-
1
-
-
84859220157
-
Cardiac tissue engineering: current state and perspectives
-
[1] Chiu, L., Iyer, R.K., Reis, L.A., Nunes, S.S., Radisic, M., Cardiac tissue engineering: current state and perspectives. Front. Biosci. 17 (2011), 1533–1550.
-
(2011)
Front. Biosci.
, vol.17
, pp. 1533-1550
-
-
Chiu, L.1
Iyer, R.K.2
Reis, L.A.3
Nunes, S.S.4
Radisic, M.5
-
3
-
-
84933039802
-
From cardiac tissue engineering to heart-on-a-chip: beating challenges
-
[3] Zhang, Y.S., Aleman, J., Arneri, A., Bersini, S., Piraino, F., Shin, S.R., et al. From cardiac tissue engineering to heart-on-a-chip: beating challenges. Biomed. Mater, 10, 2015, 034006.
-
(2015)
Biomed. Mater
, vol.10
, pp. 034006
-
-
Zhang, Y.S.1
Aleman, J.2
Arneri, A.3
Bersini, S.4
Piraino, F.5
Shin, S.R.6
-
4
-
-
84906781892
-
Organ-on-a-chip platforms for studying drug delivery systems
-
[4] Bhise, N.S., Ribas, J., Manoharan, V., Zhang, Y.S., Polini, A., Massa, S., et al. Organ-on-a-chip platforms for studying drug delivery systems. J. Control. Release 190 (2014), 82–93.
-
(2014)
J. Control. Release
, vol.190
, pp. 82-93
-
-
Bhise, N.S.1
Ribas, J.2
Manoharan, V.3
Zhang, Y.S.4
Polini, A.5
Massa, S.6
-
5
-
-
84961288218
-
Seeking the Right context for evaluating nanomedicine: from tissue models in petri dishes to microfluidic organs-on-a-chip
-
[5] Zhang, Y.S., Khademhosseini, A., Seeking the Right context for evaluating nanomedicine: from tissue models in petri dishes to microfluidic organs-on-a-chip. Nanomedicine 10 (2015), 685–688.
-
(2015)
Nanomedicine
, vol.10
, pp. 685-688
-
-
Zhang, Y.S.1
Khademhosseini, A.2
-
6
-
-
84862186471
-
Microengineered physiological biomimicry: organs-on-Chips
-
[6] Huh, D., Torisawa, Y-s, Hamilton, G.A., Kim, H.J., Ingber, D.E., Microengineered physiological biomimicry: organs-on-Chips. Lab. Chip. 12 (2012), 2156–2164.
-
(2012)
Lab. Chip.
, vol.12
, pp. 2156-2164
-
-
Huh, D.1
Torisawa, Y.-S.2
Hamilton, G.A.3
Kim, H.J.4
Ingber, D.E.5
-
7
-
-
84882240631
-
Microfluidic heart on a chip for higher throughput pharmacological studies
-
[7] Agarwal, A., Goss, J.A., Cho, A., McCain, M.L., Parker, K.K., Microfluidic heart on a chip for higher throughput pharmacological studies. Lab. Chip. 13 (2013), 3599–3608.
-
(2013)
Lab. Chip.
, vol.13
, pp. 3599-3608
-
-
Agarwal, A.1
Goss, J.A.2
Cho, A.3
McCain, M.L.4
Parker, K.K.5
-
8
-
-
84893014841
-
Organs-on-a-chip for drug discovery
-
[8] Selimović, Š., Dokmeci, M.R., Khademhosseini, A., Organs-on-a-chip for drug discovery. Curr. Opin. Pharmacol. 13 (2013), 829–833.
-
(2013)
Curr. Opin. Pharmacol.
, vol.13
, pp. 829-833
-
-
Selimović, Š.1
Dokmeci, M.R.2
Khademhosseini, A.3
-
9
-
-
84926408953
-
Organs-on-chips at the frontiers of drug discovery
-
[9] Esch, E.W., Bahinski, A., Huh, D., Organs-on-chips at the frontiers of drug discovery. Nat. Rev. Drug Discov. 14 (2015), 248–260.
-
(2015)
Nat. Rev. Drug Discov.
, vol.14
, pp. 248-260
-
-
Esch, E.W.1
Bahinski, A.2
Huh, D.3
-
10
-
-
84891930814
-
Physiologically relevant organs on chips
-
[10] Yum, K., Hong, S.G., Healy, K.E., Lee, L.P., Physiologically relevant organs on chips. Biotechnol. J. 9 (2014), 16–27.
-
(2014)
Biotechnol. J.
, vol.9
, pp. 16-27
-
-
Yum, K.1
Hong, S.G.2
Healy, K.E.3
Lee, L.P.4
-
11
-
-
84924405787
-
Human iPSC-based cardiac microphysiological system for drug screening applications
-
[11] Mathur, A., Loskill, P., Shao, K., Huebsch, N., Hong, S., Marcus, S.G., et al. Human iPSC-based cardiac microphysiological system for drug screening applications. Sci. Rep., 5, 2015, 8883.
-
(2015)
Sci. Rep.
, vol.5
, pp. 8883
-
-
Mathur, A.1
Loskill, P.2
Shao, K.3
Huebsch, N.4
Hong, S.5
Marcus, S.G.6
-
12
-
-
84890223557
-
Three-dimensional filamentous human diseased cardiac tissue model
-
[12] Ma, Z., Koo, S., Finnegan, M.A., Loskill, P., Huebsch, N., Marks, N.C., et al. Three-dimensional filamentous human diseased cardiac tissue model. Biomaterials 35 (2014), 1367–1377.
-
(2014)
Biomaterials
, vol.35
, pp. 1367-1377
-
-
Ma, Z.1
Koo, S.2
Finnegan, M.A.3
Loskill, P.4
Huebsch, N.5
Marks, N.C.6
-
13
-
-
84902087268
-
Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies
-
[13] Wang, G., McCain, M.L., Yang, L., He, A., Pasqualini, F.S., Agarwal, A., et al. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat. Med. 20 (2014), 616–623.
-
(2014)
Nat. Med.
, vol.20
, pp. 616-623
-
-
Wang, G.1
McCain, M.L.2
Yang, L.3
He, A.4
Pasqualini, F.S.5
Agarwal, A.6
-
14
-
-
79956334658
-
Heart regeneration
-
[14] Laflamme, M.A., Murry, C.E., Heart regeneration. Nature 473 (2011), 326–335.
-
(2011)
Nature
, vol.473
, pp. 326-335
-
-
Laflamme, M.A.1
Murry, C.E.2
-
15
-
-
84856007232
-
The promise of induced pluripotent stem cells in research and therapy
-
[15] Robinton, D.A., Daley, G.Q., The promise of induced pluripotent stem cells in research and therapy. Nature 481 (2012), 295–305.
-
(2012)
Nature
, vol.481
, pp. 295-305
-
-
Robinton, D.A.1
Daley, G.Q.2
-
16
-
-
84862528505
-
Induced pluripotent stem cells: past, present, and future
-
[16] Yamanaka, S., Induced pluripotent stem cells: past, present, and future. Cell stem cell 10 (2012), 678–684.
-
(2012)
Cell stem cell
, vol.10
, pp. 678-684
-
-
Yamanaka, S.1
-
17
-
-
84901258431
-
Hydrogels for cardiac tissue engineering
-
[17] Camci-Unal, G., Annabi, N., Dokmeci, M.R., Liao, R., Khademhosseini, A., Hydrogels for cardiac tissue engineering. NPG Asia Mater., 6, 2014, e99.
-
(2014)
NPG Asia Mater.
, vol.6
, pp. e99
-
-
Camci-Unal, G.1
Annabi, N.2
Dokmeci, M.R.3
Liao, R.4
Khademhosseini, A.5
-
18
-
-
84879318166
-
Highly elastic micropatterned hydrogel for engineering functional cardiac tissue
-
[18] Annabi, N., Tsang, K., Mithieux, S.M., Nikkhah, M., Ameri, A., Khademhosseini, A., et al. Highly elastic micropatterned hydrogel for engineering functional cardiac tissue. Adv. Funct. Mater 23 (2013), 4950–4959.
-
(2013)
Adv. Funct. Mater
, vol.23
, pp. 4950-4959
-
-
Annabi, N.1
Tsang, K.2
Mithieux, S.M.3
Nikkhah, M.4
Ameri, A.5
Khademhosseini, A.6
-
19
-
-
47049097487
-
Vascularization in tissue engineering
-
[19] Rouwkema, J., Rivron, N.C., van Blitterswijk, C.A., Vascularization in tissue engineering. Trends Biotechnol. 26 (2008), 434–441.
-
(2008)
Trends Biotechnol.
, vol.26
, pp. 434-441
-
-
Rouwkema, J.1
Rivron, N.C.2
van Blitterswijk, C.A.3
-
20
-
-
84869460713
-
Building vascular networks
-
160ps23-ps23
-
[20] Bae, H., Puranik, A.S., Gauvin, R., Edalat, F., Carrillo-Conde, B., Peppas, N.A., et al. Building vascular networks. Sci. Transl. Med., 4, 2012 160ps23-ps23.
-
(2012)
Sci. Transl. Med.
, vol.4
-
-
Bae, H.1
Puranik, A.S.2
Gauvin, R.3
Edalat, F.4
Carrillo-Conde, B.5
Peppas, N.A.6
-
21
-
-
29144530591
-
Three-dimensional in vitro reaggregates of embryonic cardiomyocytes: a potential model system for monitoring effects of bioactive agents
-
[21] Bartholomä, P., Gorjup, E., Monz, D., Reininger-Mack, A., Thielecke, H., Robitzki, A., Three-dimensional in vitro reaggregates of embryonic cardiomyocytes: a potential model system for monitoring effects of bioactive agents. J. Biomol. Screen 10 (2005), 814–822.
-
(2005)
J. Biomol. Screen
, vol.10
, pp. 814-822
-
-
Bartholomä, P.1
Gorjup, E.2
Monz, D.3
Reininger-Mack, A.4
Thielecke, H.5
Robitzki, A.6
-
22
-
-
7244261795
-
Isolation and expansion of adult cardiac stem cells from human and murine heart
-
[22] Messina, E., De Angelis, L., Frati, G., Morrone, S., Chimenti, S., Fiordaliso, F., et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ. Res. 95 (2004), 911–921.
-
(2004)
Circ. Res.
, vol.95
, pp. 911-921
-
-
Messina, E.1
De Angelis, L.2
Frati, G.3
Morrone, S.4
Chimenti, S.5
Fiordaliso, F.6
-
23
-
-
84922951862
-
Biomimicry 3D gastrointestinal spheroid platform for the assessment of toxicity and inflammatory effects of zinc oxide nanoparticles
-
[23] Chia, S.L., Tay, C.Y., Setyawati, M.I., Leong, D.T., Biomimicry 3D gastrointestinal spheroid platform for the assessment of toxicity and inflammatory effects of zinc oxide nanoparticles. Small 11 (2015), 702–712.
-
(2015)
Small
, vol.11
, pp. 702-712
-
-
Chia, S.L.1
Tay, C.Y.2
Setyawati, M.I.3
Leong, D.T.4
-
24
-
-
77955231885
-
Tuning payload delivery in tumour cylindroids using gold nanoparticles
-
[24] Kim, B., Han, G., Toley, B.J., C-k, Kim, Rotello, V.M., Forbes, N.S., Tuning payload delivery in tumour cylindroids using gold nanoparticles. Nat. Nanotechnol. 5 (2010), 465–472.
-
(2010)
Nat. Nanotechnol.
, vol.5
, pp. 465-472
-
-
Kim, B.1
Han, G.2
Toley, B.J.3
C-k, K.4
Rotello, V.M.5
Forbes, N.S.6
-
25
-
-
84961289253
-
Multiple facets for extracellular matrix mimicking in regenerative medicine
-
[25] Zhang, Y.S., Xia, Y., Multiple facets for extracellular matrix mimicking in regenerative medicine. Nanomedicine 10 (2015), 689–692.
-
(2015)
Nanomedicine
, vol.10
, pp. 689-692
-
-
Zhang, Y.S.1
Xia, Y.2
-
26
-
-
56749156418
-
Accordion-like honeycombs for tissue engineering of cardiac anisotropy
-
[26] Engelmayr, G.C., Cheng, M., Bettinger, C.J., Borenstein, J.T., Langer, R., Freed, L.E., Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nat. Mater 7 (2008), 1003–1010.
-
(2008)
Nat. Mater
, vol.7
, pp. 1003-1010
-
-
Engelmayr, G.C.1
Cheng, M.2
Bettinger, C.J.3
Borenstein, J.T.4
Langer, R.5
Freed, L.E.6
-
27
-
-
84881480907
-
Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes
-
[27] Nunes, S.S., Miklas, J.W., Liu, J., Aschar-Sobbi, R., Xiao, Y., Zhang, B., et al. Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nat. Methods 10 (2013), 781–787.
-
(2013)
Nat. Methods
, vol.10
, pp. 781-787
-
-
Nunes, S.S.1
Miklas, J.W.2
Liu, J.3
Aschar-Sobbi, R.4
Xiao, Y.5
Zhang, B.6
-
28
-
-
33846818621
-
Tissue engineering of vascularized cardiac muscle from human embryonic stem cells
-
[28] Caspi, O., Lesman, A., Basevitch, Y., Gepstein, A., Arbel, G., Habib, I.H.M., et al. Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ. Res. 100 (2007), 263–272.
-
(2007)
Circ. Res.
, vol.100
, pp. 263-272
-
-
Caspi, O.1
Lesman, A.2
Basevitch, Y.3
Gepstein, A.4
Arbel, G.5
Habib, I.H.M.6
-
29
-
-
84939950001
-
Construction of three-dimensional vascularized cardiac tissue with cell sheet engineering
-
[29] Sakaguchi, K., Shimizu, T., Okano, T., Construction of three-dimensional vascularized cardiac tissue with cell sheet engineering. J. Control. Release 205 (2015), 83–88.
-
(2015)
J. Control. Release
, vol.205
, pp. 83-88
-
-
Sakaguchi, K.1
Shimizu, T.2
Okano, T.3
-
30
-
-
84956886108
-
Decoupling the direct and indirect biological effects of ZnO nanoparticles using a communicative dual cell-type tissue construct
-
[30] Chia, S.L., Tay, C.Y., Setyawati, M.I., Leong, D.T., Decoupling the direct and indirect biological effects of ZnO nanoparticles using a communicative dual cell-type tissue construct. Small 12 (2016), 647–657.
-
(2016)
Small
, vol.12
, pp. 647-657
-
-
Chia, S.L.1
Tay, C.Y.2
Setyawati, M.I.3
Leong, D.T.4
-
31
-
-
84973169243
-
Tuning endothelial permeability with functionalized nanodiamonds
-
[31] Setyawati, M.I., Mochalin, V.N., Leong, D.T., Tuning endothelial permeability with functionalized nanodiamonds. ACS Nano 10 (2016), 1170–1181.
-
(2016)
ACS Nano
, vol.10
, pp. 1170-1181
-
-
Setyawati, M.I.1
Mochalin, V.N.2
Leong, D.T.3
-
32
-
-
84905725612
-
3D bioprinting of tissues and organs
-
[32] Murphy, S.V., Atala, A., 3D bioprinting of tissues and organs. Nat. Biotechnol. 32 (2014), 773–785.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 773-785
-
-
Murphy, S.V.1
Atala, A.2
-
33
-
-
84884903697
-
25th anniversary article: engineering hydrogels for biofabrication
-
[33] Malda, J., Visser, J., Melchels, F.P., Jüngst, T., Hennink, W.E., Dhert, W.J.A., et al. 25th anniversary article: engineering hydrogels for biofabrication. Adv. Mater 25 (2013), 5011–5028.
-
(2013)
Adv. Mater
, vol.25
, pp. 5011-5028
-
-
Malda, J.1
Visser, J.2
Melchels, F.P.3
Jüngst, T.4
Hennink, W.E.5
Dhert, W.J.A.6
-
34
-
-
84901915693
-
Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs
-
[34] Bertassoni, L.E., Cecconi, M., Manoharan, V., Nikkhah, M., Hjortnaes, J., Cristino, A.L., et al. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab. Chip. 14 (2014), 2202–2211.
-
(2014)
Lab. Chip.
, vol.14
, pp. 2202-2211
-
-
Bertassoni, L.E.1
Cecconi, M.2
Manoharan, V.3
Nikkhah, M.4
Hjortnaes, J.5
Cristino, A.L.6
-
35
-
-
84900988712
-
3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs
-
[35] Kolesky, D.B., Truby, R.L., Gladman, A.S., Busbee, T.A., Homan, K.A., Lewis, J.A., 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv. Mater 26 (2014), 3124–3130.
-
(2014)
Adv. Mater
, vol.26
, pp. 3124-3130
-
-
Kolesky, D.B.1
Truby, R.L.2
Gladman, A.S.3
Busbee, T.A.4
Homan, K.A.5
Lewis, J.A.6
-
36
-
-
84903737158
-
Creating perfused functional vascular channels using 3D bio-printing technology
-
[36] Lee, V.K., Kim, D.Y., Ngo, H., Lee, Y., Seo, L., Yoo, S.-S., et al. Creating perfused functional vascular channels using 3D bio-printing technology. Biomaterials 35 (2014), 8092–8102.
-
(2014)
Biomaterials
, vol.35
, pp. 8092-8102
-
-
Lee, V.K.1
Kim, D.Y.2
Ngo, H.3
Lee, Y.4
Seo, L.5
Yoo, S.-S.6
-
37
-
-
84955703987
-
Microfluidic bioprinting of heterogeneous 3D tissue constructs using low viscosity bioink
-
[37] Colosi, C., Shin, S.R., Manoharan, V., Massa, S., Constantini, M., Barbetta, A., et al. Microfluidic bioprinting of heterogeneous 3D tissue constructs using low viscosity bioink. Adv. Mater 28 (2015), 677–684.
-
(2015)
Adv. Mater
, vol.28
, pp. 677-684
-
-
Colosi, C.1
Shin, S.R.2
Manoharan, V.3
Massa, S.4
Constantini, M.5
Barbetta, A.6
-
38
-
-
84939125652
-
Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery
-
[38] Gao, Q., He, Y., Fu, J-z, Liu, A., Ma, L., Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials 61 (2015), 203–215.
-
(2015)
Biomaterials
, vol.61
, pp. 203-215
-
-
Gao, Q.1
He, Y.2
Fu, J.-Z.3
Liu, A.4
Ma, L.5
-
39
-
-
34147178472
-
Microfluidic patterning for fabrication of contractile cardiac organoids
-
[39] Khademhosseini, A., Eng, G., Yeh, J., Kucharczyk, P., Langer, R., Vunjak-Novakovic, G., et al. Microfluidic patterning for fabrication of contractile cardiac organoids. Biomed. Microdevices 9 (2007), 149–157.
-
(2007)
Biomed. Microdevices
, vol.9
, pp. 149-157
-
-
Khademhosseini, A.1
Eng, G.2
Yeh, J.3
Kucharczyk, P.4
Langer, R.5
Vunjak-Novakovic, G.6
-
40
-
-
84958985967
-
A liver-on-a-chip platform with bioprinted hepatic spheroids
-
[40] Bhise, N.S., Manoharan, V., Massa, S., Tamayol, A., Ghaderi, M., Miscuglio, M., et al. A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication, 8, 2016, 014101.
-
(2016)
Biofabrication
, vol.8
, pp. 014101
-
-
Bhise, N.S.1
Manoharan, V.2
Massa, S.3
Tamayol, A.4
Ghaderi, M.5
Miscuglio, M.6
-
41
-
-
0033894447
-
Gas sorption, diffusion, and permeation in poly (dimethylsiloxane)
-
[41] Merkel, T.C., Bondar, V.I., Nagai, K., Freeman, B.D., Pinnau, I., Gas sorption, diffusion, and permeation in poly (dimethylsiloxane). J. Polym. Sci. Part B Polym. Phys. 38 (2000), 415–434.
-
(2000)
J. Polym. Sci. Part B Polym. Phys.
, vol.38
, pp. 415-434
-
-
Merkel, T.C.1
Bondar, V.I.2
Nagai, K.3
Freeman, B.D.4
Pinnau, I.5
-
42
-
-
79960983027
-
Unforeseen decreases in dissolved oxygen levels affect tube formation kinetics in collagen gels
-
[42] Abaci, H.E., Truitt, R., Tan, S., Gerecht, S., Unforeseen decreases in dissolved oxygen levels affect tube formation kinetics in collagen gels. Am. J. Physiol.-Cell Physiol. 301 (2011), C431–C440.
-
(2011)
Am. J. Physiol.-Cell Physiol.
, vol.301
, pp. C431-C440
-
-
Abaci, H.E.1
Truitt, R.2
Tan, S.3
Gerecht, S.4
-
43
-
-
13944255075
-
Mathematical model of oxygen distribution in engineered cardiac tissue with parallel channel array perfused with culture medium containing oxygen carriers
-
[43] Radisic, M., Deen, W., Langer, R., Vunjak-Novakovic, G., Mathematical model of oxygen distribution in engineered cardiac tissue with parallel channel array perfused with culture medium containing oxygen carriers. Am. J. Physiol. - Heart Circ. Physiol. 288 (2005), H1278–H1289.
-
(2005)
Am. J. Physiol. - Heart Circ. Physiol.
, vol.288
, pp. H1278-H1289
-
-
Radisic, M.1
Deen, W.2
Langer, R.3
Vunjak-Novakovic, G.4
-
44
-
-
84899623868
-
Gelatine methacrylamide-based hydrogels: an alternative three-dimensional cancer cell culture system
-
[44] Kaemmerer, E., Melchels, F.P.W., Holzapfel, B.M., Meckel, T., Hutmacher, D.W., Loessner, D., Gelatine methacrylamide-based hydrogels: an alternative three-dimensional cancer cell culture system. Acta Biomater. 10 (2014), 2551–2562.
-
(2014)
Acta Biomater.
, vol.10
, pp. 2551-2562
-
-
Kaemmerer, E.1
Melchels, F.P.W.2
Holzapfel, B.M.3
Meckel, T.4
Hutmacher, D.W.5
Loessner, D.6
-
45
-
-
84882245384
-
Scaling and systems biology for integrating multiple organs-on-a-chip
-
[45] Wikswo, J.P., Curtis, E.L., Eagleton, Z.E., Evans, B.C., Kole, A., Hofmeister, L.H., et al. Scaling and systems biology for integrating multiple organs-on-a-chip. Lab. Chip. 13 (2013), 3496–3511.
-
(2013)
Lab. Chip.
, vol.13
, pp. 3496-3511
-
-
Wikswo, J.P.1
Curtis, E.L.2
Eagleton, Z.E.3
Evans, B.C.4
Kole, A.5
Hofmeister, L.H.6
-
46
-
-
84940033699
-
A cost-effective fluorescence mini-microscope for biomedical applications
-
[46] Zhang, Y.S., Ribas, J., Nadhman, A., Aleman, J., Selimović, Š., Lesher-Perez, S.C., et al. A cost-effective fluorescence mini-microscope for biomedical applications. Lab. Chip. 15 (2015), 3661–3669.
-
(2015)
Lab. Chip.
, vol.15
, pp. 3661-3669
-
-
Zhang, Y.S.1
Ribas, J.2
Nadhman, A.3
Aleman, J.4
Selimović, Š.5
Lesher-Perez, S.C.6
-
47
-
-
0032941232
-
Alginate hydrogels as synthetic extracellular matrix materials
-
[47] Rowley, J.A., Madlambayan, G., Mooney, D.J., Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20 (1999), 45–53.
-
(1999)
Biomaterials
, vol.20
, pp. 45-53
-
-
Rowley, J.A.1
Madlambayan, G.2
Mooney, D.J.3
-
48
-
-
33748321119
-
Alginate hydrogels as biomaterials
-
[48] Augst, A.D., Kong, H.J., Mooney, D.J., Alginate hydrogels as biomaterials. Macromol. Biosci. 6 (2006), 623–633.
-
(2006)
Macromol. Biosci.
, vol.6
, pp. 623-633
-
-
Augst, A.D.1
Kong, H.J.2
Mooney, D.J.3
-
49
-
-
59849092074
-
Electrical stimulation systems for cardiac tissue engineering
-
[49] Tandon, N., Cannizzaro, C., Chao, P.-H.G., Maidhof, R., Marsano, A., Au, H.T.H., et al. Electrical stimulation systems for cardiac tissue engineering. Nat. Protoc. 4 (2009), 155–173.
-
(2009)
Nat. Protoc.
, vol.4
, pp. 155-173
-
-
Tandon, N.1
Cannizzaro, C.2
Chao, P.-H.G.3
Maidhof, R.4
Marsano, A.5
Au, H.T.H.6
-
50
-
-
44249089298
-
Vascularization of engineered tissues: approaches to promote angiogenesis in biomaterials
-
[50] Moon, J.J., West, J.L., Vascularization of engineered tissues: approaches to promote angiogenesis in biomaterials. Curr. Top. Med. Chem. 8 (2008), 300–310.
-
(2008)
Curr. Top. Med. Chem.
, vol.8
, pp. 300-310
-
-
Moon, J.J.1
West, J.L.2
-
51
-
-
84875181524
-
Neovascularization in biodegradable inverse opal scaffolds with uniform and precisely controlled pore sizes
-
[51] Choi, S.-W., Zhang, Y., MacEwan, M.R., Xia, Y., Neovascularization in biodegradable inverse opal scaffolds with uniform and precisely controlled pore sizes. Adv. Healthc. Mater 2:1 (2012), 145–154.
-
(2012)
Adv. Healthc. Mater
, vol.2
, Issue.1
, pp. 145-154
-
-
Choi, S.-W.1
Zhang, Y.2
MacEwan, M.R.3
Xia, Y.4
-
52
-
-
84879463716
-
Transdermal regulation of vascular network bioengineering using a photopolymerizable methacrylated gelatin hydrogel
-
[52] Lin, R.-Z., Chen, Y.-C., Moreno-Luna, R., Khademhosseini, A., Melero-Martin, J.M., Transdermal regulation of vascular network bioengineering using a photopolymerizable methacrylated gelatin hydrogel. Biomaterials 34 (2013), 6785–6796.
-
(2013)
Biomaterials
, vol.34
, pp. 6785-6796
-
-
Lin, R.-Z.1
Chen, Y.-C.2
Moreno-Luna, R.3
Khademhosseini, A.4
Melero-Martin, J.M.5
-
53
-
-
79959731599
-
Omnidirectional printing of 3D microvascular networks
-
[53] Wu, W., DeConinck, A., Lewis, J.A., Omnidirectional printing of 3D microvascular networks. Adv. Mater 23 (2011), H178–H183.
-
(2011)
Adv. Mater
, vol.23
, pp. H178-H183
-
-
Wu, W.1
DeConinck, A.2
Lewis, J.A.3
-
54
-
-
84866355664
-
Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues
-
[54] Miller, J.S., Stevens, K.R., Yang, M.T., Baker, B.M., Nguyen, D.-H.T., Cohen, D.M., et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater 11 (2012), 768–774.
-
(2012)
Nat. Mater
, vol.11
, pp. 768-774
-
-
Miller, J.S.1
Stevens, K.R.2
Yang, M.T.3
Baker, B.M.4
Nguyen, D.-H.T.5
Cohen, D.M.6
-
55
-
-
84970006632
-
Chemotaxis-driven assembly of endothelial barrier in a tumor-on-a-chip platform
-
[55] Aung, A., Theprungsirikul, J., Lim, H.L., Varghese, S., Chemotaxis-driven assembly of endothelial barrier in a tumor-on-a-chip platform. Lab. Chip. 16:10 (2016), 1886–1898.
-
(2016)
Lab. Chip.
, vol.16
, Issue.10
, pp. 1886-1898
-
-
Aung, A.1
Theprungsirikul, J.2
Lim, H.L.3
Varghese, S.4
-
56
-
-
79959546065
-
Synthesis and characterization of tunable poly (ethylene glycol): gelatin methacrylate composite hydrogels
-
[56] Hutson, C.B., Nichol, J.W., Aubin, H., Bae, H., Yamanlar, S., Al-Haque, S., et al. Synthesis and characterization of tunable poly (ethylene glycol): gelatin methacrylate composite hydrogels. Tissue Eng. A 17 (2011), 1713–1723.
-
(2011)
Tissue Eng. A
, vol.17
, pp. 1713-1723
-
-
Hutson, C.B.1
Nichol, J.W.2
Aubin, H.3
Bae, H.4
Yamanlar, S.5
Al-Haque, S.6
-
57
-
-
84943536801
-
Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels
-
[57] Yue, K., Trujillo-de Santiago, G., Alvarez, M.M., Tamayol, A., Annabi, N., Khademhosseini, A., Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 73 (2015), 254–271.
-
(2015)
Biomaterials
, vol.73
, pp. 254-271
-
-
Yue, K.1
Trujillo-de Santiago, G.2
Alvarez, M.M.3
Tamayol, A.4
Annabi, N.5
Khademhosseini, A.6
-
58
-
-
0004205342
-
Human Anatomy and Physiology
-
McGraw-Hill College
-
[58] Carola, R., Harley, J.P., Noback, C.R., Human Anatomy and Physiology. 1992, McGraw-Hill College.
-
(1992)
-
-
Carola, R.1
Harley, J.P.2
Noback, C.R.3
-
59
-
-
11144248959
-
Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds
-
[59] Radisic, M., Park, H., Shing, H., Consi, T., Schoen, F.J., Langer, R., et al. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proct Natl. Acad. Sci. U. S. A. 101 (2004), 18129–18134.
-
(2004)
Proct Natl. Acad. Sci. U. S. A.
, vol.101
, pp. 18129-18134
-
-
Radisic, M.1
Park, H.2
Shing, H.3
Consi, T.4
Schoen, F.J.5
Langer, R.6
-
60
-
-
84875669562
-
Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators
-
[60] Shin, S.R., Jung, S.M., Zalabany, M., Kim, K., Zorlutuna, P., Sb, Kim, et al. Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano 7 (2013), 2369–2380.
-
(2013)
ACS Nano
, vol.7
, pp. 2369-2380
-
-
Shin, S.R.1
Jung, S.M.2
Zalabany, M.3
Kim, K.4
Zorlutuna, P.5
Sb, K.6
-
61
-
-
84902538079
-
Tough and flexible CNT–polymeric hybrid scaffolds for engineering cardiac constructs
-
[61] Kharaziha, M., Shin, S.R., Nikkhah, M., Topkaya, S.N., Masoumi, N., Annabi, N., et al. Tough and flexible CNT–polymeric hybrid scaffolds for engineering cardiac constructs. Biomaterials 35 (2014), 7346–7354.
-
(2014)
Biomaterials
, vol.35
, pp. 7346-7354
-
-
Kharaziha, M.1
Shin, S.R.2
Nikkhah, M.3
Topkaya, S.N.4
Masoumi, N.5
Annabi, N.6
-
62
-
-
42049121079
-
Cardiac tissue engineering using perfusion bioreactor systems
-
[62] Radisic, M., Marsano, A., Maidhof, R., Wang, Y., Vunjak-Novakovic, G., Cardiac tissue engineering using perfusion bioreactor systems. Nat. Protoc. 3 (2008), 719–738.
-
(2008)
Nat. Protoc.
, vol.3
, pp. 719-738
-
-
Radisic, M.1
Marsano, A.2
Maidhof, R.3
Wang, Y.4
Vunjak-Novakovic, G.5
-
63
-
-
33645560618
-
Oxygen gradients correlate with cell density and cell viability in engineered cardiac tissue
-
[63] Radisic, M., Malda, J., Epping, E., Geng, W., Langer, R., Vunjak-Novakovic, G., Oxygen gradients correlate with cell density and cell viability in engineered cardiac tissue. Biotechnol. Bioeng. 93 (2006), 332–343.
-
(2006)
Biotechnol. Bioeng.
, vol.93
, pp. 332-343
-
-
Radisic, M.1
Malda, J.2
Epping, E.3
Geng, W.4
Langer, R.5
Vunjak-Novakovic, G.6
-
64
-
-
84866978373
-
Vascular endothelial growth factor secretion by nonmyocytes modulates Connexin-43 levels in cardiac organoids
-
[64] Iyer, R.K., Odedra, D., Chiu, L.L.Y., Vunjak-Novakovic, G., Radisic, M., Vascular endothelial growth factor secretion by nonmyocytes modulates Connexin-43 levels in cardiac organoids. Tissue Eng. A 18 (2012), 1771–1783.
-
(2012)
Tissue Eng. A
, vol.18
, pp. 1771-1783
-
-
Iyer, R.K.1
Odedra, D.2
Chiu, L.L.Y.3
Vunjak-Novakovic, G.4
Radisic, M.5
-
65
-
-
77957009635
-
Proangiogenic scaffolds as functional templates for cardiac tissue engineering
-
[65] Madden, L.R., Mortisen, D.J., Sussman, E.M., Dupras, S.K., Fugate, J.A., Cuy, J.L., et al. Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proc. Natl. Acad. Sci. U. S. A. 107 (2010), 15211–15216.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 15211-15216
-
-
Madden, L.R.1
Mortisen, D.J.2
Sussman, E.M.3
Dupras, S.K.4
Fugate, J.A.5
Cuy, J.L.6
-
66
-
-
84964665882
-
A bioactive carbon nanotube-based ink for printing 2D and 3D flexible electronics
-
[66] Shin, S.R., Farzad, R., Tamayol, A., Manoharan, V., Mostafalu, P., Zhang, Y.S., et al. A bioactive carbon nanotube-based ink for printing 2D and 3D flexible electronics. Adv. Mater 28 (2016), 3280–3289.
-
(2016)
Adv. Mater
, vol.28
, pp. 3280-3289
-
-
Shin, S.R.1
Farzad, R.2
Tamayol, A.3
Manoharan, V.4
Mostafalu, P.5
Zhang, Y.S.6
-
67
-
-
84978379727
-
Reduced graphene oxide-gelma hybrid hydrogels as scaffolds for cardiac tissue engineering
-
[67] Shin, S.R., Zihlmann, C., Akbari, M., Assawes, P., Cheung, L., Zhang, K., et al. Reduced graphene oxide-gelma hybrid hydrogels as scaffolds for cardiac tissue engineering. Small 12:27 (2016), 3677–3689.
-
(2016)
Small
, vol.12
, Issue.27
, pp. 3677-3689
-
-
Shin, S.R.1
Zihlmann, C.2
Akbari, M.3
Assawes, P.4
Cheung, L.5
Zhang, K.6
-
68
-
-
84861143986
-
Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels
-
[68] Chen, Y.C., Lin, R.Z., Qi, H., Yang, Y., Bae, H., Melero-Martin, J.M., et al. Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels. Adv. Funct. Mater 22 (2012), 2027–2039.
-
(2012)
Adv. Funct. Mater
, vol.22
, pp. 2027-2039
-
-
Chen, Y.C.1
Lin, R.Z.2
Qi, H.3
Yang, Y.4
Bae, H.5
Melero-Martin, J.M.6
-
69
-
-
84901915693
-
Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs
-
[69] Bertassoni, L.E., Cecconi, M., Manoharan, V., Nikkhah, M., Hjortnaes, J., Cristino, A.L., et al. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab. Chip. 14 (2014), 2202–2211.
-
(2014)
Lab. Chip.
, vol.14
, pp. 2202-2211
-
-
Bertassoni, L.E.1
Cecconi, M.2
Manoharan, V.3
Nikkhah, M.4
Hjortnaes, J.5
Cristino, A.L.6
-
70
-
-
84982283785
-
Direct 3D bioprinting of perfusable vascular constructs using a blend bioink
-
[70] Jia, W., Gungor-Ozkerim, P.S., Zhang, Y.S., Yue, K., Zhu, K., Liu, W., et al. Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials 106 (2016), 58–68.
-
(2016)
Biomaterials
, vol.106
, pp. 58-68
-
-
Jia, W.1
Gungor-Ozkerim, P.S.2
Zhang, Y.S.3
Yue, K.4
Zhu, K.5
Liu, W.6
-
71
-
-
84966350657
-
Elastomeric free-form blood vessels for interconnecting organs on chip systems
-
[71] Zhang, W., Zhang, Y.S., Bakht, S.M., Aleman, J., Shin, S.R., Yue, K., et al. Elastomeric free-form blood vessels for interconnecting organs on chip systems. Lab. Chip. 16 (2016), 1579–1586.
-
(2016)
Lab. Chip.
, vol.16
, pp. 1579-1586
-
-
Zhang, W.1
Zhang, Y.S.2
Bakht, S.M.3
Aleman, J.4
Shin, S.R.5
Yue, K.6
-
72
-
-
77649234756
-
How to improve R&D productivity: the pharmaceutical industry's grand challenge
-
[72] Paul, S.M., Mytelka, D.S., Dunwiddie, C.T., Persinger, C.C., Munos, B.H., Lindborg, S.R., et al. How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nat. Rev. Drug Discov. 9 (2010), 203–214.
-
(2010)
Nat. Rev. Drug Discov.
, vol.9
, pp. 203-214
-
-
Paul, S.M.1
Mytelka, D.S.2
Dunwiddie, C.T.3
Persinger, C.C.4
Munos, B.H.5
Lindborg, S.R.6
-
73
-
-
84989281801
-
Can pharmacogenetics help rescue drugs withdrawn from the market?
-
[73] Shah, R.R., Can pharmacogenetics help rescue drugs withdrawn from the market?. 2006.
-
(2006)
-
-
Shah, R.R.1
-
74
-
-
41849095624
-
Balancing drug risk and benefit: toward refining the process of FDA decisions affecting patient care
-
[74] Schiller, L.R., Johnson, D.A., Balancing drug risk and benefit: toward refining the process of FDA decisions affecting patient care. Am. J. Gastroenterol. 103 (2008), 815–819.
-
(2008)
Am. J. Gastroenterol.
, vol.103
, pp. 815-819
-
-
Schiller, L.R.1
Johnson, D.A.2
-
75
-
-
84899101781
-
On-chip in vitro cell-network pre-clinical cardiac toxicity using spatiotemporal human cardiomyocyte measurement on a chip
-
[75] Kaneko, T., Nomura, F., Hamada, T., Abe, Y., Takamori, H., Sakakura, T., et al. On-chip in vitro cell-network pre-clinical cardiac toxicity using spatiotemporal human cardiomyocyte measurement on a chip. Sci. Rep., 4, 2014.
-
(2014)
Sci. Rep.
, vol.4
-
-
Kaneko, T.1
Nomura, F.2
Hamada, T.3
Abe, Y.4
Takamori, H.5
Sakakura, T.6
-
76
-
-
84962320853
-
Beating heart on a chip: a novel microfluidic platform to generate functional 3D cardiac microtissues
-
[76] Marsano, A., Conficconi, C., Lemme, M., Occhetta, P., Gaudiello, E., Votta, E., et al. Beating heart on a chip: a novel microfluidic platform to generate functional 3D cardiac microtissues. Lab. Chip. 16 (2016), 599–610.
-
(2016)
Lab. Chip.
, vol.16
, pp. 599-610
-
-
Marsano, A.1
Conficconi, C.2
Lemme, M.3
Occhetta, P.4
Gaudiello, E.5
Votta, E.6
-
77
-
-
84989314414
-
Cardiovascular organ-on-a-chip platforms for drug discovery and development
-
[77] Ribas, J., Sadeghi, H., Manbachi, A., Leijten, J., Brinegar, K., Zhang, Y.S., et al. Cardiovascular organ-on-a-chip platforms for drug discovery and development. Appl. in vitro Toxicol. 2:2 (2016), 82–96.
-
(2016)
Appl. in vitro Toxicol.
, vol.2
, Issue.2
, pp. 82-96
-
-
Ribas, J.1
Sadeghi, H.2
Manbachi, A.3
Leijten, J.4
Brinegar, K.5
Zhang, Y.S.6
-
78
-
-
79955368017
-
A cell-based biosensor for real-time detection of cardiotoxicity using lensfree imaging
-
[78] Kim, S.B., Bae, H., Cha, J.M., Moon, S.J., Dokmeci, M.R., Cropek, D.M., et al. A cell-based biosensor for real-time detection of cardiotoxicity using lensfree imaging. Lab. Chip. 11 (2011), 1801–1807.
-
(2011)
Lab. Chip.
, vol.11
, pp. 1801-1807
-
-
Kim, S.B.1
Bae, H.2
Cha, J.M.3
Moon, S.J.4
Dokmeci, M.R.5
Cropek, D.M.6
-
79
-
-
79955464098
-
The use of induced pluripotent stem cells in drug development
-
[79] Inoue, H., Yamanaka, S., The use of induced pluripotent stem cells in drug development. Clin. Pharmacol. Ther. 89 (2011), 655–661.
-
(2011)
Clin. Pharmacol. Ther.
, vol.89
, pp. 655-661
-
-
Inoue, H.1
Yamanaka, S.2
-
80
-
-
79957684206
-
In vitro human tissue models — moving towards personalized regenerative medicine
-
[80] Schenke-Layland, K., Nerem, R.M., In vitro human tissue models — moving towards personalized regenerative medicine. Adv. Drug Del Rev. 63 (2011), 195–196.
-
(2011)
Adv. Drug Del Rev.
, vol.63
, pp. 195-196
-
-
Schenke-Layland, K.1
Nerem, R.M.2
-
81
-
-
84931032477
-
3D human cardiac muscle on a chip: quantification of contractile force of human iPS-derived cardiomyocytes
-
IEEE
-
[81] Morimoto, Y., Mori, S., Takeuchi, S., 3D human cardiac muscle on a chip: quantification of contractile force of human iPS-derived cardiomyocytes. 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 2015, IEEE, 566–568.
-
(2015)
2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)
, pp. 566-568
-
-
Morimoto, Y.1
Mori, S.2
Takeuchi, S.3
-
82
-
-
84981173262
-
Microfabric vessels for embryoid body formation and rapid differentiation of pluripotent stem cells
-
[82] Sato, H., Idiris, A., Miwa, T., Kumagai, H., Microfabric vessels for embryoid body formation and rapid differentiation of pluripotent stem cells. Sci. Rep., 6, 2016, 31063.
-
(2016)
Sci. Rep.
, vol.6
, pp. 31063
-
-
Sato, H.1
Idiris, A.2
Miwa, T.3
Kumagai, H.4
-
83
-
-
84979723176
-
Reality check for nanomaterial-mediated therapy with 3D biomimetic culture systems
-
[83] Tay, C.Y., Muthu, M.S., Chia, S.L., Nguyen, K.T., Feng, S.S., Leong, D.T., Reality check for nanomaterial-mediated therapy with 3D biomimetic culture systems. Adv. Funct. Mater 26 (2016), 4046–4065.
-
(2016)
Adv. Funct. Mater
, vol.26
, pp. 4046-4065
-
-
Tay, C.Y.1
Muthu, M.S.2
Chia, S.L.3
Nguyen, K.T.4
Feng, S.S.5
Leong, D.T.6
-
84
-
-
84977554901
-
Boosting clinical translation of nanomedicine
-
[84] Jang, H.L., Zhang, Y.S., Khademhosseini, A., Boosting clinical translation of nanomedicine. Nanomedicine 11 (2016), 1495–1497.
-
(2016)
Nanomedicine
, vol.11
, pp. 1495-1497
-
-
Jang, H.L.1
Zhang, Y.S.2
Khademhosseini, A.3
-
85
-
-
84904768512
-
Magnetic targeting of cardiosphere-derived stem cells with ferumoxytol nanoparticles for treating rats with myocardial infarction
-
[85] Vandergriff, A.C., Hensley, T.M., Henry, E.T., Shen, D., Anthony, S., Zhang, J., et al. Magnetic targeting of cardiosphere-derived stem cells with ferumoxytol nanoparticles for treating rats with myocardial infarction. Biomaterials 35 (2014), 8528–8539.
-
(2014)
Biomaterials
, vol.35
, pp. 8528-8539
-
-
Vandergriff, A.C.1
Hensley, T.M.2
Henry, E.T.3
Shen, D.4
Anthony, S.5
Zhang, J.6
-
86
-
-
84925596641
-
Iron oxide nanoparticle-mediated development of cellular gap junction crosstalk to improve mesenchymal stem cells’ therapeutic efficacy for myocardial infarction
-
[86] Han, J., Kim, B., Shin, J.-Y., Ryu, S., Noh, M., Woo, J., et al. Iron oxide nanoparticle-mediated development of cellular gap junction crosstalk to improve mesenchymal stem cells’ therapeutic efficacy for myocardial infarction. ACS Nano 9 (2015), 2805–2819.
-
(2015)
ACS Nano
, vol.9
, pp. 2805-2819
-
-
Han, J.1
Kim, B.2
Shin, J.-Y.3
Ryu, S.4
Noh, M.5
Woo, J.6
-
87
-
-
84983113422
-
In vitro and in vivo assessment of heart-homing porous silicon nanoparticles
-
[87] Ferreira, M.P., Ranjan, S., Correia, A.M., Mäkilä, E.M., Kinnunen, S.M., Zhang, H., et al. In vitro and in vivo assessment of heart-homing porous silicon nanoparticles. Biomaterials 94 (2016), 93–104.
-
(2016)
Biomaterials
, vol.94
, pp. 93-104
-
-
Ferreira, M.P.1
Ranjan, S.2
Correia, A.M.3
Mäkilä, E.M.4
Kinnunen, S.M.5
Zhang, H.6
-
88
-
-
84877737852
-
Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the homophilic interaction of VE–cadherin
-
[88] Setyawati, M.I., Tay, C.Y., Chia, S.L., Goh, S.L., Fang, W., Neo, M.J., et al. Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the homophilic interaction of VE–cadherin. Nat. Commun., 4, 2013, 1673.
-
(2013)
Nat. Commun.
, vol.4
, pp. 1673
-
-
Setyawati, M.I.1
Tay, C.Y.2
Chia, S.L.3
Goh, S.L.4
Fang, W.5
Neo, M.J.6
|