메뉴 건너뛰기




Volumn 9906 LNCS, Issue , 2016, Pages 102-118

Playing for data: Ground truth from computer games

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; IMAGE PROCESSING; IMAGE SEGMENTATION; PIXELS; SEMANTICS;

EID: 84990842277     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-319-46475-6_7     Document Type: Conference Paper
Times cited : (1668)

References (54)
  • 1
    • 0002221136 scopus 로고
    • Fast algorithms for mining association rules in large databases
    • Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: VLDB (1994)
    • (1994) VLDB
    • Agrawal, R.1    Srikant, R.2
  • 4
    • 84911409986 scopus 로고    scopus 로고
    • Seeing 3D chairs: Exemplar part-based 2D-3D alignment using a large dataset of CAD models
    • Aubry, M., Maturana, D., Efros, A.A., Russell, B.C., Sivic, J.: Seeing 3D chairs:exemplar part-based 2D-3D alignment using a large dataset of CAD models. In:CVPR (2014)
    • (2014) CVPR
    • Aubry, M.1    Maturana, D.2    Efros, A.A.3    Russell, B.C.4    Sivic, J.5
  • 5
    • 84973922850 scopus 로고    scopus 로고
    • Understanding deep features with computer-generated imagery
    • Aubry, M., Russell, B.C.: Understanding deep features with computer-generated imagery. In: ICCV (2015)
    • (2015) ICCV
    • Aubry, M.1    Russell, B.C.2
  • 7
    • 0028378716 scopus 로고
    • Performance of optical flow techniques
    • Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. IJCV 12(1), 43-77 (1994)
    • (1994) IJCV , vol.12 , Issue.1 , pp. 43-77
    • Barron, J.L.1    Fleet, D.J.2    Beauchemin, S.S.3
  • 8
    • 56049086147 scopus 로고    scopus 로고
    • Semantic object classes in video: A highdefinition ground truth database
    • Brostow, G.J., Fauqueur, J., Cipolla, R.: Semantic object classes in video: a highdefinition ground truth database. Pattern Recogn. Lett. 30(2), 88-97 (2009)
    • (2009) Pattern Recogn. Lett , vol.30 , Issue.2 , pp. 88-97
    • Brostow, G.J.1    Fauqueur, J.2    Cipolla, R.3
  • 9
    • 84867723178 scopus 로고    scopus 로고
    • A naturalistic open source movie for optical flow evaluation
    • Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.), LNCS, Springer, Heidelberg (2012)
    • Butler, D.J.,Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie for optical flow evaluation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 611-625. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33783-3 44
    • (2012) ECCV , vol.7577 , pp. 611-625
    • Butler, D.J.1    Wulff, J.2    Stanley, G.B.3    Black, M.J.4
  • 10
    • 84973888858 scopus 로고    scopus 로고
    • DeepDriving: Learning affordance for direct perception in autonomous driving
    • Chen, C., Seff, A., Kornhauser, A.L., Xiao, J.: DeepDriving: learning affordance for direct perception in autonomous driving. In: ICCV (2015)
    • (2015) ICCV
    • Chen, C.1    Seff, A.2    Kornhauser, A.L.3    Xiao, J.4
  • 13
    • 84884231503 scopus 로고    scopus 로고
    • Vision meets robotics: The KITTI dataset
    • Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Rob. Res. 32(11), 1231-1237 (2013)
    • (2013) Int. J. Rob. Res , vol.32 , Issue.11 , pp. 1231-1237
    • Geiger, A.1    Lenz, P.2    Stiller, C.3    Urtasun, R.4
  • 14
    • 84886388026 scopus 로고    scopus 로고
    • Framework for generation of synthetic ground truth data for driver assistance applications
    • Weickert, J., Hein, M., Schiele, B. (eds.), LNCS, Springer, Heidelberg (2013)
    • Haltakov, V., Unger, C., Ilic, S.: Framework for generation of synthetic ground truth data for driver assistance applications. In: Weickert, J., Hein, M., Schiele, B. (eds.) GCPR 2013. LNCS, vol. 8142, pp. 323-332. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40602-7 35
    • (2013) GCPR , vol.8142 , pp. 323-332
    • Haltakov, V.1    Unger, C.2    Ilic, S.3
  • 16
    • 84929191681 scopus 로고    scopus 로고
    • A benchmark for RGB-D visual odometry, 3D reconstruction and SLAM
    • Handa, A., Whelan, T., McDonald, J., Davison, A.J.: A benchmark for RGB-D visual odometry, 3D reconstruction and SLAM. In: ICRA (2014)
    • (2014) ICRA
    • Handa, A.1    Whelan, T.2    McDonald, J.3    Davison, A.J.4
  • 17
    • 5044223520 scopus 로고    scopus 로고
    • Multiscale conditional random fields for image labeling
    • He, X., Zemel, R.S., Carreira-Perpiñán, M.: Multiscale conditional random fields for image labeling. In: CVPR (2004)
    • (2004) CVPR
    • He, X.1    Zemel, R.S.2    Carreira-Perpiñán, M.3
  • 18
    • 0019597413 scopus 로고
    • Determining optical flow
    • Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artif. Intell. 17(1-3), 185-203 (1981)
    • (1981) Artif. Intell , vol.17 , Issue.1-3 , pp. 185-203
    • Horn, B.K.P.1    Schunck, B.G.2
  • 21
    • 84856657387 scopus 로고    scopus 로고
    • Evaluation of image features using a photorealistic virtual world
    • Kaneva, B., Torralba, A., Freeman, W.T.: Evaluation of image features using a photorealistic virtual world. In: ICCV (2011)
    • (2011) ICCV
    • Kaneva, B.1    Torralba, A.2    Freeman, W.T.3
  • 23
    • 85162351107 scopus 로고    scopus 로고
    • Efficient inference in fully connected CRFs with Gaussian edge potentials
    • Krähenbühl, P., Koltun, V.: Efficient inference in fully connected CRFs with Gaussian edge potentials. In: NIPS (2011)
    • (2011) NIPS
    • Krähenbühl, P.1    Koltun, V.2
  • 24
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS (2012)
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 25
    • 84986247643 scopus 로고    scopus 로고
    • Feature space optimization for semantic video segmentation
    • Kundu, A., Vineet, V., Koltun, V.: Feature space optimization for semantic video segmentation. In: CVPR (2016)
    • (2016) CVPR
    • Kundu, A.1    Vineet, V.2    Koltun, V.3
  • 26
    • 51949095797 scopus 로고    scopus 로고
    • Viewpoint-independent object class detection using 3D feature maps
    • Liebelt, J., Schmid, C., Schertler, K.: Viewpoint-independent object class detection using 3D feature maps. In: CVPR (2008)
    • (2008) CVPR
    • Liebelt, J.1    Schmid, C.2    Schertler, K.3
  • 27
    • 84959243955 scopus 로고    scopus 로고
    • Multiclass semantic video segmentation with object-level active inference
    • Liu, B., He, X.: Multiclass semantic video segmentation with object-level active inference. In: CVPR (2015)
    • (2015) CVPR
    • Liu, B.1    He, X.2
  • 28
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR (2015)
    • (2015) CVPR
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 29
    • 77955996388 scopus 로고    scopus 로고
    • Learning appearance in virtual scenarios for pedestrian detection
    • Marín, J., Vázquez, D., Gerónimo, D., López, A.M.: Learning appearance in virtual scenarios for pedestrian detection. In: CVPR (2010)
    • (2010) CVPR
    • Marín, J.1    Vázquez, D.2    Gerónimo, D.3    López, A.M.4
  • 30
    • 84986332775 scopus 로고    scopus 로고
    • Deep exemplar 2D-3D detection by adapting from real to rendered views
    • Massa, F., Russell, B.C., Aubry, M.: Deep exemplar 2D-3D detection by adapting from real to rendered views. In: CVPR (2016)
    • (2016) CVPR
    • Massa, F.1    Russell, B.C.2    Aubry, M.3
  • 31
    • 84986301062 scopus 로고    scopus 로고
    • A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation
    • Mayer, N., Ilg, E., Häusser, P., Fischer, P., Cremers, D., Dosovitskiy, A., Brox, T.: A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In: CVPR (2016)
    • (2016) CVPR
    • Mayer, N.1    Ilg, E.2    Häusser, P.3    Fischer, P.4    Cremers, D.5    Dosovitskiy, A.6    Brox, T.7
  • 32
    • 0035481131 scopus 로고    scopus 로고
    • On benchmarking optical flow
    • McCane, B., Novins, K., Crannitch, D., Galvin, B.: On benchmarking optical flow. CVIU 84(1), 126-143 (2001)
    • (2001) CVIU , vol.84 , Issue.1 , pp. 126-143
    • McCane, B.1    Novins, K.2    Crannitch, D.3    Galvin, B.4
  • 33
    • 84973925898 scopus 로고    scopus 로고
    • Semantic pose using deep networks trained on synthetic RGB-D
    • Papon, J., Schoeler, M.: Semantic pose using deep networks trained on synthetic RGB-D. In: ICCV (2015)
    • (2015) ICCV
    • Papon, J.1    Schoeler, M.2
  • 34
    • 84973922826 scopus 로고    scopus 로고
    • Learning deep object detectors from 3D models
    • Peng, X., Sun, B., Ali, K., Saenko, K.: Learning deep object detectors from 3D models. In: ICCV (2015)
    • (2015) ICCV
    • Peng, X.1    Sun, B.2    Ali, K.3    Saenko, K.4
  • 35
    • 84960851889 scopus 로고    scopus 로고
    • Multi-view and 3D deformable part models
    • Pepik, B., Stark, M., Gehler, P.V., Schiele, B.: Multi-view and 3D deformable part models. PAMI 37(11), 2232-2245 (2015)
    • (2015) PAMI , vol.37 , Issue.11 , pp. 2232-2245
    • Pepik, B.1    Stark, M.2    Gehler, P.V.3    Schiele, B.4
  • 36
    • 0345414167 scopus 로고    scopus 로고
    • Learning a classification model for segmentation
    • Ren, X., Malik, J.: Learning a classification model for segmentation. In: ICCV (2003)
    • (2003) ICCV
    • Ren, X.1    Malik, J.2
  • 37
    • 84959253210 scopus 로고    scopus 로고
    • Discriminative shape from shading in uncalibrated illumination
    • Richter, S.R., Roth, S.: Discriminative shape from shading in uncalibrated illumination. In: CVPR (2015)
    • (2015) CVPR
    • Richter, S.R.1    Roth, S.2
  • 40
    • 0025474105 scopus 로고
    • Comprehensible rendering of 3-D shapes
    • Saito, T., Takahashi, T.: Comprehensible rendering of 3-D shapes. In: SIGGRAPH (1990)
    • (1990) SIGGRAPH
    • Saito, T.1    Takahashi, T.2
  • 43
    • 58149151266 scopus 로고    scopus 로고
    • Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context
    • Shotton, J., Winn, J.M., Rother, C., Criminisi, A.: Textonboost for image understanding:multi-class object recognition and segmentation by jointly modeling texture, layout, and context. IJCV 81(1), 2-23 (2009)
    • (2009) IJCV , vol.81 , Issue.1 , pp. 2-23
    • Shotton, J.1    Winn, J.M.2    Rother, C.3    Criminisi, A.4
  • 44
    • 84898454739 scopus 로고    scopus 로고
    • Back to the future: Learning shape models from 3D CAD data
    • Stark, M., Goesele, M., Schiele, B.: Back to the future: learning shape models from 3D CAD data. In: BMVC (2010)
    • (2010) BMVC
    • Stark, M.1    Goesele, M.2    Schiele, B.3
  • 45
    • 84898870663 scopus 로고    scopus 로고
    • Combining appearance and structure from motion features for road scene understanding
    • Sturgess, P., Alahari, K., Ladicky, L., Torr, P.H.S.: Combining appearance and structure from motion features for road scene understanding. In: BMVC (2009)
    • (2009) BMVC
    • Sturgess, P.1    Alahari, K.2    Ladicky, L.3    Torr, P.H.S.4
  • 46
    • 34948814551 scopus 로고    scopus 로고
    • OVVV: Using virtual worlds to design and evaluate surveillance systems
    • Taylor, G.R., Chosak, A.J., Brewer, P.C.: OVVV: using virtual worlds to design and evaluate surveillance systems. In: CVPR (2007)
    • (2007) CVPR
    • Taylor, G.R.1    Chosak, A.J.2    Brewer, P.C.3
  • 47
    • 84873190838 scopus 로고    scopus 로고
    • Superparsing - Scalable nonparametric image parsing with superpixels
    • Tighe, J., Lazebnik, S.: Superparsing - scalable nonparametric image parsing with superpixels. IJCV 101(2), 329-349 (2013)
    • (2013) IJCV , vol.101 , Issue.2 , pp. 329-349
    • Tighe, J.1    Lazebnik, S.2
  • 48
    • 84963812701 scopus 로고    scopus 로고
    • Semantic video segmentation: Exploring inference efficiency
    • Tripathi, S., Belongie, S., Hwang, Y., Nguyen, T.Q.: Semantic video segmentation:exploring inference efficiency. In: ISOCC (2015)
    • (2015) ISOCC
    • Tripathi, S.1    Belongie, S.2    Hwang, Y.3    Nguyen, T.Q.4
  • 49
    • 84897488615 scopus 로고    scopus 로고
    • Virtual and real world adaptation for pedestrian detection
    • Vázquez, D., López, A.M., Marín, J., Ponsa, D., Gomez, D.G.: Virtual and real world adaptation for pedestrian detection. PAMI 36(4), 797-809 (2014)
    • (2014) PAMI , vol.36 , Issue.4 , pp. 797-809
    • Vázquez, D.1    López, A.M.2    Marín, J.3    Ponsa, D.4    Gomez, D.G.5
  • 50
    • 84986281459 scopus 로고    scopus 로고
    • Semantic instance annotation of street scenes by 3D to 2D label transfer
    • Xie, J., Kiefel, M., Sun, M.T., Geiger, A.: Semantic instance annotation of street scenes by 3D to 2D label transfer. In: CVPR (2016)
    • (2016) CVPR
    • Xie, J.1    Kiefel, M.2    Sun, M.T.3    Geiger, A.4
  • 52
    • 85083952059 scopus 로고    scopus 로고
    • Multi-scale context aggregation by dilated convolutions
    • Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. In:ICLR (2016)
    • (2016) ICLR
    • Yu, F.1    Koltun, V.2
  • 54
    • 85031114216 scopus 로고    scopus 로고
    • Play and learn: Using video Games to train computer vision models
    • Shafaei, A., Little, J.J., Schmidt, M.: Play and learn: using video Games to train computer vision models. In: BMVC (2016)
    • (2016) BMVC
    • Shafaei, A.1    Little, J.J.2    Schmidt, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.