메뉴 건너뛰기




Volumn 51, Issue , 2014, Pages 9-16

Feature selection and multi-kernel learning for sparse representation on a manifold

Author keywords

Data representation; Feature selection; Manifold; Multiple kernel learning; Sparse coding

Indexed keywords

ALGORITHMS; BIOINFORMATICS; FEATURE EXTRACTION; ITERATIVE METHODS; MEDICAL IMAGING;

EID: 84890219380     PISSN: 08936080     EISSN: 18792782     Source Type: Journal    
DOI: 10.1016/j.neunet.2013.11.009     Document Type: Article
Times cited : (59)

References (23)
  • 1
    • 84865534073 scopus 로고    scopus 로고
    • Hierarchical kernel spectral clustering
    • Alzate C., Suykens J.A.K. Hierarchical kernel spectral clustering. Neural Networks 2012, 35:21-30. 10.1016/j.neunet.2012.06.007.
    • (2012) Neural Networks , vol.35 , pp. 21-30
    • Alzate, C.1    Suykens, J.A.K.2
  • 2
    • 84865419196 scopus 로고    scopus 로고
    • Distributed static linear Gaussian models using consensus
    • Belanovic P., Valcarcel Macua S., Zazo S. Distributed static linear Gaussian models using consensus. Neural Networks 2012, 34:96-105. 10.1016/j.neunet.2012.07.004.
    • (2012) Neural Networks , vol.34 , pp. 96-105
    • Belanovic, P.1    Valcarcel Macua, S.2    Zazo, S.3
  • 4
    • 85067771247 scopus 로고    scopus 로고
    • University of south florida digital mammography home page. URL.
    • Chris Rose, A. W. K. W., Turi, Daniele, & Taylor, C. (2006). University of south florida digital mammography home page. URL. http://marathon.csee.usf.edu/Mammography/Database.html.
    • (2006)
    • Chris, R.1    Turi, D.2    Alan, W.3    Katy, W.4    Taylor, C.J.5
  • 6
    • 11844302947 scopus 로고    scopus 로고
    • Function approximation on non-Euclidean spaces
    • Courrieu P. Function approximation on non-Euclidean spaces. Neural Networks 2005, 18(1):91-102. 10.1016/j.neunet.2004.09.003.
    • (2005) Neural Networks , vol.18 , Issue.1 , pp. 91-102
    • Courrieu, P.1
  • 8
    • 0036351707 scopus 로고    scopus 로고
    • An implementable active-set algorithm for computing a b-stationary point of a mathematical program with linear complementarity constraints
    • Fukushima M., Tseng P. An implementable active-set algorithm for computing a b-stationary point of a mathematical program with linear complementarity constraints. SIAM Journal on Optimization 2002, 12(3):724-739.
    • (2002) SIAM Journal on Optimization , vol.12 , Issue.3 , pp. 724-739
    • Fukushima, M.1    Tseng, P.2
  • 10
    • 27744569713 scopus 로고    scopus 로고
    • Bayesian approach to feature selection and parameter tuning for support vector machine classifiers
    • Gold C., Holub A., Sollich P. Bayesian approach to feature selection and parameter tuning for support vector machine classifiers. Neural Networks 2005, 18(5-6):693-701.
    • (2005) Neural Networks , vol.18 , Issue.5-6 , pp. 693-701
    • Gold, C.1    Holub, A.2    Sollich, P.3
  • 11
    • 84874548740 scopus 로고
    • Composite optimization: second order conditions, value functions and sensityvity
    • Ioffe A. Composite optimization: second order conditions, value functions and sensityvity. Analysis and optimization of systems 1990, 442-451.
    • (1990) Analysis and optimization of systems , pp. 442-451
    • Ioffe, A.1
  • 12
    • 79953713204 scopus 로고    scopus 로고
    • Design of a multiple kernel learning algorithm for LS-SVM by convex programming
    • Jian L., Xia Z., Liang X., Gao C. Design of a multiple kernel learning algorithm for LS-SVM by convex programming. Neural Networks 2011, 24(5):476-483. 10.1016/j.neunet.2011.03.009.
    • (2011) Neural Networks , vol.24 , Issue.5 , pp. 476-483
    • Jian, L.1    Xia, Z.2    Liang, X.3    Gao, C.4
  • 13
    • 33744914323 scopus 로고    scopus 로고
    • A composite neural network model for perseveration and distractibility in the Wisconsin card sorting test
    • Kaplan G.B., Sengor N.S., Gurvit H., Genc I., Guzelis C. A composite neural network model for perseveration and distractibility in the Wisconsin card sorting test. Neural Networks 2006, 19(4):375-387. 10.1016/j.neunet.2005.08.015.
    • (2006) Neural Networks , vol.19 , Issue.4 , pp. 375-387
    • Kaplan, G.B.1    Sengor, N.S.2    Gurvit, H.3    Genc, I.4    Guzelis, C.5
  • 14
    • 34547844077 scopus 로고    scopus 로고
    • Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis
    • Kim H., Park H. Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis. Bioinformatics 2007, 23(12):1495-1502. 10.1093/bioinformatics/btm134.
    • (2007) Bioinformatics , vol.23 , Issue.12 , pp. 1495-1502
    • Kim, H.1    Park, H.2
  • 15
    • 84864036295 scopus 로고    scopus 로고
    • Efficient sparse coding algorithms
    • In NIPS, NIPS
    • Lee, H., Battle, A., Raina, R., & Ng, A. Y. (2007). Efficient sparse coding algorithms. In NIPS, NIPS (pp. 801-808).
    • (2007) , pp. 801-808
    • Lee, H.1    Battle, A.2    Raina, R.3    Ng, A.Y.4
  • 16
    • 84865661519 scopus 로고    scopus 로고
    • Laplacian twin support vector machine for semi-supervised classification
    • Qi Z., Tian Y., Shi Y. Laplacian twin support vector machine for semi-supervised classification. Neural Networks 2012, 35:46-53. 10.1016/j.neunet.2012.07.011.
    • (2012) Neural Networks , vol.35 , pp. 46-53
    • Qi, Z.1    Tian, Y.2    Shi, Y.3
  • 19
    • 84901765974 scopus 로고    scopus 로고
    • Discriminative sparse coding on multi-manifolds
    • Wang J.J.-Y., Bensmail H., Yao N., Gao X. Discriminative sparse coding on multi-manifolds. Knowledge-Based Systems 2013, 54(0):199-206. http://dx.doi.org/10.1016/j.knosys.2013.09.004.
    • (2013) Knowledge-Based Systems , vol.54 , Issue.0 , pp. 199-206
    • Wang, J.J.-Y.1    Bensmail, H.2    Yao, N.3    Gao, X.4
  • 21
    • 71749093494 scopus 로고    scopus 로고
    • A novel neural dynamical approach to convex quadratic program and its efficient applications
    • 1463-1470
    • Xia Y., Sun C. A novel neural dynamical approach to convex quadratic program and its efficient applications. Neural Networks 2009, 22. 1463-1470.
    • (2009) Neural Networks , vol.22
    • Xia, Y.1    Sun, C.2
  • 22
    • 84865559034 scopus 로고    scopus 로고
    • Weighted twin support vector machines with local information and its application
    • Ye Q., Zhao C., Gao S., Zheng H. Weighted twin support vector machines with local information and its application. Neural Networks 2012, 35:31-39. 10.1016/j.neunet.2012.06.010.
    • (2012) Neural Networks , vol.35 , pp. 31-39
    • Ye, Q.1    Zhao, C.2    Gao, S.3    Zheng, H.4
  • 23
    • 79959501613 scopus 로고    scopus 로고
    • Feature selection and Kernel learning for local learning-based clustering
    • Zeng H., Cheung Y.-M. Feature selection and Kernel learning for local learning-based clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence 2011, 33(8):1532-1547. 10.1109/TPAMI.2010.215.
    • (2011) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.33 , Issue.8 , pp. 1532-1547
    • Zeng, H.1    Cheung, Y.-M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.