-
1
-
-
80053605725
-
Theranostic nanomedicine
-
Lammers T, Aime S, Hennink WE, Storm G, Kiessling F. Theranostic nanomedicine. Acc Chem Res. 2011; 44: 1029-38
-
(2011)
Acc Chem Res
, vol.44
, pp. 1029-1038
-
-
Lammers, T.1
Aime, S.2
Hennink, W.E.3
Storm, G.4
Kiessling, F.5
-
2
-
-
84887621673
-
Recent progress in nanomedicine: therapeutic, diagnostic and theranostic applications
-
Rizzo LY, Theek B, Storm G, Kiessling F, Lammers T. Recent progress in nanomedicine: therapeutic, diagnostic and theranostic applications. Curr Opin Biotechnol. 2013; 24: 1159-66
-
(2013)
Curr Opin Biotechnol
, vol.24
, pp. 1159-1166
-
-
Rizzo, L.Y.1
Theek, B.2
Storm, G.3
Kiessling, F.4
Lammers, T.5
-
3
-
-
84884365015
-
The causes and consequences of genetic heterogeneity in cancer evolution
-
Burrell RA, McGranahan N, Bartek J, Swanton C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature. 2013; 501: 338-45
-
(2013)
Nature
, vol.501
, pp. 338-345
-
-
Burrell, R.A.1
McGranahan, N.2
Bartek, J.3
Swanton, C.4
-
5
-
-
84855573512
-
Theranostic nanoplatforms for simultaneous cancer imaging and therapy: current approaches and future perspectives
-
Choi KY, Liu G, Lee S, Chen X. Theranostic nanoplatforms for simultaneous cancer imaging and therapy: current approaches and future perspectives. Nanoscale. 2012; 4: 330-42
-
(2012)
Nanoscale
, vol.4
, pp. 330-342
-
-
Choi, K.Y.1
Liu, G.2
Lee, S.3
Chen, X.4
-
6
-
-
78650169216
-
Nanoparticle-based theranostic agents
-
Xie J, Lee S, Chen X. Nanoparticle-based theranostic agents. Adv Drug Deliv Rev. 2010; 62: 1064-79
-
(2010)
Adv Drug Deliv Rev
, vol.62
, pp. 1064-1079
-
-
Xie, J.1
Lee, S.2
Chen, X.3
-
7
-
-
84896734996
-
Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target?
-
Kobayashi H, Watanabe R, Choyke PL. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics. 2013; 4: 81-9
-
(2013)
Theranostics
, vol.4
, pp. 81-89
-
-
Kobayashi, H.1
Watanabe, R.2
Choyke, P.L.3
-
8
-
-
36849067019
-
Nanocarriers as an emerging platform for cancer therapy
-
Peer D, Karp JM, Hong S, FaroKHzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007; 2: 751-60
-
(2007)
Nat Nanotechnol
, vol.2
, pp. 751-760
-
-
Peer, D.1
Karp, J.M.2
Hong, S.3
Faro, K.4
Hzad, O.C.5
Margalit, R.6
Langer, R.7
-
9
-
-
77955175216
-
Strategies in the design of nanoparticles for therapeutic applications
-
Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov. 2010; 9: 615-27
-
(2010)
Nat Rev Drug Discov
, vol.9
, pp. 615-627
-
-
Petros, R.A.1
DeSimone, J.M.2
-
10
-
-
84864258079
-
The effect of nanoparticle size, shape, and surface chemistry on biological systems
-
Albanese A, Tang PS, Chan WC. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng. 2012; 14: 1-16
-
(2012)
Annu Rev Biomed Eng
, vol.14
, pp. 1-16
-
-
Albanese, A.1
Tang, P.S.2
Chan, W.C.3
-
11
-
-
0026352832
-
Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy
-
Papahadjopoulos D, Allen TM, Gabizon A, Mayhew E, Matthay K, Huang SK, et al. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci U S A. 1991; 88: 11460-4
-
(1991)
Proc Natl Acad Sci U S A
, vol.88
, pp. 11460-11464
-
-
Papahadjopoulos, D.1
Allen, T.M.2
Gabizon, A.3
Mayhew, E.4
Matthay, K.5
Huang, S.K.6
-
12
-
-
84878836924
-
The polyethyleneglycol dilemma: advantage and disadvantage of PEGylation of liposomes for systemic genes and nucleic acids delivery to tumors
-
Hatakeyama H, Akita H, Harashima H. The polyethyleneglycol dilemma: advantage and disadvantage of PEGylation of liposomes for systemic genes and nucleic acids delivery to tumors. Biol Pharm Bull. 2013; 36: 892-9
-
(2013)
Biol Pharm Bull
, vol.36
, pp. 892-899
-
-
Hatakeyama, H.1
Akita, H.2
Harashima, H.3
-
13
-
-
66449116301
-
Mediating Tumor Targeting Efficiency of Nanoparticles Through Design
-
Perrault SD, Walkey C, Jennings T, Fischer HC, Chan WCW. Mediating Tumor Targeting Efficiency of Nanoparticles Through Design. Nano Lett. 2009; 9: 1909-15
-
(2009)
Nano Lett
, vol.9
, pp. 1909-1915
-
-
Perrault, S.D.1
Walkey, C.2
Jennings, T.3
Fischer, H.C.4
Chan, W.C.W.5
-
14
-
-
84867468134
-
PEGylated PRINT nanoparticles: the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics
-
Perry JL, Reuter KG, Kai MP, Herlihy KP, Jones SW, Luft JC, et al. PEGylated PRINT nanoparticles: the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics. Nano Lett. 2012; 12: 5304-10
-
(2012)
Nano Lett
, vol.12
, pp. 5304-5310
-
-
Perry, J.L.1
Reuter, K.G.2
Kai, M.P.3
Herlihy, K.P.4
Jones, S.W.5
Luft, J.C.6
-
15
-
-
84863338346
-
Multifunctional nanoparticles for multimodal imaging and theragnosis
-
Lee DE, Koo H, Sun IC, Ryu JH, Kim K, Kwon IC. Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem Soc Rev. 2012; 41: 2656-72
-
(2012)
Chem Soc Rev
, vol.41
, pp. 2656-2672
-
-
Lee, D.E.1
Koo, H.2
Sun, I.C.3
Ryu, J.H.4
Kim, K.5
Kwon, I.C.6
-
16
-
-
84867018850
-
Biomedical nanomaterials for imaging-guided cancer therapy
-
Huang Y, He S, Cao W, Cai K, Liang XJ. Biomedical nanomaterials for imaging-guided cancer therapy. Nanoscale. 2012; 4: 6135-49
-
(2012)
Nanoscale
, vol.4
, pp. 6135-6149
-
-
Huang, Y.1
He, S.2
Cao, W.3
Cai, K.4
Liang, X.J.5
-
17
-
-
84867643331
-
Tumor-targeting multi-functional nanoparticles for theragnosis: new paradigm for cancer therapy
-
Ryu JH, Koo H, Sun IC, Yuk SH, Choi K, Kim K, et al. Tumor-targeting multi-functional nanoparticles for theragnosis: new paradigm for cancer therapy. Adv Drug Deliv Rev. 2012; 64: 1447-58
-
(2012)
Adv Drug Deliv Rev
, vol.64
, pp. 1447-1458
-
-
Ryu, J.H.1
Koo, H.2
Sun, I.C.3
Yuk, S.H.4
Choi, K.5
Kim, K.6
-
18
-
-
0035318612
-
A clearer vision for in vivo imaging
-
Weissleder R. A clearer vision for in vivo imaging. Nat Biotechnol. 2001; 19: 316-7
-
(2001)
Nat Biotechnol
, vol.19
, pp. 316-317
-
-
Weissleder, R.1
-
19
-
-
84870523966
-
Image guided biodistribution and pharmacokinetic studies of theranostics
-
Ding H, Wu F. Image guided biodistribution and pharmacokinetic studies of theranostics. Theranostics. 2012; 2: 1040-53
-
(2012)
Theranostics
, vol.2
, pp. 1040-1053
-
-
Ding, H.1
Wu, F.2
-
20
-
-
77955488728
-
In vivo near-infrared fluorescence imaging of cancer with nanoparticle-based probes
-
He X, Wang K, Cheng Z. In vivo near-infrared fluorescence imaging of cancer with nanoparticle-based probes. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010; 2: 349-66
-
(2010)
Wiley Interdiscip Rev Nanomed Nanobiotechnol
, vol.2
, pp. 349-366
-
-
He, X.1
Wang, K.2
Cheng, Z.3
-
21
-
-
79956157382
-
Real-time and non-invasive optical imaging of tumor-targeting glycol chitosan nanoparticles in various tumor models
-
Na JH, Koo H, Lee S, Min KH, Park K, Yoo H, et al. Real-time and non-invasive optical imaging of tumor-targeting glycol chitosan nanoparticles in various tumor models. Biomaterials. 2011; 32: 5252-61
-
(2011)
Biomaterials
, vol.32
, pp. 5252-5261
-
-
Na, J.H.1
Koo, H.2
Lee, S.3
Min, K.H.4
Park, K.5
Yoo, H.6
-
22
-
-
84866735034
-
Effect of the stability and deformability of self-assembled glycol chitosan nanoparticles on tumor-targeting efficiency
-
Na JH, Lee SY, Lee S, Koo H, Min KH, Jeong SY, et al. Effect of the stability and deformability of self-assembled glycol chitosan nanoparticles on tumor-targeting efficiency. J Control Release. 2012; 163: 2-9
-
(2012)
J Control Release
, vol.163
, pp. 2-9
-
-
Na, J.H.1
Lee, S.Y.2
Lee, S.3
Koo, H.4
Min, K.H.5
Jeong, S.Y.6
-
23
-
-
63649092083
-
Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles
-
Nam HY, Kwon SM, Chung H, Lee SY, Kwon SH, Jeon H, et al. Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles. J Control Release. 2009; 135: 259-67
-
(2009)
J Control Release
, vol.135
, pp. 259-267
-
-
Nam, H.Y.1
Kwon, S.M.2
Chung, H.3
Lee, S.Y.4
Kwon, S.H.5
Jeon, H.6
-
24
-
-
77955417363
-
Tumor-homing multifunctional nanoparticles for cancer theragnosis: Simultaneous diagnosis, drug delivery, and therapeutic monitoring
-
Kim K, Kim JH, Park H, Kim YS, Park K, Nam H, et al. Tumor-homing multifunctional nanoparticles for cancer theragnosis: Simultaneous diagnosis, drug delivery, and therapeutic monitoring. J Control Release. 2010; 146: 219-27
-
(2010)
J Control Release
, vol.146
, pp. 219-227
-
-
Kim, K.1
Kim, J.H.2
Park, H.3
Kim, Y.S.4
Park, K.5
Nam, H.6
-
25
-
-
84888438033
-
Fibrin-binding, peptide amphiphile micelles for targeting glioblastoma
-
Chung EJ, Cheng Y, Morshed R, Nord K, Han Y, Wegscheid ML, et al. Fibrin-binding, peptide amphiphile micelles for targeting glioblastoma. Biomaterials. 2014; 35: 1249-56
-
(2014)
Biomaterials
, vol.35
, pp. 1249-1256
-
-
Chung, E.J.1
Cheng, Y.2
Morshed, R.3
Nord, K.4
Han, Y.5
Wegscheid, M.L.6
-
26
-
-
84875676348
-
Versatile fluorescence resonance energy transfer-based mesoporous silica nanoparticles for real-time monitoring of drug release
-
Lai J, Shah BP, Garfunkel E, Lee KB. Versatile fluorescence resonance energy transfer-based mesoporous silica nanoparticles for real-time monitoring of drug release. ACS nano. 2013; 7: 2741-50
-
(2013)
ACS nano
, vol.7
, pp. 2741-2750
-
-
Lai, J.1
Shah, B.P.2
Garfunkel, E.3
Lee, K.B.4
-
27
-
-
84897696305
-
In vivo and in situ tracking cancer chemotherapy by highly photostable NIR fluorescent theranostic prodrug
-
Wu X, Sun X, Guo Z, Tang J, Shen Y, James TD, et al. In vivo and in situ tracking cancer chemotherapy by highly photostable NIR fluorescent theranostic prodrug. J Am Chem Soc. 2014; 136: 3579-88
-
(2014)
J Am Chem Soc
, vol.136
, pp. 3579-3588
-
-
Wu, X.1
Sun, X.2
Guo, Z.3
Tang, J.4
Shen, Y.5
James, T.D.6
-
28
-
-
0013162104
-
Optical imaging of apoptosis as a biomarker of tumor response to chemotherapy
-
Schellenberger EA, Bogdanov A, Petrovsky A, Ntziachristos V, Weissleder R, Josephson L. Optical imaging of apoptosis as a biomarker of tumor response to chemotherapy. Neoplasia. 2003; 5: 187-92
-
(2003)
Neoplasia
, vol.5
, pp. 187-192
-
-
Schellenberger, E.A.1
Bogdanov, A.2
Petrovsky, A.3
Ntziachristos, V.4
Weissleder, R.5
Josephson, L.6
-
29
-
-
38549166422
-
New approaches for imaging tumour responses to treatment
-
Brindle K. New approaches for imaging tumour responses to treatment. Nat Rev Cancer. 2008; 8: 94-107
-
(2008)
Nat Rev Cancer
, vol.8
, pp. 94-107
-
-
Brindle, K.1
-
30
-
-
8444220527
-
Molecular mechanisms of caspase regulation during apoptosis
-
Riedl SJ, Shi Y. Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol. 2004; 5: 897-907
-
(2004)
Nat Rev Mol Cell Biol
, vol.5
, pp. 897-907
-
-
Riedl, S.J.1
Shi, Y.2
-
31
-
-
79958136891
-
Annexin A5-conjugated polymeric micelles for dual SPECT and optical detection of apoptosis
-
Zhang R, Lu W, Wen X, Huang M, Zhou M, Liang D, et al. Annexin A5-conjugated polymeric micelles for dual SPECT and optical detection of apoptosis. J Nucl Med. 2011; 52: 958-64
-
(2011)
J Nucl Med
, vol.52
, pp. 958-964
-
-
Zhang, R.1
Lu, W.2
Wen, X.3
Huang, M.4
Zhou, M.5
Liang, D.6
-
32
-
-
84879223713
-
Annexin A5-functionalized nanoparticle for multimodal imaging of cell death
-
Zhang R, Huang M, Zhou M, Wen X, Huang Q, Li C. Annexin A5-functionalized nanoparticle for multimodal imaging of cell death. Mol Imaging. 2013; 12: 182-90
-
(2013)
Mol Imaging
, vol.12
, pp. 182-190
-
-
Zhang, R.1
Huang, M.2
Zhou, M.3
Wen, X.4
Huang, Q.5
Li, C.6
-
33
-
-
79951701642
-
Real time, high resolution video imaging of apoptosis in single cells with a polymeric nanoprobe
-
Lee S, Choi KY, Chung H, Ryu JH, Lee A, Koo H, et al. Real time, high resolution video imaging of apoptosis in single cells with a polymeric nanoprobe. Bioconjug Chem. 2011; 22: 125-31
-
(2011)
Bioconjug Chem
, vol.22
, pp. 125-131
-
-
Lee, S.1
Choi, K.Y.2
Chung, H.3
Ryu, J.H.4
Lee, A.5
Koo, H.6
-
34
-
-
84862880702
-
Theranostic nanoparticles based on PEGylated hyaluronic acid for the diagnosis, therapy and monitoring of colon cancer
-
Choi KY, Jeon EJ, Yoon HY, Lee BS, Na JH, Min KH, et al. Theranostic nanoparticles based on PEGylated hyaluronic acid for the diagnosis, therapy and monitoring of colon cancer. Biomaterials. 2012; 33: 6186-93
-
(2012)
Biomaterials
, vol.33
, pp. 6186-6193
-
-
Choi, K.Y.1
Jeon, E.J.2
Yoon, H.Y.3
Lee, B.S.4
Na, J.H.5
Min, K.H.6
-
36
-
-
79958103463
-
Comparative study of photosensitizer loaded and conjugated glycol chitosan nanoparticles for cancer therapy
-
Lee SJ, Koo H, Jeong H, Huh MS, Choi Y, Jeong SY, et al. Comparative study of photosensitizer loaded and conjugated glycol chitosan nanoparticles for cancer therapy. J Control Release. 2011; 152: 21-9
-
(2011)
J Control Release
, vol.152
, pp. 21-29
-
-
Lee, S.J.1
Koo, H.2
Jeong, H.3
Huh, M.S.4
Choi, Y.5
Jeong, S.Y.6
-
37
-
-
84862829846
-
Tumor-targeting hyaluronic acid nanoparticles for photodynamic imaging and therapy
-
Yoon HY, Koo H, Choi KY, Lee SJ, Kim K, Kwon IC, et al. Tumor-targeting hyaluronic acid nanoparticles for photodynamic imaging and therapy. Biomaterials. 2012; 33: 3980-9
-
(2012)
Biomaterials
, vol.33
, pp. 3980-3989
-
-
Yoon, H.Y.1
Koo, H.2
Choi, K.Y.3
Lee, S.J.4
Kim, K.5
Kwon, I.C.6
-
38
-
-
84878364571
-
Lanthanide-doped upconverting luminescent nanoparticle platforms for optical imaging-guided drug delivery and therapy
-
Shen J, Zhao L, Han G. Lanthanide-doped upconverting luminescent nanoparticle platforms for optical imaging-guided drug delivery and therapy. Adv Drug Deliv Rev. 2013; 65: 744-55
-
(2013)
Adv Drug Deliv Rev
, vol.65
, pp. 744-755
-
-
Shen, J.1
Zhao, L.2
Han, G.3
-
39
-
-
84924559595
-
Current advances in lanthanide ion (Ln(3+))-based upconversion nanomaterials for drug delivery
-
Yang D, Ma P, Hou Z, Cheng Z, Li C, Lin J. Current advances in lanthanide ion (Ln(3+))-based upconversion nanomaterials for drug delivery. Chem Soc Rev. 2015; 44: 1416-48
-
(2015)
Chem Soc Rev
, vol.44
, pp. 1416-1448
-
-
Yang, D.1
Ma, P.2
Hou, Z.3
Cheng, Z.4
Li, C.5
Lin, J.6
-
40
-
-
84924616933
-
Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging
-
Park YI, Lee KT, Suh YD, Hyeon T. Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging. Chem Soc Rev. 2015; 44: 1302-17
-
(2015)
Chem Soc Rev
, vol.44
, pp. 1302-1317
-
-
Park, Y.I.1
Lee, K.T.2
Suh, Y.D.3
Hyeon, T.4
-
41
-
-
84884908900
-
Rational design of multifunctional upconversion nanocrystals/polymer nanocomposites for cisplatin (IV) delivery and biomedical imaging
-
Ma P, Xiao H, Li X, Li C, Dai Y, Cheng Z, et al. Rational design of multifunctional upconversion nanocrystals/polymer nanocomposites for cisplatin (IV) delivery and biomedical imaging. Adv Mater. 2013; 25: 4898-905
-
(2013)
Adv Mater
, vol.25
, pp. 4898-4905
-
-
Ma, P.1
Xiao, H.2
Li, X.3
Li, C.4
Dai, Y.5
Cheng, Z.6
-
42
-
-
84919683158
-
TPGS-stabilized NaYbF4:Er upconversion nanoparticles for dual-modal fluorescent/CT imaging and anticancer drug delivery to overcome multi-drug resistance
-
Tian G, Zheng X, Zhang X, Yin W, Yu J, Wang D, et al. TPGS-stabilized NaYbF4:Er upconversion nanoparticles for dual-modal fluorescent/CT imaging and anticancer drug delivery to overcome multi-drug resistance. Biomaterials. 2015; 40: 107-16
-
(2015)
Biomaterials
, vol.40
, pp. 107-116
-
-
Tian, G.1
Zheng, X.2
Zhang, X.3
Yin, W.4
Yu, J.5
Wang, D.6
-
43
-
-
79959912505
-
Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles
-
Wang C, Tao H, Cheng L, Liu Z. Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials. 2011; 32: 6145-54
-
(2011)
Biomaterials
, vol.32
, pp. 6145-6154
-
-
Wang, C.1
Tao, H.2
Cheng, L.3
Liu, Z.4
-
44
-
-
85052549646
-
Red-emitting upconverting nanoparticles for photodynamic therapy in cancer cells under near-infrared excitation
-
Tian G, Ren W, Yan L, Jian S, Gu Z, Zhou L, et al. Red-emitting upconverting nanoparticles for photodynamic therapy in cancer cells under near-infrared excitation. Small. 2013; 9: 1929-38, 8
-
(2013)
Small
, vol.9
-
-
Tian, G.1
Ren, W.2
Yan, L.3
Jian, S.4
Gu, Z.5
Zhou, L.6
-
45
-
-
72049086922
-
Nonblinking and Nonbleaching Upconverting Nanoparticles as an Optical Imaging Nanoprobe and T1 Magnetic Resonance Imaging Contrast Agent
-
Park YI, Kim JH, Lee KT, Jeon KS, Bin Na H, Yu JH, et al. Nonblinking and Nonbleaching Upconverting Nanoparticles as an Optical Imaging Nanoprobe and T1 Magnetic Resonance Imaging Contrast Agent. Adv Mater. 2009; 21: 4467-+
-
(2009)
Adv Mater
, vol.21
-
-
Park, Y.I.1
Kim, J.H.2
Lee, K.T.3
Jeon, K.S.4
Bin Na, H.5
Yu, J.H.6
-
46
-
-
84868467226
-
Hydrothermal synthesis of NaLuF4:153Sm,Yb,Tm nanoparticles and their application in dual-modality upconversion luminescence and SPECT bioimaging
-
Yang Y, Sun Y, Cao T, Peng J, Liu Y, Wu Y, et al. Hydrothermal synthesis of NaLuF4:153Sm,Yb,Tm nanoparticles and their application in dual-modality upconversion luminescence and SPECT bioimaging. Biomaterials. 2013; 34: 774-83
-
(2013)
Biomaterials
, vol.34
, pp. 774-783
-
-
Yang, Y.1
Sun, Y.2
Cao, T.3
Peng, J.4
Liu, Y.5
Wu, Y.6
-
48
-
-
84862667715
-
Magnetic nanoparticles for cancer diagnosis and therapy
-
Yigit MV, Moore A, Medarova Z. Magnetic nanoparticles for cancer diagnosis and therapy. Pharm Res. 2012; 29: 1180-8
-
(2012)
Pharm Res
, vol.29
, pp. 1180-1188
-
-
Yigit, M.V.1
Moore, A.2
Medarova, Z.3
-
49
-
-
12344322437
-
Next generation, high relaxivity gadolinium MR1 agents
-
Raymond KN, Pierre VC. Next generation, high relaxivity gadolinium MR1 agents. Bioconjug Chem. 2005; 16: 3-8
-
(2005)
Bioconjug Chem
, vol.16
, pp. 3-8
-
-
Raymond, K.N.1
Pierre, V.C.2
-
50
-
-
77950273997
-
Combined delivery and magnetic resonance imaging of neural cell adhesion molecule-targeted doxorubicin-containing liposomes in experimentally induced Kaposi's sarcoma
-
Grange C, Geninatti-Crich S, Esposito G, Alberti D, Tei L, Bussolati B, et al. Combined delivery and magnetic resonance imaging of neural cell adhesion molecule-targeted doxorubicin-containing liposomes in experimentally induced Kaposi's sarcoma. Cancer Res. 2010; 70: 2180-90
-
(2010)
Cancer Res
, vol.70
, pp. 2180-2190
-
-
Grange, C.1
Geninatti-Crich, S.2
Esposito, G.3
Alberti, D.4
Tei, L.5
Bussolati, B.6
-
51
-
-
84937818183
-
Virus-based nanomaterials as positron emission tomography and magnetic resonance contrast agents: from technology development to translational medicine
-
Shukla S, Steinmetz NF. Virus-based nanomaterials as positron emission tomography and magnetic resonance contrast agents: from technology development to translational medicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015; 7: 708-21
-
(2015)
Wiley Interdiscip Rev Nanomed Nanobiotechnol
, vol.7
, pp. 708-721
-
-
Shukla, S.1
Steinmetz, N.F.2
-
52
-
-
84874134190
-
Tobacco mosaic virus rods and spheres as supramolecular high-relaxivity MRI contrast agents
-
Bruckman MA, Hern S, Jiang K, Flask CA, Yu X, Steinmetz NF. Tobacco mosaic virus rods and spheres as supramolecular high-relaxivity MRI contrast agents. J Mater Chem B Mater Biol Med. 2013; 1: 1482-90
-
(2013)
J Mater Chem B Mater Biol Med
, vol.1
, pp. 1482-1490
-
-
Bruckman, M.A.1
Hern, S.2
Jiang, K.3
Flask, C.A.4
Yu, X.5
Steinmetz, N.F.6
-
53
-
-
80855147641
-
Cancer hyperthermia using magnetic nanoparticles
-
Kobayashi T. Cancer hyperthermia using magnetic nanoparticles. Biotechnol J. 2011; 6: 1342-7
-
(2011)
Biotechnol J
, vol.6
, pp. 1342-1347
-
-
Kobayashi, T.1
-
54
-
-
84882252518
-
Superparamagnetic nanoparticle clusters for cancer theranostics combining magnetic resonance imaging and hyperthermia treatment
-
Hayashi K, Nakamura M, Sakamoto W, Yogo T, Miki H, Ozaki S, et al. Superparamagnetic nanoparticle clusters for cancer theranostics combining magnetic resonance imaging and hyperthermia treatment. Theranostics. 2013; 3: 366-76
-
(2013)
Theranostics
, vol.3
, pp. 366-376
-
-
Hayashi, K.1
Nakamura, M.2
Sakamoto, W.3
Yogo, T.4
Miki, H.5
Ozaki, S.6
-
55
-
-
49149118824
-
Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo
-
Yu MK, Jeong YY, Park J, Park S, Kim JW, Min JJ, et al. Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chem Int Ed Engl. 2008; 47: 5362-5
-
(2008)
Angew Chem Int Ed Engl
, vol.47
, pp. 5362-5365
-
-
Yu, M.K.1
Jeong, Y.Y.2
Park, J.3
Park, S.4
Kim, J.W.5
Min, J.J.6
-
57
-
-
84941653196
-
Multifunctional Core/Shell Nanoparticles Cross-linked Polyetherimide-folic Acid as Efficient Notch-1 siRNA Carrier for Targeted Killing of Breast Cancer
-
Yang H, Li Y, Li TT, Xu M, Chen Y, Wu CH, et al. Multifunctional Core/Shell Nanoparticles Cross-linked Polyetherimide-folic Acid as Efficient Notch-1 siRNA Carrier for Targeted Killing of Breast Cancer. Sci Rep. 2014; 4
-
(2014)
Sci Rep
, pp. 4
-
-
Yang, H.1
Li, Y.2
Li, T.T.3
Xu, M.4
Chen, Y.5
Wu, C.H.6
-
58
-
-
0032998146
-
Imaging modalities in x-ray computerized tomography and in selected volume tomography
-
Carlsson CA. Imaging modalities in x-ray computerized tomography and in selected volume tomography. Phys Med Biol. 1999; 44: R23-56
-
(1999)
Phys Med Biol
, vol.44
, pp. R23-R56
-
-
Carlsson, C.A.1
-
59
-
-
84869988600
-
Gold nanoparticles as computerized tomography (CT) contrast agents
-
Xi D, Dong S, Meng XX, Lu QH, Meng LJ, Ye J. Gold nanoparticles as computerized tomography (CT) contrast agents. Rsc Adv. 2012; 2: 12515-24
-
(2012)
Rsc Adv
, vol.2
, pp. 12515-12524
-
-
Xi, D.1
Dong, S.2
Meng, X.X.3
Lu, Q.H.4
Meng, L.J.5
Ye, J.6
-
60
-
-
77955542791
-
A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer
-
Kim D, Jeong YY, Jon S. A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS nano. 2010; 4: 3689-96
-
(2010)
ACS nano
, vol.4
, pp. 3689-3696
-
-
Kim, D.1
Jeong, Y.Y.2
Jon, S.3
-
61
-
-
84907312881
-
Oligonucleotide aptamers: new tools for targeted cancer therapy
-
2014 Aug 5
-
Sun H, Zhu X, Lu PY, Rosato RR, Tan W, Zu Y. Oligonucleotide aptamers: new tools for targeted cancer therapy. Mol Ther Nucleic Acids. 2014 Aug 5; 3: e182
-
Mol Ther Nucleic Acids
, vol.3
, pp. e182
-
-
Sun, H.1
Zhu, X.2
Lu, P.Y.3
Rosato, R.R.4
Tan, W.5
Zu, Y.6
-
62
-
-
84905159215
-
Nanoparticles for photothermal therapies
-
Jaque D, Martinez Maestro L, del Rosal B, Haro-Gonzalez P, Benayas A, Plaza JL, et al. Nanoparticles for photothermal therapies. Nanoscale. 2014; 6: 9494-530
-
(2014)
Nanoscale
, vol.6
, pp. 9494-9530
-
-
Jaque, D.1
Martinez Maestro, L.2
del Rosal, B.3
Haro-Gonzalez, P.4
Benayas, A.5
Plaza, J.L.6
-
63
-
-
48649084584
-
Enhanced radiation sensitivity in prostate cancer by gold-nanoparticles
-
Zhang X, Xing JZ, Chen J, Ko L, Amanie J, Gulavita S, et al. Enhanced radiation sensitivity in prostate cancer by gold-nanoparticles. Clin Invest Med. 2008; 31: E160-7
-
(2008)
Clin Invest Med
, vol.31
, pp. E160-E167
-
-
Zhang, X.1
Xing, J.Z.2
Chen, J.3
Ko, L.4
Amanie, J.5
Gulavita, S.6
-
64
-
-
4644321604
-
The use of gold nanoparticles to enhance radiotherapy in mice
-
Sep; 49
-
Hainfeld JF, Slatkin DN, Smilowitz HM. The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol. 2004; Sep; 49: N309-N15
-
(2004)
Phys Med Biol
, pp. N309-N315
-
-
Hainfeld, J.F.1
Slatkin, D.N.2
Smilowitz, H.M.3
-
65
-
-
80054068961
-
Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy
-
Huang P, Bao L, Zhang C, Lin J, Luo T, Yang D, et al. Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy. Biomaterials. 2011; 32: 9796-809
-
(2011)
Biomaterials
, vol.32
, pp. 9796-9809
-
-
Huang, P.1
Bao, L.2
Zhang, C.3
Lin, J.4
Luo, T.5
Yang, D.6
-
66
-
-
0034126959
-
PET: The merging of biology and imaging into molecular imaging
-
Phelps ME. PET: The merging of biology and imaging into molecular imaging. J Nucl Med. 2000; 41: 661-81
-
(2000)
J Nucl Med
, vol.41
, pp. 661-681
-
-
Phelps, M.E.1
-
67
-
-
84862798517
-
Multifunctional unimolecular micelles for cancer-targeted drug delivery and positron emission tomography imaging
-
Xiao Y, Hong H, Javadi A, Engle JW, Xu W, Yang Y, et al. Multifunctional unimolecular micelles for cancer-targeted drug delivery and positron emission tomography imaging. Biomaterials. 2012; 33: 3071-82
-
(2012)
Biomaterials
, vol.33
, pp. 3071-3082
-
-
Xiao, Y.1
Hong, H.2
Javadi, A.3
Engle, J.W.4
Xu, W.5
Yang, Y.6
-
68
-
-
34848918210
-
Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging
-
Bartlett DW, Su H, Hildebrandt IJ, Weber WA, Davis ME. Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci U S A. 2007; 104: 15549-54
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 15549-15554
-
-
Bartlett, D.W.1
Su, H.2
Hildebrandt, I.J.3
Weber, W.A.4
Davis, M.E.5
-
69
-
-
1442281835
-
Microbubble ultrasound contrast agents: a review
-
Stride E, Saffari N. Microbubble ultrasound contrast agents: a review. Proc Inst Mech Eng H. 2003; 217: 429-47
-
(2003)
Proc Inst Mech Eng H
, vol.217
, pp. 429-447
-
-
Stride, E.1
Saffari, N.2
-
70
-
-
63649118905
-
Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering
-
Qin S, Caskey CF, Ferrara KW. Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering. Phys Med Biol. 2009; 54: R27-57
-
(2009)
Phys Med Biol
, vol.54
, pp. R27-R57
-
-
Qin, S.1
Caskey, C.F.2
Ferrara, K.W.3
-
71
-
-
1242329827
-
Optical observation of lipid-and polymer-shelled ultrasound microbubble contrast agents
-
Bloch SH, Wan M, Dayton PA, Ferrara KW. Optical observation of lipid-and polymer-shelled ultrasound microbubble contrast agents. Appl Phys Lett. 2004; 84: 631-3
-
(2004)
Appl Phys Lett
, vol.84
, pp. 631-633
-
-
Bloch, S.H.1
Wan, M.2
Dayton, P.A.3
Ferrara, K.W.4
-
72
-
-
84927804717
-
Echogenic nanoparticles for ultrasound technologies: Evolution from diagnostic imaging modality to multimodal theranostic agent
-
Son S, Min HS, You DG, Kim BS, Kwon IC. Echogenic nanoparticles for ultrasound technologies: Evolution from diagnostic imaging modality to multimodal theranostic agent. Nano Today. 2014; 9: 525-40
-
(2014)
Nano Today
, vol.9
, pp. 525-540
-
-
Son, S.1
Min, H.S.2
You, D.G.3
Kim, B.S.4
Kwon, I.C.5
-
73
-
-
84954214760
-
Echogenic Glycol Chitosan Nanoparticles for Ultrasound-Triggered Cancer Theranostics
-
Min HS, You DG, Son S, Jeon S, Park JH, Lee S, et al. Echogenic Glycol Chitosan Nanoparticles for Ultrasound-Triggered Cancer Theranostics. Theranostics. 2015; 5: 1402-18
-
(2015)
Theranostics
, vol.5
, pp. 1402-1418
-
-
Min, H.S.1
You, D.G.2
Son, S.3
Jeon, S.4
Park, J.H.5
Lee, S.6
-
74
-
-
0034000453
-
Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review
-
Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000; 65: 271-84
-
(2000)
J Control Release
, vol.65
, pp. 271-284
-
-
Maeda, H.1
Wu, J.2
Sawa, T.3
Matsumura, Y.4
Hori, K.5
-
75
-
-
84921718557
-
pH-controlled gas-generating mineralized nanoparticles: a theranostic agent for ultrasound imaging and therapy of cancers
-
Min KH, Min HS, Lee HJ, Park DJ, Yhee JY, Kim K, et al. pH-controlled gas-generating mineralized nanoparticles: a theranostic agent for ultrasound imaging and therapy of cancers. ACS nano. 2015; 9: 134-45
-
(2015)
ACS nano
, vol.9
, pp. 134-145
-
-
Min, K.H.1
Min, H.S.2
Lee, H.J.3
Park, D.J.4
Yhee, J.Y.5
Kim, K.6
-
76
-
-
0037018959
-
Preparation of alginate beads for floating drug delivery system: effects of CO2 gas-forming agents
-
Choi BY, Park HJ, Hwang SJ, Park JB. Preparation of alginate beads for floating drug delivery system: effects of CO2 gas-forming agents. Int J Pharm. 2002; 239: 81-91
-
(2002)
Int J Pharm
, vol.239
, pp. 81-91
-
-
Choi, B.Y.1
Park, H.J.2
Hwang, S.J.3
Park, J.B.4
-
77
-
-
0029971428
-
Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer
-
Gerweck LE, Seetharaman K. Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer Res. 1996; 56: 1194-8
-
(1996)
Cancer Res
, vol.56
, pp. 1194-1198
-
-
Gerweck, L.E.1
Seetharaman, K.2
-
78
-
-
0021732164
-
The Relevance of Tumor Ph to the Treatment of Malignant Disease
-
Wikehooley JL, Haveman J, Reinhold HS. The Relevance of Tumor Ph to the Treatment of Malignant Disease. Radiother Oncol. 1984; 2: 343-66
-
(1984)
Radiother Oncol
, vol.2
, pp. 343-366
-
-
Wikehooley, J.L.1
Haveman, J.2
Reinhold, H.S.3
-
79
-
-
35848961640
-
Determination of calcium salt solubility with changes in pH and P-CO2, simulating varying gastrointestinal environments
-
Goss SL, Lemons KA, Kerstetter JE, Bogner RH. Determination of calcium salt solubility with changes in pH and P-CO2, simulating varying gastrointestinal environments. J Pharm Pharmacol. 2007; 59: 1485-92
-
(2007)
J Pharm Pharmacol
, vol.59
, pp. 1485-1492
-
-
Goss, S.L.1
Lemons, K.A.2
Kerstetter, J.E.3
Bogner, R.H.4
-
80
-
-
16844382450
-
High-intensity focused ultrasound in the treatment of solid tumours
-
Kennedy JE. High-intensity focused ultrasound in the treatment of solid tumours. Nat Rev Cancer. 2005; 5: 321-7
-
(2005)
Nat Rev Cancer
, vol.5
, pp. 321-327
-
-
Kennedy, J.E.1
-
81
-
-
78649529320
-
Ultrasound triggered, image guided, local drug delivery
-
Deckers R, Moonen CT. Ultrasound triggered, image guided, local drug delivery. J Control Release. 2010; 148: 25-33
-
(2010)
J Control Release
, vol.148
, pp. 25-33
-
-
Deckers, R.1
Moonen, C.T.2
-
82
-
-
84962737176
-
A drug-perfluorocarbon nanoemulsion with an ultrathin silica coating for the synergistic effect of chemotherapy and ablation by high-intensity focused ultrasound
-
Ma M, Xu H, Chen H, Jia X, Zhang K, Wang Q, et al. A drug-perfluorocarbon nanoemulsion with an ultrathin silica coating for the synergistic effect of chemotherapy and ablation by high-intensity focused ultrasound. Adv Mater. 2014; 26: 7378-85
-
(2014)
Adv Mater
, vol.26
, pp. 7378-7385
-
-
Ma, M.1
Xu, H.2
Chen, H.3
Jia, X.4
Zhang, K.5
Wang, Q.6
-
83
-
-
84897486142
-
An Intelligent Nanotheranostic Agent for Targeting, Redox-Responsive Ultrasound Imaging, and Imaging GuidedHigh-Intensity Focused Ultrasound Synergistic Therapy
-
Wang X, Chen HR, Zhang K, Ma M, Li FQ, Zeng DP, et al. An Intelligent Nanotheranostic Agent for Targeting, Redox-Responsive Ultrasound Imaging, and Imaging GuidedHigh-Intensity Focused Ultrasound Synergistic Therapy. Small. 2014; 10: 1403-11
-
(2014)
Small
, vol.10
, pp. 1403-1411
-
-
Wang, X.1
Chen, H.R.2
Zhang, K.3
Ma, M.4
Li, F.Q.5
Zeng, D.P.6
|