메뉴 건너뛰기




Volumn 48, Issue 12, 2015, Pages 3904-3916

Combined sparse and collaborative representation for hyperspectral target detection

Author keywords

Collaborative representation; Hyperspectral imagery; Sparse representation; Target detection

Indexed keywords

ATOMS; KNOWLEDGE REPRESENTATION; PIXELS; REMOTE SENSING; SPECTROSCOPY; TARGET TRACKING;

EID: 84941419455     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2015.05.024     Document Type: Article
Times cited : (226)

References (30)
  • 1
    • 0037209421 scopus 로고    scopus 로고
    • Real-time constrained linear discriminant analysis to target detection and classification in hyperspectral imagery
    • Q. Du, and H. Ren Real-time constrained linear discriminant analysis to target detection and classification in hyperspectral imagery Pattern Recognit. 36 1 2003 1 12
    • (2003) Pattern Recognit. , vol.36 , Issue.1 , pp. 1-12
    • Du, Q.1    Ren, H.2
  • 2
    • 84885022681 scopus 로고    scopus 로고
    • Target detection based on a dynamic subspace
    • B. Du, and L. Zhang Target detection based on a dynamic subspace Pattern Recognit. 47 1 2014 344 358
    • (2014) Pattern Recognit. , vol.47 , Issue.1 , pp. 344-358
    • Du, B.1    Zhang, L.2
  • 5
    • 66249142802 scopus 로고    scopus 로고
    • Regularized spectral matched filter for target recognition in hyperspectral imagery
    • N.M. Nasrabadi Regularized spectral matched filter for target recognition in hyperspectral imagery IEEE Signal Process. Lett. 15 2008 317 320
    • (2008) IEEE Signal Process. Lett. , vol.15 , pp. 317-320
    • Nasrabadi, N.M.1
  • 6
    • 13244255508 scopus 로고    scopus 로고
    • The adaptive coherence estimator: a uniformly most-powerful-invariant adaptive detection statistic
    • S. Kraut, L.L. Scharf, and R.W. Butler The adaptive coherence estimator: a uniformly most-powerful-invariant adaptive detection statistic IEEE Trans. Signal Process. 53 2 2005 427 438
    • (2005) IEEE Trans. Signal Process. , vol.53 , Issue.2 , pp. 427-438
    • Kraut, S.1    Scharf, L.L.2    Butler, R.W.3
  • 10
    • 77952585265 scopus 로고    scopus 로고
    • Hybrid detectors based on selective endmembers
    • L. Zhang, B. Du, and Y. Zhong Hybrid detectors based on selective endmembers IEEE Trans. Geosci. Remote Sens. 48 6 2010 2633 2646
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.6 , pp. 2633-2646
    • Zhang, L.1    Du, B.2    Zhong, Y.3
  • 11
    • 79957470922 scopus 로고    scopus 로고
    • Sparse representation for target detection in hyperspectral imagery
    • Y. Chen, N.M. Nasrabadi, and T.D. Tran Sparse representation for target detection in hyperspectral imagery IEEE J. Select. Top. Signal Process. 5 3 2011 629 640
    • (2011) IEEE J. Select. Top. Signal Process. , vol.5 , Issue.3 , pp. 629-640
    • Chen, Y.1    Nasrabadi, N.M.2    Tran, T.D.3
  • 12
    • 79959708449 scopus 로고    scopus 로고
    • Simultaneous joint sparsity model for target detection in hyperspectral imagery
    • Y. Chen, N.M. Nasrabadi, and T.D. Tran Simultaneous joint sparsity model for target detection in hyperspectral imagery IEEE Geosci. Remote Sens. Lett. 8 4 2011 676 680
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , Issue.4 , pp. 676-680
    • Chen, Y.1    Nasrabadi, N.M.2    Tran, T.D.3
  • 14
    • 80455122805 scopus 로고    scopus 로고
    • Learning discriminative sparse representations for modeling, source separation, and mapping of hyperspectral imagery
    • A. Castrodad, Z. Xing, J.B. Greer, E. Bosch, L. Carin, and G. Sapiro Learning discriminative sparse representations for modeling, source separation, and mapping of hyperspectral imagery IEEE Trans. Geosci. Remote Sens. 49 11 2011 4263 4281
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.11 , pp. 4263-4281
    • Castrodad, A.1    Xing, Z.2    Greer, J.B.3    Bosch, E.4    Carin, L.5    Sapiro, G.6
  • 15
    • 84896401103 scopus 로고    scopus 로고
    • Hyperspectral image classification by nonlocal joint collaborative representation with a locally adaptive dictionary
    • J. Li, H. Zhang, Y. Huang, and L. Zhang Hyperspectral image classification by nonlocal joint collaborative representation with a locally adaptive dictionary IEEE Trans. Geosci. Remote Sens. 52 6 2014 3707 3719
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.6 , pp. 3707-3719
    • Li, J.1    Zhang, H.2    Huang, Y.3    Zhang, L.4
  • 16
    • 84905922440 scopus 로고    scopus 로고
    • Joint within-class collaborative representation for hyperspectral image classification
    • W. Li, and Q. Du Joint within-class collaborative representation for hyperspectral image classification IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 7 6 2014 2200 2208
    • (2014) IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. , vol.7 , Issue.6 , pp. 2200-2208
    • Li, W.1    Du, Q.2
  • 18
    • 84907455189 scopus 로고    scopus 로고
    • Collaborative representation for hyperspectral anomaly detection
    • W. Li, and Q. Du Collaborative representation for hyperspectral anomaly detection IEEE Trans. Geosci. Remote Sens. 53 3 2015 1463 1474
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.3 , pp. 1463-1474
    • Li, W.1    Du, Q.2
  • 21
    • 84904214211 scopus 로고    scopus 로고
    • Classification and boosting with multiple collaborative representations
    • Y. Chi, and F. Porikli Classification and boosting with multiple collaborative representations IEEE Trans. Pattern Anal. Mach. Intell. 36 8 2014 1519 1531
    • (2014) IEEE Trans. Pattern Anal. Mach. Intell. , vol.36 , Issue.8 , pp. 1519-1531
    • Chi, Y.1    Porikli, F.2
  • 22
    • 84906784183 scopus 로고    scopus 로고
    • Kernel collaborative representation with Tikhonov regularization for hyperspectral image classification
    • W. Li, Q. Du, and M. Xiong Kernel collaborative representation with Tikhonov regularization for hyperspectral image classification IEEE Geosci. Remote Sens. Lett. 12 1 2015 48 52
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.12 , Issue.1 , pp. 48-52
    • Li, W.1    Du, Q.2    Xiong, M.3
  • 23
    • 0036613261 scopus 로고    scopus 로고
    • Anomaly detection and classification for hyperspectral imagery
    • C.-I. Chang, and S.-S. Chiang Anomaly detection and classification for hyperspectral imagery IEEE Trans. Geosci. Remote Sens. 40 6 2002 1314 1325
    • (2002) IEEE Trans. Geosci. Remote Sens. , vol.40 , Issue.6 , pp. 1314-1325
    • Chang, C.-I.1    Chiang, S.-S.2
  • 24
    • 78049264379 scopus 로고    scopus 로고
    • Local manifold learning-based k-nearest-neighbor for hyperspectral image classification
    • L. Ma, M.M. Crawford, and J. Tian Local manifold learning-based k-nearest-neighbor for hyperspectral image classification IEEE Trans. Geosci. Remote Sens. 48 11 2010 4099 4109
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.11 , pp. 4099-4109
    • Ma, L.1    Crawford, M.M.2    Tian, J.3
  • 27
    • 0020524559 scopus 로고
    • A method of comparing the areas under receiver operating characteristic curves derived from the same cases
    • J.A. Hanley, and B.J. McNeil A method of comparing the areas under receiver operating characteristic curves derived from the same cases Radiology 148 3 1983 839 843
    • (1983) Radiology , vol.148 , Issue.3 , pp. 839-843
    • Hanley, J.A.1    McNeil, B.J.2
  • 28
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristics (ROC) curve
    • J.A. Hanley, and B.J. McNeil The meaning and use of the area under a receiver operating characteristics (ROC) curve Radiology 143 1 1982 29 36
    • (1982) Radiology , vol.143 , Issue.1 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 29
    • 84924093890 scopus 로고    scopus 로고
    • Decision fusion for dual-window-based hyperspectral anomaly detector
    • W. Li, and Q. Du Decision fusion for dual-window-based hyperspectral anomaly detector J. Appl. Remote Sens. 9 2015 097297
    • (2015) J. Appl. Remote Sens. , vol.9 , pp. 097297
    • Li, W.1    Du, Q.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.