메뉴 건너뛰기




Volumn 9908 LNCS, Issue , 2016, Pages 269-285

“What happens if…” learning to predict the effect of forces in images

Author keywords

Forces; Motion estimation; Recurrent neural networks; Scene understanding

Indexed keywords

DEEP NEURAL NETWORKS; FORECASTING; LARGE DATASET; MOTION ESTIMATION;

EID: 84990038863     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-319-46493-0_17     Document Type: Conference Paper
Times cited : (63)

References (44)
  • 1
    • 84887299182 scopus 로고    scopus 로고
    • Simulation as an engine of physical scene understanding
    • Battaglia, P., Hamrick, J., Tenenbaum, J.B.: Simulation as an engine of physical scene understanding. PNAS 110, 18327-18332 (2013)
    • (2013) PNAS , vol.110 , pp. 18327-18332
    • Battaglia, P.1    Hamrick, J.2    Tenenbaum, J.B.3
  • 2
    • 84944397333 scopus 로고    scopus 로고
    • Computing the physical parameters of rigid-body motion from video
    • Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.), Springer, Heidelberg
    • Bhat, K.S., Seitz, S.M., Popović, J., Khosla, P.K.: Computing the physical parameters of rigid-body motion from video. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 551-565. Springer, Heidelberg (2002). doi:10.1007/3-540-47969-4-37
    • (2002) ECCV 2002. LNCS , vol.2350 , pp. 551-565
    • Bhat, K.S.1    Seitz, S.M.2    Popović, J.3    Khosla, P.K.4
  • 4
    • 84887394346 scopus 로고    scopus 로고
    • Understanding indoor scenes using 3d geometric phrases
    • Choi, W., Chao, Y.W., Pantofaru, C., Savarese, S.: Understanding indoor scenes using 3d geometric phrases. In: CVPR (2013)
    • (2013) CVPR
    • Choi, W.1    Chao, Y.W.2    Pantofaru, C.3    Savarese, S.4
  • 5
    • 84937943470 scopus 로고    scopus 로고
    • Depth map prediction from a single image using a multi-scale deep network
    • Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using a multi-scale deep network. In: NIPS (2014)
    • (2014) NIPS
    • Eigen, D.1    Puhrsch, C.2    Fergus, R.3
  • 7
    • 84911394491 scopus 로고    scopus 로고
    • Predicting object dynamics in scenes
    • Fouhey, D.F., Zitnick, C.: Predicting object dynamics in scenes. In: CVPR (2014)
    • (2014) CVPR
    • Fouhey, D.F.1    Zitnick, C.2
  • 8
    • 85027987438 scopus 로고    scopus 로고
    • Learning predictive visual models of physics for playing billiards
    • Fragkiadaki, K., Agrawal, P., Levine, S., Malik, J.: Learning predictive visual models of physics for playing billiards. In: ICLR (2016)
    • (2016) ICLR
    • Fragkiadaki, K.1    Agrawal, P.2    Levine, S.3    Malik, J.4
  • 9
    • 78149286912 scopus 로고    scopus 로고
    • Blocks world revisited: Image understanding using qualitative geometry and mechanics
    • Daniilidis, K., Maragos, P., Paragios, N. (eds.), Springer, Heidelberg
    • Gupta, A., Efros, A.A., Hebert, M.: Blocks world revisited: image understanding using qualitative geometry and mechanics. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 482-496. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15561-1-35
    • (2010) ECCV 2010. LNCS , vol.6314 , pp. 482-496
    • Gupta, A.1    Efros, A.A.2    Hebert, M.3
  • 11
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)
    • (2016) CVPR
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 12
    • 84858763935 scopus 로고    scopus 로고
    • Cascaded classification models: Combining models for holistic scene understanding
    • Heitz, G., Gould, S., Saxena, A., Koller, D.: Cascaded classification models: Combining models for holistic scene understanding. In: NIPS (2008)
    • (2008) NIPS
    • Heitz, G.1    Gould, S.2    Saxena, A.3    Koller, D.4
  • 13
    • 84887362669 scopus 로고    scopus 로고
    • 3d-based reasoning with blocks, support, and stability
    • Jia, Z., Gallagher, A., Saxena, A., Chen, T.: 3d-based reasoning with blocks, support, and stability. In: CVPR (2013)
    • (2013) CVPR
    • Jia, Z.1    Gallagher, A.2    Saxena, A.3    Chen, T.4
  • 14
    • 84864475487 scopus 로고    scopus 로고
    • Learning to place new objects in a scene
    • Jiang, Y., Lim, M., Zheng, C., Saxena, A.: Learning to place new objects in a scene. IJRR 31, 1021-1043 (2012)
    • (2012) IJRR , vol.31 , pp. 1021-1043
    • Jiang, Y.1    Lim, M.2    Zheng, C.3    Saxena, A.4
  • 15
    • 84946734827 scopus 로고    scopus 로고
    • Deep visual-semantic alignments for generating image descriptions
    • Karpathy, A., Fei-Fei, L.: Deep visual-semantic alignments for generating image descriptions. In: CVPR (2015)
    • (2015) CVPR
    • Karpathy, A.1    Fei-Fei, L.2
  • 16
    • 84867863926 scopus 로고    scopus 로고
    • Activity forecasting. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.), Springer, Heidelberg
    • Kitani, K.M., Ziebart, B.D., Bagnell, J.A., Hebert, M.: Activity forecasting. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 201-214. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33765-9_15
    • (2012) ECCV 2012. LNCS , vol.7575 , pp. 201-214
    • Kitani, K.M.1    Ziebart, B.D.2    Bagnell, J.A.3    Hebert, M.4
  • 17
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS (2012)
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 18
    • 84939821079 scopus 로고    scopus 로고
    • A simple way to initialize recurrent networks of rectified linear units
    • Le, Q.V., Jaitly, N., Hinton, G.E.: A simple way to initialize recurrent networks of rectified linear units. In: ArXiv (2015)
    • (2015) Arxiv
    • Le, Q.V.1    Jaitly, N.2    Hinton, G.E.3
  • 19
    • 84990022919 scopus 로고    scopus 로고
    • End-to-end training of deep visuomotor policies
    • Levine, S., Finn, C., Darrell, T., Abbeel, P.: End-to-end training of deep visuomotor policies. In: ArXiv (2015)
    • (2015) Arxiv
    • Levine, S.1    Finn, C.2    Darrell, T.3    Abbeel, P.4
  • 20
    • 70450219021 scopus 로고    scopus 로고
    • Towards total scene understanding: Classification, annotation and segmentation in an automatic framework
    • Li, L.J., Socher, R., Fei-Fei, L.: Towards total scene understanding: Classification, annotation and segmentation in an automatic framework. In: CVPR (2009)
    • (2009) CVPR
    • Li, L.J.1    Socher, R.2    Fei-Fei, L.3
  • 21
    • 84898782715 scopus 로고    scopus 로고
    • Holistic scene understanding for 3d object detection with rgbd cameras
    • Lin, D., Fidler, S., Urtasun, R.: Holistic scene understanding for 3d object detection with rgbd cameras. In: ICCV (2013)
    • (2013) ICCV
    • Lin, D.1    Fidler, S.2    Urtasun, R.3
  • 22
    • 84906493406 scopus 로고    scopus 로고
    • Microsoft COCO: Common objects in context
    • Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.), Springer, Heidelberg
    • Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740-755. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10602-1-48
    • (2014) ECCV 2014. LNCS , vol.8693 , pp. 740-755
    • Lin, T.-Y.1    Maire, M.2    Belongie, S.3    Hays, J.4    Perona, P.5    Ramanan, D.6    Dollár, P.7    Zitnick, C.L.8
  • 23
    • 84937955008 scopus 로고    scopus 로고
    • Modeling deep temporal dependencies with recurrent grammar cells
    • Michalski, V., Memisevic, R., Konda, K.: Modeling deep temporal dependencies with recurrent grammar cells. In: NIPS (2014)
    • (2014) NIPS
    • Michalski, V.1    Memisevic, R.2    Konda, K.3
  • 24
    • 84986275832 scopus 로고    scopus 로고
    • Newtonian image understanding: Unfolding the dynamics of objects in static images
    • Mottaghi, R., Bagherinezhad, H., Rastegari, M., Farhadi, A.: Newtonian image understanding: Unfolding the dynamics of objects in static images. In: CVPR (2016)
    • (2016) CVPR
    • Mottaghi, R.1    Bagherinezhad, H.2    Rastegari, M.3    Farhadi, A.4
  • 25
    • 24644462948 scopus 로고    scopus 로고
    • Using the forest to see the trees: A graphical model relating features, objects, and scenes
    • Murphy, K., Torralba, A., Freeman, W.T.: Using the forest to see the trees: a graphical model relating features, objects, and scenes. In: NIPS (2003)
    • (2003) NIPS
    • Murphy, K.1    Torralba, A.2    Freeman, W.T.3
  • 26
    • 84965178314 scopus 로고    scopus 로고
    • Action-conditional video prediction using deep networks in atari games
    • Oh, J., Guo, X., Lee, H., Lewis, R.L., Singh, S.P.: Action-conditional video prediction using deep networks in atari games. In: NIPS (2015)
    • (2015) NIPS
    • Oh, J.1    Guo, X.2    Lee, H.3    Lewis, R.L.4    Singh, S.P.5
  • 27
    • 84906491151 scopus 로고    scopus 로고
    • Déjá Vu: Motion prediction in static
    • Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.), Springer, Heidelberg
    • Pintea, S.L., Gemert, J.C., Smeulders, A.W.M.: Déjá Vu: motion prediction in static. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 172-187. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10578-9_12
    • (2014) ECCV 2014. LNCS , vol.8691 , pp. 172-187
    • Pintea, S.L.1    Gemert, J.C.2    Smeulders, A.W.M.3
  • 28
    • 84965108042 scopus 로고    scopus 로고
    • Video (Language) modeling: A baseline for generative models of natural videos
    • Ranzato, M., Szlam, A., Bruna, J., Mathieu, M., Collobert, R., Chopra, S.: Video (language) modeling: a baseline for generative models of natural videos. In: ArXiv (2014)
    • (2014) Arxiv
    • Ranzato, M.1    Szlam, A.2    Bruna, J.3    Mathieu, M.4    Collobert, R.5    Chopra, S.6
  • 30
    • 84856660172 scopus 로고    scopus 로고
    • Physically-based motion models for 3d tracking: A convex formulation
    • Salzmann, M., Urtasun, R.: Physically-based motion models for 3d tracking: a convex formulation. In: ICCV (2011)
    • (2011) ICCV
    • Salzmann, M.1    Urtasun, R.2
  • 31
    • 84867713871 scopus 로고    scopus 로고
    • Indoor segmentation and support inference from RGBD images
    • Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.), Springer, Heidelberg
    • Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746-760. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33715-4_54
    • (2012) ECCV 2012. LNCS , vol.7576 , pp. 746-760
    • Silberman, N.1    Hoiem, D.2    Kohli, P.3    Fergus, R.4
  • 32
    • 84957966034 scopus 로고    scopus 로고
    • Sun rgb-d: A rgb-d scene understanding benchmark suite
    • Song, S., Lichtenberg, S.P., Xiao, J.: Sun rgb-d: A rgb-d scene understanding benchmark suite. In: CVPR (2015)
    • (2015) CVPR
    • Song, S.1    Lichtenberg, S.P.2    Xiao, J.3
  • 33
    • 84868323622 scopus 로고    scopus 로고
    • The recurrent temporal restricted boltzmann machine
    • Sutskever, I., Hinton, G.E., Taylor, G.W.: The recurrent temporal restricted boltzmann machine. In: NIPS (2008)
    • (2008) NIPS
    • Sutskever, I.1    Hinton, G.E.2    Taylor, G.W.3
  • 34
    • 84946747440 scopus 로고    scopus 로고
    • Show and tell: A neural image caption generator
    • Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: A neural image caption generator. In: CVPR (2015)
    • (2015) CVPR
    • Vinyals, O.1    Toshev, A.2    Bengio, S.3    Erhan, D.4
  • 35
    • 51949114217 scopus 로고    scopus 로고
    • Physical simulation for probabilistic motion tracking
    • Vondrak, M., Sigal, L., Jenkins, O.C.: Physical simulation for probabilistic motion tracking. In: CVPR (2008)
    • (2008) CVPR
    • Vondrak, M.1    Sigal, L.2    Jenkins, O.C.3
  • 36
    • 84911380009 scopus 로고    scopus 로고
    • Patch to the future: Unsupervised visual prediction
    • Walker, J., Gupta, A., Hebert, M.: Patch to the future: Unsupervised visual prediction. In: CVPR (2014)
    • (2014) CVPR
    • Walker, J.1    Gupta, A.2    Hebert, M.3
  • 37
    • 84973880490 scopus 로고    scopus 로고
    • Dense optical flow prediction from a static image
    • Walker, J., Gupta, A., Hebert, M.: Dense optical flow prediction from a static image. In: ICCV (2015)
    • (2015) ICCV
    • Walker, J.1    Gupta, A.2    Hebert, M.3
  • 38
    • 84959234840 scopus 로고    scopus 로고
    • Designing deep networks for surface normal estimation
    • Wang, X., Fouhey, D.F., Gupta, A.: Designing deep networks for surface normal estimation. In: CVPR (2015)
    • (2015) CVPR
    • Wang, X.1    Fouhey, D.F.2    Gupta, A.3
  • 39
    • 84965122247 scopus 로고    scopus 로고
    • Galileo: Perceiving physical object properties by integrating a physics engine with deep learning
    • Wu, J., Yildirim, I., Lim, J.J., Freeman, W.T., Tenenbaum, J.B.: Galileo: Perceiving physical object properties by integrating a physics engine with deep learning. In: NIPS (2015)
    • (2015) NIPS
    • Wu, J.1    Yildirim, I.2    Lim, J.J.3    Freeman, W.T.4    Tenenbaum, J.B.5
  • 40
    • 84866687133 scopus 로고    scopus 로고
    • Describing the scene as a whole: Joint object detection, scene classification and semantic segmentation
    • Yao, J., Fidler, S., Urtasun, R.: Describing the scene as a whole: Joint object detection, scene classification and semantic segmentation. In: CVPR (2012)
    • (2012) CVPR
    • Yao, J.1    Fidler, S.2    Urtasun, R.3
  • 41
    • 78149325735 scopus 로고    scopus 로고
    • A data-driven approach for event prediction
    • Daniilidis, K., Maragos, P., Paragios, N. (eds.), Springer, Heidelberg
    • Yuen, J., Torralba, A.: A data-driven approach for event prediction. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6312, pp. 707-720. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15552-9-51
    • (2010) ECCV 2010. LNCS , vol.6312 , pp. 707-720
    • Yuen, J.1    Torralba, A.2
  • 42
    • 84906352874 scopus 로고    scopus 로고
    • PanoContext: A whole-room 3D context model for panoramic scene understanding
    • Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.), Springer, Heidelberg
    • Zhang, Y., Song, S., Tan, P., Xiao, J.: PanoContext: a whole-room 3D context model for panoramic scene understanding. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 668-686. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10599-4_43
    • (2014) ECCV 2014. LNCS , vol.8694 , pp. 668-686
    • Zhang, Y.1    Song, S.2    Tan, P.3    Xiao, J.4
  • 43
    • 84887337480 scopus 로고    scopus 로고
    • Beyond point clouds: Scene understanding by reasoning geometry and physics
    • Zheng, B., Zhao, Y., Yu, J.C., Ikeuchi, K., Zhu, S.C.: Beyond point clouds: Scene understanding by reasoning geometry and physics. In: CVPR (2013)
    • (2013) CVPR
    • Zheng, B.1    Zhao, Y.2    Yu, J.C.3    Ikeuchi, K.4    Zhu, S.C.5
  • 44
    • 84929180017 scopus 로고    scopus 로고
    • Detecting potential falling objects by inferring human action and natural disturbance
    • Zheng, B., Zhao, Y., Yu, J.C., Ikeuchi, K., Zhu, S.C.: Detecting potential falling objects by inferring human action and natural disturbance. In: ICRA (2014)
    • (2014) ICRA
    • Zheng, B.1    Zhao, Y.2    Yu, J.C.3    Ikeuchi, K.4    Zhu, S.C.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.