메뉴 건너뛰기




Volumn 12, Issue 4, 2013, Pages 343-353

Multiobjective binary biogeography based optimization for feature selection using gene expression data

Author keywords

Gene expression data; gene selection; hybrid approach; multi objective binary biogeography based optimization

Indexed keywords

BIOGEOGRAPHY-BASED OPTIMIZATIONS; GENE EXPRESSION DATA; GENE SELECTION; HYBRID APPROACH; INFORMATIVE GENES; LEAVE-ONE-OUT CROSS VALIDATIONS; NON-DOMINATED SORTING; PARTICLE SWARM OPTIMIZATION ALGORITHM;

EID: 84892415597     PISSN: 15361241     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNB.2013.2294716     Document Type: Article
Times cited : (123)

References (36)
  • 1
    • 34547126221 scopus 로고    scopus 로고
    • Optimal search-based gene subset selection for gene array cancer classification
    • DOI 10.1109/TITB.2007.892693, Biomedical Informatics: Research and Applications
    • J. Li,H. Su, H. Chen, and B. W. Futscher, "Optimal search-based gene subset selection for gene array cancer classification," IEEE Trans. Inf. Technol. Biomed., vol. 11, no. 4, pp. 398-405, 2007. (Pubitemid 47098764)
    • (2007) IEEE Transactions on Information Technology in Biomedicine , vol.11 , Issue.4 , pp. 398-405
    • Li, J.1    Su, H.2    Chen, H.3    Futscher, B.W.4
  • 3
    • 69949160138 scopus 로고    scopus 로고
    • A cyclic hybrid method to select a smaller subset of informative genes for cancer classification
    • M. S. Mohamad, S. Omatu, M. Yosioka, and S. Deris, "A cyclic hybrid method to select a smaller subset of informative genes for cancer classification," Int. J. Innov. Comput., Inf. Control, vol. 5, no. 8, pp. 2189-2202, 2009.
    • (2009) Int. J. Innov. Comput., Inf. Control , vol.5 , Issue.8 , pp. 2189-2202
    • Mohamad, M.S.1    Omatu, S.2    Yosioka, M.3    Deris, S.4
  • 4
    • 67749108622 scopus 로고    scopus 로고
    • Tumor clustering using nonnegative matrix factorization with gene selection
    • C. H. Zheng, D. S. Huang, L. Zhang, and X. Z. Kong, "Tumor clustering using nonnegative matrix factorization with gene selection," IEEE Trans. Inf. Technol. Biomed., vol. 13, no. 4, pp. 599-607, 2009.
    • (2009) IEEE Trans. Inf. Technol. Biomed. , vol.13 , Issue.4 , pp. 599-607
    • Zheng, C.H.1    Huang, D.S.2    Zhang, L.3    Kong, X.Z.4
  • 5
    • 37549069306 scopus 로고    scopus 로고
    • Hybrid particle swarm optimization and tabu search approach for selecting genes for tumor classification using gene expression data
    • Q. Shen, W. M. Shi, and W. Kong, "Hybrid particle swarm optimization and tabu search approach for selecting genes for tumor classification using gene expression data," Comput. Biol. Chem., vol. 32, pp. 53-62, 2008.
    • (2008) Comput. Biol. Chem. , vol.32 , pp. 53-62
    • Shen, Q.1    Shi, W.M.2    Kong, W.3
  • 6
    • 37549011765 scopus 로고    scopus 로고
    • Improved binary PSO for feature selection using gene expression data
    • L.Y. Chuang, H. W. Chang, C. J. Tu, and C. H.Yang, "Improved binary PSO for feature selection using gene expression data," Comput. Bio. Chem., vol. 32, pp. 29-38, 2008.
    • (2008) Comput. Bio. Chem. , vol.32 , pp. 29-38
    • Chuang, L.Y.1    Chang, H.W.2    Tu, C.J.3    Yang, C.H.4
  • 7
    • 45749096693 scopus 로고    scopus 로고
    • Gene selection using hybrid particle swarm optimization and genetic algorithm
    • S. Li, X. Wu, and M. Tan, "Gene selection using hybrid particle swarm optimization and genetic algorithm," Soft Comput., vol. 12, pp. 1039-1048, 2008.
    • (2008) Soft Comput. , vol.12 , pp. 1039-1048
    • Li, S.1    Wu, X.2    Tan, M.3
  • 8
    • 82155181627 scopus 로고    scopus 로고
    • A modified binary particle swarm optimization for selecting the small subset of informative genes from gene expression data
    • M. S. Mohamad, S. Omatu, S. Deris, and M. Yoshioka, "A modified binary particle swarm optimization for selecting the small subset of informative genes from gene expression data," IEEE Trans. Inf. Technol. Biomed., vol. 15, no. 6, pp. 813-822, 2011.
    • (2011) IEEE Trans. Inf. Technol. Biomed. , vol.15 , Issue.6 , pp. 813-822
    • Mohamad, M.S.1    Omatu, S.2    Deris, S.3    Yoshioka, M.4
  • 9
    • 0036530772 scopus 로고    scopus 로고
    • A fast and elitist multiobjective genetic algorithm: NSGA-II
    • DOI 10.1109/4235.996017, PII S1089778X02041012
    • K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182-97, 2002. (Pubitemid 34555372)
    • (2002) IEEE Transactions on Evolutionary Computation , vol.6 , Issue.2 , pp. 182-197
    • Deb, K.1    Pratap, A.2    Agarwal, S.3    Meyarivan, T.4
  • 10
    • 0033318858 scopus 로고    scopus 로고
    • Multiobjective evolutionary algorithms a comparative case study and the strength pareto approach
    • DOI 10.1109/4235.797969
    • E. Zitzler and L. Thiele, "Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach," IEEE Trans. Evol. Comput., vol. 3, no. 4, pp. 257-271, 1999. (Pubitemid 30544879)
    • (1999) IEEE Transactions on Evolutionary Computation , vol.3 , Issue.4 , pp. 257-271
    • Zitzler Eckart1    Thiele Lothar2
  • 11
    • 84875085672 scopus 로고    scopus 로고
    • A hybrid multiobjective particle swarm optimization approach for non-redundant gene marker selection
    • Springer India
    • A. Mukhopadhyay and M. Mandal, "A hybrid multiobjective particle swarm optimization approach for non-redundant gene marker selection," in Proc. 7th Int. Conf. Bio-Inspired Comput.: Theories Appl. (BIC-TA 2012), 2013, pp. 205-216, Springer India.
    • (2013) Proc. 7th Int. Conf. Bio-Inspired Comput.: Theories Appl. (BIC-TA 2012) , pp. 205-216
    • Mukhopadhyay, A.1    Mandal, M.2
  • 13
    • 62549089323 scopus 로고    scopus 로고
    • A multi-objective strategy in genetic algorithms for gene selection of gene expression data
    • M. S. Mohamad et al., "A multi-objective strategy in genetic algorithms for gene selection of gene expression data," Artif. Life Robot., vol. 13, no. 2, pp. 410-413, 2009.
    • (2009) Artif. Life Robot. , vol.13 , Issue.2 , pp. 410-413
    • Mohamad, M.S.1
  • 14
    • 84864883239 scopus 로고    scopus 로고
    • MicroRNA transcription start site prediction with multi-objective feature selection
    • M. Bhattacharyya et al., "MicroRNA transcription start site prediction with multi-objective feature selection," Stat. Appl. Genet. Mol. Biol., vol. 11, no. 1, pp. 1-25, 2012.
    • (2012) Stat. Appl. Genet. Mol. Biol. , vol.11 , Issue.1 , pp. 1-25
    • Bhattacharyya, M.1
  • 16
    • 84901451540 scopus 로고    scopus 로고
    • Selecting informative genes using a multiobjective evolutionary algorithm
    • (CEC'02)
    • J. Liu and H. Iba, "Selecting informative genes using a multiobjective evolutionary algorithm," in Proc. 2002 IEEE Congr. Evol. Comput. 2002 (CEC'02), vol. 1, pp. 297-302.
    • (2002) Proc. 2002 IEEE Congr. Evol. Comput. , vol.1 , pp. 297-302
    • Liu, J.1    Iba, H.2
  • 17
    • 33845346175 scopus 로고    scopus 로고
    • Multi-objective optimization of support vector machines
    • DOI 10.1007/11399346-9, Multi-Objective Machine Learning
    • T. Suttorp and C. Igel, "Multi-objective optimization of support vector machines," inMulti-objectiveMachine Learning. Berlin/Heidelberg, Germany: Springer, 2006, pp. 199-220. (Pubitemid 44869077)
    • (2006) Studies in Computational Intelligence , vol.16 , pp. 199-220
    • Suttorp, T.1    Igel, C.2
  • 18
    • 67649363335 scopus 로고    scopus 로고
    • Sensitivity and specificity based multiobjective approach for feature selection: Application to cancer diagnosis
    • J. García-Nieto et al., "Sensitivity and specificity based multiobjective approach for feature selection: Application to cancer diagnosis," Inf. Process. Lett., vol. 109, no. 16, pp. 887-896, 2009.
    • (2009) Inf. Process. Lett. , vol.109 , Issue.16 , pp. 887-896
    • García-Nieto, J.1
  • 20
    • 33845310560 scopus 로고    scopus 로고
    • Feature extraction using multi-objective genetic programming
    • DOI 10.1007/11399346-4, Multi-Objective Machine Learning
    • Y. Zhang and P. I. Rockett, "Feature extraction using multi-objective genetic programming," in Multi-Objective Machine Learning. Berlin/Heidelberg, Germany: Springer, 2006, pp. 75-99. (Pubitemid 44869072)
    • (2006) Studies in Computational Intelligence , vol.16 , pp. 75-99
    • Zhang, Y.1    Rockett, P.I.2
  • 21
  • 22
    • 57249115093 scopus 로고    scopus 로고
    • Biogeography-Based optimization
    • D. Simon, "Biogeography-Based optimization," IEEE Trans. Evol. Comput., vol. 12, no. 6, pp. 702-713, 2008.
    • (2008) IEEE Trans. Evol. Comput. , vol.12 , Issue.6 , pp. 702-713
    • Simon, D.1
  • 23
    • 74849109390 scopus 로고    scopus 로고
    • Biogeography-based optimization combined with evolutionary strategy and immigration refusal
    • San Antonio, TX, USA
    • D. Du, D. Simon, and M. Ergezer, "Biogeography-based optimization combined with evolutionary strategy and immigration refusal," in Proc. IEEE Conf. Syst., Man, Cybern., San Antonio, TX, USA, 2009, pp. 1023-1028.
    • (2009) Proc. IEEE Conf. Syst., Man, Cybern. , pp. 1023-1028
    • Du, D.1    Simon, D.2    Ergezer, M.3
  • 24
    • 74849113283 scopus 로고    scopus 로고
    • Oppositional biogeography-based optimization
    • San Antonio, TX, USA
    • M. Ergezer, D. Simon, and D. Du, "Oppositional biogeography-based optimization," in Proc. IEEE Conf. Syst., Man, Cybern., San Antonio, TX, USA, 2009, pp. 1035-1040.
    • (2009) Proc. IEEE Conf. Syst., Man, Cybern. , pp. 1035-1040
    • Ergezer, M.1    Simon, D.2    Du, D.3
  • 25
    • 78650514931 scopus 로고    scopus 로고
    • Twostage update biogeography-based optimization using differential evolution algorithm (DBBO)
    • I. Boussaid, A. Chatterjee, P. Siarry, and M. Ahmed-Nacer, "Twostage update biogeography-based optimization using differential evolution algorithm (DBBO)," Comput. Oper. Res., vol. 38, no. 8, pp. 1188-1198, 2011.
    • (2011) Comput. Oper. Res. , vol.38 , Issue.8 , pp. 1188-1198
    • Boussaid, I.1    Chatterjee, A.2    Siarry, P.3    Ahmed-Nacer, M.4
  • 26
    • 77953135463 scopus 로고    scopus 로고
    • A real-coded biogeographybased optimization with mutation
    • W. Gong, Z. Cai, C. Ling, and H. Li, "A real-coded biogeographybased optimization with mutation," Appl. Math. Comput., vol. 216, no. 9, pp. 2749-2758, 2010.
    • (2010) Appl. Math. Comput. , vol.216 , Issue.9 , pp. 2749-2758
    • Gong, W.1    Cai, Z.2    Ling, C.3    Li, H.4
  • 27
    • 79957441310 scopus 로고    scopus 로고
    • A probabilistic analysis of a simplified biogeography-Based optimization algorithm
    • D. Simon, "A probabilistic analysis of a simplified biogeography-Based optimization algorithm," Evol. Comput., vol. 19, pp. 167-188, 2011.
    • (2011) Evol. Comput. , vol.19 , pp. 167-188
    • Simon, D.1
  • 28
    • 84867337644 scopus 로고    scopus 로고
    • Multi-operator based biogeography based optimization with mutation for global numerical optimization
    • X. Li and M. Yi, "Multi-operator based biogeography based optimization with mutation for global numerical optimization," Comput. Math. With Appl., vol. 64, no. 9, pp. 2833-2844, 2012.
    • (2012) Comput. Math. with Appl. , vol.64 , Issue.9 , pp. 2833-2844
    • Li, X.1    Yi, M.2
  • 29
    • 84862932425 scopus 로고    scopus 로고
    • Hybrid differential evolution with biogeographybased optimization for design of a reconfigurable antenna array with discrete phase shifters
    • Article ID 685629
    • X. Li and M. Yin, "Hybrid differential evolution with biogeographybased optimization for design of a reconfigurable antenna array with discrete phase shifters," Int. J. Antennas Propag., vol. 2011, 2011, Article ID 685629.
    • (2011) Int. J. Antennas Propag. 2011
    • Li, X.1    Yin, M.2
  • 30
    • 79960836443 scopus 로고    scopus 로고
    • A perturb biogeography based optimization with mutation for global numerical optimization
    • X. Li, J. Wang, J. Zhou, and M. Yin, "A perturb biogeography based optimization with mutation for global numerical optimization," Appl. Math. Comput., vol. 218, no. 2, pp. 598-609, 2011.
    • (2011) Appl. Math. Comput. , vol.218 , Issue.2 , pp. 598-609
    • Li, X.1    Wang, J.2    Zhou, J.3    Yin, M.4
  • 31
    • 79955444979 scopus 로고    scopus 로고
    • The Fisher-Markov selector: Fast selecting maximally separable feature subset for multiclass classification with applications to high-dimensional data
    • Q. Cheng, H. Zhou, and J. Cheng, "The Fisher-Markov selector: Fast selecting maximally separable feature subset for multiclass classification with applications to high-dimensional data," IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 6, pp. 1217-1233, 2011.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , Issue.6 , pp. 1217-1233
    • Cheng, Q.1    Zhou, H.2    Cheng, J.3
  • 34
    • 21844440579 scopus 로고    scopus 로고
    • Core vector machines: Fast SVM training on very large data sets
    • I. W. Tsang, J. T. Kwok, and P. M. Cheung, "Core vector machines: Fast SVM training on very large data sets," J. Mach. Learn. Res., pp. 363-392, 2005.
    • (2005) J. Mach. Learn. Res. , pp. 363-392
    • Tsang, I.W.1    Kwok, J.T.2    Cheung, P.M.3
  • 35
    • 33846945056 scopus 로고    scopus 로고
    • Recursive gene selection based on maximum margin criterion: A comparison with SVM-RFE
    • S. Niijima and S. Kuhara, "Recursive gene selection based on maximum margin criterion: A comparison with SVM-RFE," BMC Bioinformat., vol. 7, no. 543, pp. 543-560, 2006.
    • (2006) BMC Bioinformat. , vol.7 , Issue.543 , pp. 543-560
    • Niijima, S.1    Kuhara, S.2
  • 36
    • 77950538864 scopus 로고    scopus 로고
    • SVM-RFE with MRMR filter for gene selection
    • P. A. Mundra and J. C. Rajapakse, "SVM-RFE with MRMR filter for gene selection," IEEE Trans. NanoBiosci., vol. 9, no. 1, pp. 31-37, 2010.
    • (2010) IEEE Trans. NanoBiosci. , vol.9 , Issue.1 , pp. 31-37
    • Mundra, P.A.1    Rajapakse, J.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.