메뉴 건너뛰기




Volumn 52, Issue 6, 2014, Pages 3399-3411

Decision fusion in kernel-induced spaces for hyperspectral image classification

Author keywords

Decision fusion; hyperspectral data; kernel methods; One against one (OAO) algorithm

Indexed keywords

ALGORITHMS; DISCRIMINANT ANALYSIS; FISHER INFORMATION MATRIX; IMAGE CLASSIFICATION;

EID: 84896397647     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2013.2272760     Document Type: Article
Times cited : (67)

References (34)
  • 2
    • 33644988819 scopus 로고    scopus 로고
    • A fast kernel-based nonlineardiscriminant analysis for multi-class problems
    • Jun
    • Y. Xu, D. Zhang, Z. Jin, M. Li, and J. Y. Yang, "A fast kernel-based nonlineardiscriminant analysis for multi-class problems," Pattern Recognit.,vol. 39, no. 6, pp. 1026-1033, Jun. 2006.
    • (2006) Pattern Recognit. , vol.39 , Issue.6 , pp. 1026-1033
    • Xu, Y.1    Zhang, D.2    Jin, Z.3    Li, M.4    Yang, J.Y.5
  • 3
    • 0038633559 scopus 로고    scopus 로고
    • Constructing descriptive and discriminative nonlinear features: Rayleighcoefficients in kernel feature spaces
    • May
    • S. Mika, G. Rätsch, J.Weston, B. Schölkopf, A. Smola, and K. R. Müller,"Constructing descriptive and discriminative nonlinear features: Rayleighcoefficients in kernel feature spaces," IEEE Trans. Pattern Anal. Mach.Intell., vol. 25, no. 5, pp. 623-628, May 2003.
    • (2003) IEEE Trans. Pattern Anal. Mach.Intell. , vol.25 , Issue.5 , pp. 623-628
    • Mika, S.1    Rätsch, G.2    Weston, J.3    Schölkopf, B.4    Smola, A.5    Müller, K.R.6
  • 4
    • 67651152570 scopus 로고    scopus 로고
    • Information fusion in kernel-inducedspaces for robust subpixel hyperspectral ATR
    • Jul
    • S. Prasad and L. Mann Bruce, "Information fusion in kernel-inducedspaces for robust subpixel hyperspectral ATR," IEEE Geosci. RemoteSens. Lett., vol. 6, no. 3, pp. 572-576, Jul. 2009.
    • (2009) IEEE Geosci. RemoteSens. Lett. , vol.6 , Issue.3 , pp. 572-576
    • Prasad, S.1    Mann Bruce, L.2
  • 5
    • 38349158946 scopus 로고    scopus 로고
    • A selective KPCA algorithm based on highorderstatistics for anomaly detection in hyperspectral imagery
    • Jan
    • Y. Gu, Y. Liu, and Y. Zhang, "A selective KPCA algorithm based on highorderstatistics for anomaly detection in hyperspectral imagery," IEEEGeosci. Remote Sens. Lett., vol. 5, no. 1, pp. 43-47, Jan. 2008.
    • (2008) IEEEGeosci. Remote Sens. Lett. , vol.5 , Issue.1 , pp. 43-47
    • Gu, Y.1    Liu, Y.2    Zhang, Y.3
  • 6
    • 80052307660 scopus 로고    scopus 로고
    • Locality-preservingdiscriminant analysis in kernel-induced spaces for hyperspectral imageclassification
    • Sep
    • W. Li, S. Prasad, J. E. Fowler, and L. Mann Bruce, "Locality- preservingdiscriminant analysis in kernel-induced spaces for hyperspectral imageclassification," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 5, pp. 894-898, Sep. 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , Issue.5 , pp. 894-898
    • Li, W.1    Prasad, S.2    Fowler, J.E.3    Mann Bruce, L.4
  • 7
    • 61349199062 scopus 로고    scopus 로고
    • Classification ofhyperspectral images with regularized linear discriminant analysis
    • Mar
    • T. V. Bandos, L. Bruzzone, and G. Camps-Valls, "Classification ofhyperspectral images with regularized linear discriminant analysis,"IEEE Trans. Geosci. Remote Sens., vol. 47, no. 3, pp. 862-873,Mar. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.3 , pp. 862-873
    • Bandos, T.V.1    Bruzzone, L.2    Camps-Valls, G.3
  • 8
    • 65549157171 scopus 로고    scopus 로고
    • Kernel discriminant analysis for positivedefinite and indefinite kernels
    • Jun
    • E. Pekalska and B. Haasdonk, "Kernel discriminant analysis for positivedefinite and indefinite kernels," IEEE Trans. Pattern Anal. Mach. Intell.,vol. 31, no. 6, pp. 1017-1032, Jun. 2009.
    • (2009) IEEE Trans. Pattern Anal. Mach. Intell. , vol.31 , Issue.6 , pp. 1017-1032
    • Pekalska, E.1    Haasdonk, B.2
  • 9
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensingimages with support vector machines
    • Aug
    • F.Melgani and L. Bruzzone, "Classification of hyperspectral remote sensingimages with support vector machines," IEEE Trans. Geosci. RemoteSens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
    • (2004) IEEE Trans. Geosci. RemoteSens. , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 10
    • 34249753618 scopus 로고
    • Support vector networks
    • Sep
    • C. Cortes and V. N. Vapnik, "Support vector networks," Mach. Learn.,vol. 20, no. 3, pp. 273-297, Sep. 1995.
    • (1995) Mach. Learn. , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.N.2
  • 11
    • 33645983632 scopus 로고    scopus 로고
    • Improving multiclass patternrecognition by the combination of two strategies
    • Jun
    • N. García-Pedrajas and D. Ortiz-Boyer, "Improving multiclass patternrecognition by the combination of two strategies," IEEE Trans. PatternAnal. Mach. Intell., vol. 28, no. 6, pp. 1001-1006, Jun. 2006.
    • (2006) IEEE Trans. PatternAnal. Mach. Intell. , vol.28 , Issue.6 , pp. 1001-1006
    • García-Pedrajas, N.1    Ortiz-Boyer, D.2
  • 12
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass supportvector machines
    • Mar
    • C.W. Hsu and C. J. Lin, "A comparison of methods for multiclass supportvector machines," IEEE Trans. Neural Netw., vol. 13, no. 2, pp. 415-425,Mar. 2002.
    • (2002) IEEE Trans. Neural Netw. , vol.13 , Issue.2 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.2
  • 13
    • 57749098429 scopus 로고    scopus 로고
    • Nesting one-against-one algorithmbased on SVMs for pattern classification
    • Dec
    • B. Liu, Z. Hao, and E. C. C. Tsang, "Nesting one-against-one algorithmbased on SVMs for pattern classification," IEEE Trans. Neural Netw.,vol. 19, no. 12, pp. 2044-2052, Dec. 2008.
    • (2008) IEEE Trans. Neural Netw. , vol.19 , Issue.12 , pp. 2044-2052
    • Liu, B.1    Hao, Z.2    Tsang, E.C.C.3
  • 14
    • 45149132155 scopus 로고    scopus 로고
    • Hyperspectral remote sensing image classificationbased on kernel Fisher discriminant analysis
    • Beijing, China Nov.
    • G. Yang, H. Liu, and X. Yu, "Hyperspectral remote sensing image classificationbased on kernel Fisher discriminant analysis," in Proc. Int.Conf. Wavelet Anal. Pattern Recognit., Beijing, China, Nov. 2007,pp. 1139-1143.
    • (2007) Proc. Int.Conf. Wavelet Anal. Pattern Recognit. , pp. 1139-1143
    • Yang, G.1    Liu, H.2    Yu, X.3
  • 15
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectralimage classification
    • Jun
    • G. Camps-Valls and L. Bruzzone, "Kernel-based methods for hyperspectralimage classification," IEEE Trans. Geosci. Remote Sens., vol. 43,no. 6, pp. 1351-1362, Jun. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 16
    • 77957001686 scopus 로고    scopus 로고
    • Learning relevantimage features with multiple-kernel classification
    • Oct
    • D. Tuia, G. Camps-Valls, G. Matasci, and M. Kanevski, "Learning relevantimage features with multiple-kernel classification," IEEE Trans.Geosci. Remote Sens., vol. 48, no. 10, pp. 3780-3791, Oct. 2010.
    • (2010) IEEE Trans.Geosci. Remote Sens. , vol.48 , Issue.10 , pp. 3780-3791
    • Tuia, D.1    Camps-Valls, G.2    Matasci, G.3    Kanevski, M.4
  • 17
    • 35348821947 scopus 로고    scopus 로고
    • Hyperspectral image classification using relevance vector machines
    • DOI 10.1109/LGRS.2007.903069
    • B. Demir and S. Ertürk, "Hyperspectral image classification using relevancevector machines," IEEE Geosci. Remote Sens. Lett., vol. 4, no. 4,pp. 586-590, Oct. 2007. (Pubitemid 47588035)
    • (2007) IEEE Geoscience and Remote Sensing Letters , vol.4 , Issue.4 , pp. 586-590
    • Demir, B.1    Erturk, S.2
  • 18
    • 79957643015 scopus 로고    scopus 로고
    • Robust hyperspectral classification usingrelevance vector machine
    • Jun
    • F. A. Mainji and Y. Zhang, "Robust hyperspectral classification usingrelevance vector machine," IEEE Trans. Geosci. Remote Sens., vol. 49,no. 6, pp. 2100-2112, Jun. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.6 , pp. 2100-2112
    • Mainji, F.A.1    Zhang, Y.2
  • 19
    • 64149126207 scopus 로고    scopus 로고
    • Hyperspectral band selection and endmemberdetection using sparsity promoting priors
    • Apr
    • A. Zare and P. Gader, "Hyperspectral band selection and endmemberdetection using sparsity promoting priors," IEEE Geosci. Remote Sens.Lett., vol. 5, no. 2, pp. 256-260, Apr. 2008.
    • (2008) IEEE Geosci. Remote Sens.Lett. , vol.5 , Issue.2 , pp. 256-260
    • Zare, A.1    Gader, P.2
  • 20
    • 54249139939 scopus 로고    scopus 로고
    • Kernel Fisher discriminant analysis inGaussian reproducing kernel Hilbert spaces
    • Tech. Rep
    • S. Y. Huang and C. R. Hwang, "Kernel Fisher discriminant analysis inGaussian reproducing kernel Hilbert spaces," Inst. Stat. Sci., Acad. Sinica,Taipei, Taiwan, 2006, Tech. Rep.
    • (2006) Inst. Stat. Sci., Acad. Sinica,Taipei, Taiwan
    • Huang, S.Y.1    Hwang, C.R.2
  • 21
    • 35448973729 scopus 로고    scopus 로고
    • A kernel optimization method based on the localized kernel Fisher criterion
    • DOI 10.1016/j.patcog.2007.08.009, PII S0031320307003950, Feature Generation and Machine Learning for Robust Multimodal Biometrics
    • B. Chen, H. Liu, and Z. Bao, "A kernel optimization method based onthe localized kernel Fisher criterion," Pattern Recognit., vol. 41, no. 3,pp. 1098-1109, Mar. 2008. (Pubitemid 47632688)
    • (2008) Pattern Recognition , vol.41 , Issue.3 , pp. 1098-1109
    • Chen, B.1    Liu, H.2    Bao, Z.3
  • 22
    • 34249086815 scopus 로고    scopus 로고
    • Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis
    • M. Sugiyama, "Dimensionality reduction of multimodal labeled data bylocal Fisher discriminant analysis," J. Mach. Learn. Res., vol. 8, no. 5,pp. 1027-1061, May 2007. (Pubitemid 46798409)
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 1027-1061
    • Sugiyama, M.1
  • 23
    • 13444286179 scopus 로고    scopus 로고
    • Locality preserving projections
    • S. Thrun L. Saul, andB. Schölkopf, Eds. Cambridge, MA, USA: MIT Press
    • X. He and P. Niyogi, "Locality preserving projections," in Advancesin Neural Information Processing System, S. Thrun, L. Saul, andB. Schölkopf, Eds. Cambridge, MA, USA: MIT Press, 2004.
    • (2004) Advancesin Neural Information Processing System
    • He, X.1    Niyogi, P.2
  • 24
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C. J. C. Burges, "A tutorial on support vector machines for patternrecognition," Data Mining Knowl. Discov., vol. 2, no. 2, pp. 121-167,Jun. 1998. (Pubitemid 128695475)
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 26
    • 53349127642 scopus 로고    scopus 로고
    • Decision fusion with confidence-basedweight assignment for hyperspectral target recognition
    • May
    • S. Prasad and L. Mann Bruce, "Decision fusion with confidence-basedweight assignment for hyperspectral target recognition," IEEE Trans.Geosci. Remote Sens., vol. 46, no. 5, pp. 1448-1456, May 2008.
    • (2008) IEEE Trans.Geosci. Remote Sens. , vol.46 , Issue.5 , pp. 1448-1456
    • Prasad, S.1    Mann Bruce, L.2
  • 27
    • 34249822423 scopus 로고    scopus 로고
    • Decision fusion forthe classification of urban remote sensing images
    • Oct
    • M. Fauvel, J. Chanussot, and J. A. Benediktsson, "Decision fusion forthe classification of urban remote sensing images," IEEE Trans. Geosci.Remote Sens., vol. 44, no. 10, pp. 2828-2838, Oct. 2006.
    • (2006) IEEE Trans. Geosci.Remote Sens. , vol.44 , Issue.10 , pp. 2828-2838
    • Fauvel, M.1    Chanussot, J.2    Benediktsson, J.A.3
  • 28
    • 0002437730 scopus 로고
    • A test of normality of observationsand regression residuals
    • Aug.
    • C. M. Jarque and A. K. Bera, "A test of normality of observationsand regression residuals," Int. Stat. Rev., vol. 55, no. 2, pp. 163-172,Aug. 1987.
    • (1987) Int. Stat. Rev. , vol.55 , Issue.2 , pp. 163-172
    • Jarque, C.M.1    Bera, A.K.2
  • 29
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • DOI 10.1023/A:1012450327387
    • O. Chapelle, V. N. Vapnik, O. Bousquet, and S. Mukherjee, "Choosingmultiple parameters for support vector machines," Mach. Learn., vol. 46,no. 1-3, pp. 131-159, Jan. 2002. (Pubitemid 34129966)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 30
    • 0037381325 scopus 로고    scopus 로고
    • Fast approximation of Kullback-Leibler distance for dependencetrees and hidden Markov models
    • Apr
    • M. N. Do, "Fast approximation of Kullback-Leibler distance for dependencetrees and hidden Markov models," IEEE Signal Process. Lett.,vol. 10, no. 4, pp. 115-118, Apr. 2003.
    • (2003) IEEE Signal Process. Lett. , vol.10 , Issue.4 , pp. 115-118
    • Do, M.N.1
  • 31
    • 82155191285 scopus 로고    scopus 로고
    • Hyperspectralimage classification with independent component discriminant analysis
    • Dec
    • A. Villa, J. A. Benediktsson, J. Chanussot, and C. Jutten, "Hyperspectralimage classification with independent component discriminant analysis,"IEEE Trans. Geosci. Remote Sens., vol. 49, no. 12, pp. 4865-4876,Dec. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.12 , pp. 4865-4876
    • Villa, A.1    Benediktsson, J.A.2    Chanussot, J.3    Jutten, C.4
  • 32
    • 70350662759 scopus 로고    scopus 로고
    • Noise-resistant wavelet-basedBayesian fusion of multispectral and hyperspectral images
    • Nov
    • Y. Zhang, S. D. Backer, and P. Scheunders, "Noise-resistant wavelet-basedBayesian fusion of multispectral and hyperspectral images," IEEE Trans.Geosci. Remote Sens., vol. 47, no. 11, pp. 3834-3843, Nov. 2009.
    • (2009) IEEE Trans.Geosci. Remote Sens. , vol.47 , Issue.11 , pp. 3834-3843
    • Zhang, Y.1    Backer, S.D.2    Scheunders, P.3
  • 33
    • 79952041437 scopus 로고    scopus 로고
    • Denoising of hyperspectral imagery using principalcomponent analysis and wavelet shrinkage
    • Mar
    • G. Chen and S. E. Qian, "Denoising of hyperspectral imagery using principalcomponent analysis and wavelet shrinkage," IEEE Trans. Geosci.Remote Sens., vol. 49, no. 3, pp. 973-980, Mar. 2011.
    • (2011) IEEE Trans. Geosci.Remote Sens. , vol.49 , Issue.3 , pp. 973-980
    • Chen, G.1    Qian, S.E.2
  • 34
    • 84867091378 scopus 로고    scopus 로고
    • Reconstructions from compressive random projectionsof hyperspectral imagery
    • S. Prasad L. Mann Bruce,and J. Chanussot, Eds. New York, NY, USA: Springer- Verlag ch. 3
    • J. E. Fowler and Q. Du, "Reconstructions from compressive random projectionsof hyperspectral imagery," in OpticalRemote Sensing: Advances inSignal Processing and Exploitation Techniques, S. Prasad, L. Mann Bruce,and J. Chanussot, Eds. New York, NY, USA: Springer-Verlag, 2011,ch. 3, pp. 31-48.
    • (2011) OpticalRemote Sensing: Advances InSignal Processing and Exploitation Techniques , pp. 31-48
    • Fowler, J.E.1    Du, Q.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.