메뉴 건너뛰기




Volumn 2015 International Conference on Computer Vision, ICCV 2015, Issue , 2015, Pages 1278-1286

Learning deep object detectors from 3D models

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARKING; COMPUTER VISION; IMAGE PROCESSING; OBJECT RECOGNITION;

EID: 84973922826     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2015.151     Document Type: Conference Paper
Times cited : (373)

References (27)
  • 7
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • 1, 4, 8
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, 2012. 1, 4, 8
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 15
    • 0001902802 scopus 로고
    • Description and recognition of curved objects
    • 3
    • R. Nevatia and T. O. Binford. Description and recognition of curved objects. Artificial Intelligence, 8(1):77-98, 1977. 3
    • (1977) Artificial Intelligence , vol.8 , Issue.1 , pp. 77-98
    • Nevatia, R.1    Binford, T.O.2
  • 18
    • 78149318752 scopus 로고    scopus 로고
    • Adapting visual category models to new domains
    • 2, 8. Springer
    • K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting visual category models to new domains. In Computer Vision-ECCV 2010, pages 213-226. Springer, 2010. 2, 8
    • (2010) Computer Vision-ECCV 2010 , pp. 213-226
    • Saenko, K.1    Kulis, B.2    Fritz, M.3    Darrell, T.4
  • 21
    • 84898454739 scopus 로고    scopus 로고
    • Back to the future: Learning shape models from 3d cad data
    • 1, 3
    • M. Stark, M. Goesele, and B. Schiele. Back to the future: Learning shape models from 3d cad data. In Proc. BMVC, pages 106. 1-11, 2010. doi:10. 5244/C. 24. 106. 1, 3
    • (2010) Proc. BMVC , pp. 1061-1111
    • Stark, M.1    Goesele, M.2    Schiele, B.3
  • 22
    • 85031103438 scopus 로고    scopus 로고
    • From virtual to reality: Fast adaptation of virtual object detectors to real domains
    • 1, 2, 3, 7
    • B. Sun and K. Saenko. From virtual to reality: Fast adaptation of virtual object detectors to real domains. BMVC, 2014. 1, 2, 3, 7
    • (2014) BMVC
    • Sun, B.1    Saenko, K.2
  • 26
    • 84937508363 scopus 로고    scopus 로고
    • How transferable are features in deep neural networks?
    • Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, editors. 2
    • J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features in deep neural networks? In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, editors, Advances in Neural Information Processing Systems 27, pages 3320-3328. 2014. 2
    • (2014) Advances in Neural Information Processing Systems , vol.27 , pp. 3320-3328
    • Yosinski, J.1    Clune, J.2    Bengio, Y.3    Lipson, H.4
  • 27
    • 84903712031 scopus 로고    scopus 로고
    • Visualizing and Understanding Convolutional Networks
    • 2
    • M. Zeiler and R. Fergus. Visualizing and Understanding Convolutional Networks. ArXiv e-prints, 2013. 2
    • (2013) ArXiv E-prints
    • Zeiler, M.1    Fergus, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.