
    • Hancock, P., Burton, A., Bruce, V.: Face processing: Human perception and principal components analysis (1996)
    • (1996) Face processing
    • Hancock, P.1    Burton, A.2    Bruce, V.3
  • 10
    • 10944249572 scopus 로고    scopus 로고
    • Semantics-Preserving Dimensionality Reduction: Rough and Fuzzy-Rough-Based Approaches
    • Jensen, R., Shen, Q.: Semantics-Preserving Dimensionality Reduction: Rough and Fuzzy-Rough-Based Approaches. IEEE Transactions on Knowledge and Data Engineering 16, 1457-1471 (2004)
    • (2004) IEEE Transactions on Knowledge and Data Engineering , vol.16 , pp. 1457-1471
    • Jensen, R.1    Shen, Q.2
  • 13
    • 0348139702 scopus 로고    scopus 로고
    • Dimension Reduction by Local Principal Component Analysis
    • Kambhatla, N., Leen, T.K.: Dimension Reduction by Local Principal Component Analysis. Neural Comp. 9, 1493-1516 (1997)
    • (1997) Neural Comp , vol.9 , pp. 1493-1516
    • Kambhatla, N.1    Leen, T.K.2
  • 14
    • 0035427240 scopus 로고    scopus 로고
    • Data classification based on tolerant rough set
    • Kim, D.: Data classification based on tolerant rough set. Pattern Recognition 34, 1613-1624 (2001)
    • (2001) Pattern Recognition , vol.34 , pp. 1613-1624
    • Kim, D.1
  • 15
    • 10244219943 scopus 로고    scopus 로고
    • Statistical method for identifying differential gene-gene co-expression patterns
    • Lai, Y., Wu, B., Chen, L., Zhao, H.: Statistical method for identifying differential gene-gene co-expression patterns. Bioinformatics, 3146-3155 (2004)
    • (2004) Bioinformatics , pp. 3146-3155
    • Lai, Y.1    Wu, B.2    Chen, L.3    Zhao, H.4
  • 16
    • 0039845361 scopus 로고    scopus 로고
    • SQLEM: Fast clustering in SQL using the EM algorithm
    • Ordonez, C. Cereghini, P.: SQLEM: Fast clustering in SQL using the EM algorithm. In: ACM SIGMOD Conference (2000)
    • (2000) ACM SIGMOD Conference
    • Ordonez, C.1    Cereghini, P.2
  • 17
    • 0035999977 scopus 로고    scopus 로고
    • A comparative review of statistical methods for discovering differentially expressed genes in replicated microarray experiments
    • Pan, W.: A comparative review of statistical methods for discovering differentially expressed genes in replicated microarray experiments. Bioinformatics 18, 546-554 (2002)
    • (2002) Bioinformatics , vol.18 , pp. 546-554
    • Pan, W.1
  • 20
    • 24044461420 scopus 로고    scopus 로고
    • On Rough Set Logics Based on Similarity Relations
    • Polkowski, L., Semeniuk-Polkowska, M.: On Rough Set Logics Based on Similarity Relations. Fundam. Inf. 64, 379-390 (2005)
    • (2005) Fundam. Inf , vol.64 , pp. 379-390
    • Polkowski, L.1    Semeniuk-Polkowska, M.2
  • 23
    • 0036498107 scopus 로고    scopus 로고
    • A comparative study of fuzzy rough sets
    • Radzikowska, A., Kerre, E.E.: A comparative study of fuzzy rough sets. Fuzzy Sets and Systems 126, 137-155 (2002)
    • (2002) Fuzzy Sets and Systems , vol.126 , pp. 137-155
    • Radzikowska, A.1    Kerre, E.E.2
  • 25
    • 0037332845 scopus 로고    scopus 로고
    • Fuzzy discretization of feature space for a rough set classifier
    • Roy, A., Pal, S.K.: Fuzzy discretization of feature space for a rough set classifier. Pattern Recogn. Lett. 24, 895-902 (2003)
    • (2003) Pattern Recogn. Lett , vol.24 , pp. 895-902
    • Roy, A.1    Pal, S.K.2
  • 26
    • 0030217715 scopus 로고    scopus 로고
    • Tolerance approximation spaces
    • Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundam. Inf. 27, 245-253 (1996)
    • (1996) Fundam. Inf , vol.27 , pp. 245-253
    • Skowron, A.1    Stepaniuk, J.2
  • 27
    • 57049152068 scopus 로고    scopus 로고
    • Slowinski, R., Vanderpooten, D.: Similarity relation as a basis for rough approximations. In: Wang, P. (ed.) Advances in Machine Intelligence and Soft Computing, 4, pp. 17-33. Duke University Press, Duke (1997)
    • Slowinski, R., Vanderpooten, D.: Similarity relation as a basis for rough approximations. In: Wang, P. (ed.) Advances in Machine Intelligence and Soft Computing, vol. 4, pp. 17-33. Duke University Press, Duke (1997)
  • 28
    • 0033719032 scopus 로고    scopus 로고
    • A Generalized Definition of Rough Approximations Based on Similarity
    • Slowinski, R., Vanderpooten, D.: A Generalized Definition of Rough Approximations Based on Similarity. IEEE Trans. on Knowl and Data Eng. 12, 331-336 (2000)
    • (2000) IEEE Trans. on Knowl and Data Eng , vol.12 , pp. 331-336
    • Slowinski, R.1    Vanderpooten, D.2
  • 29
    • 1942450610 scopus 로고    scopus 로고
    • Feature extraction by non-parametric mutual information maximization
    • Torkkola, K.: Feature extraction by non-parametric mutual information maximization. Journal of Machine Learning Research 3, 1415-1438 (2003)
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1415-1438
    • Torkkola, K.1
  • 32
    • 5044224549 scopus 로고    scopus 로고
    • Feature selection for classifying high-dimensional numerical data
    • Wu, Y., Zhang, A.: Feature selection for classifying high-dimensional numerical data. CVPR 2, 251-258 (2004)
    • (2004) CVPR , vol.2 , pp. 251-258
    • Wu, Y.1    Zhang, A.2
  • 33
    • 0000845117 scopus 로고
    • On convergence properties of the EM algorithm for Gaussian mixtures
    • Xu, L., Jordan, M.: On convergence properties of the EM algorithm for Gaussian mixtures. Neural Computation 7 (1995)
    • (1995) Neural Computation , vol.7
    • Xu, L.1    Jordan, M.2
  • 34
    • 1942451938 scopus 로고    scopus 로고
    • Yu, L., Liu, H.: Feature selection for high-dimensional data: A fast correlation-based filter solution. In: Fawcett, T., Mishra, N. (eds.) ICML, pp. 856-863. AAAI Press, Menlo Park (2003)
    • Yu, L., Liu, H.: Feature selection for high-dimensional data: A fast correlation-based filter solution. In: Fawcett, T., Mishra, N. (eds.) ICML, pp. 856-863. AAAI Press, Menlo Park (2003)
  • 35
    • 0001375902 scopus 로고
    • Statistical physics, mixtures of distributions and the EM algorithm
    • Yuille, A.L., Stolorz, P., Utans, J.: Statistical physics, mixtures of distributions and the EM algorithm. Neural Computation 6, 334-340 (1994)
    • (1994) Neural Computation , vol.6 , pp. 334-340
    • Yuille, A.L.1    Stolorz, P.2    Utans, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.