메뉴 건너뛰기




Volumn 106, Issue , 2016, Pages 58-68

Direct 3D bioprinting of perfusable vascular constructs using a blend bioink

Author keywords

3D Bioprinting; Bioink; Endothelial cells; Mesenchymal stem cells; Perfusable hollow tube

Indexed keywords

BIOMIMETIC PROCESSES; BIOMIMETICS; CELL CULTURE; CELLS; COMPLEX NETWORKS; CROSSLINKING; CYTOLOGY; ENDOTHELIAL CELLS; EXTRUSION; MICROANALYSIS; MICROFABRICATION; POLYETHYLENE GLYCOLS; STEM CELLS; TISSUE; TISSUE ENGINEERING;

EID: 84982283785     PISSN: 01429612     EISSN: 18785905     Source Type: Journal    
DOI: 10.1016/j.biomaterials.2016.07.038     Document Type: Article
Times cited : (769)

References (67)
  • 1
    • 78650602529 scopus 로고    scopus 로고
    • Nanotechnological strategies for engineering complex tissues
    • [1] Dvir, T., Timko, B.P., Kohane, D.S., Langer, R., Nanotechnological strategies for engineering complex tissues. Nat. Nanotechnol. 6 (2011), 13–22.
    • (2011) Nat. Nanotechnol. , vol.6 , pp. 13-22
    • Dvir, T.1    Timko, B.P.2    Kohane, D.S.3    Langer, R.4
  • 2
    • 70849130059 scopus 로고    scopus 로고
    • Designing materials to direct stem-cell fate
    • [2] Lutolf, M.P., Gilbert, P.M., Blau, H.M., Designing materials to direct stem-cell fate. Nature 462 (2009), 433–441.
    • (2009) Nature , vol.462 , pp. 433-441
    • Lutolf, M.P.1    Gilbert, P.M.2    Blau, H.M.3
  • 5
    • 84961289253 scopus 로고    scopus 로고
    • Multiple facets for extracellular matrix mimicking in regenerative medicine
    • [5] Zhang, Y.S., Xia, Y., Multiple facets for extracellular matrix mimicking in regenerative medicine. Nanomedicine 10 (2015), 689–692.
    • (2015) Nanomedicine , vol.10 , pp. 689-692
    • Zhang, Y.S.1    Xia, Y.2
  • 7
    • 84964318207 scopus 로고    scopus 로고
    • Advancing tissue engineering: a tale of nano, micro and macro scale integration
    • [7] Leijten, J., Rouwkema, J., Zhang, Y.S., Nasajpour, A., Dokmeci, M.R., Khademhosseini, A., Advancing tissue engineering: a tale of nano, micro and macro scale integration. Small 10 (2016), 2130–2145.
    • (2016) Small , vol.10 , pp. 2130-2145
    • Leijten, J.1    Rouwkema, J.2    Zhang, Y.S.3    Nasajpour, A.4    Dokmeci, M.R.5    Khademhosseini, A.6
  • 8
    • 44249089298 scopus 로고    scopus 로고
    • Vascularization of engineered tissues: approaches to promote angiogenesis in biomaterials
    • [8] Moon, J.J., West, J.L., Vascularization of engineered tissues: approaches to promote angiogenesis in biomaterials. Curr. Top. Med. Chem. 8 (2008), 300–310.
    • (2008) Curr. Top. Med. Chem. , vol.8 , pp. 300-310
    • Moon, J.J.1    West, J.L.2
  • 11
    • 84861143986 scopus 로고    scopus 로고
    • Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels
    • [11] Chen, Y.C., Lin, R.Z., Qi, H., Yang, Y., Bae, H., Melero-Martin, J.M., et al. Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels. Adv. Funct. Mater. 22 (2012), 2027–2039.
    • (2012) Adv. Funct. Mater. , vol.22 , pp. 2027-2039
    • Chen, Y.C.1    Lin, R.Z.2    Qi, H.3    Yang, Y.4    Bae, H.5    Melero-Martin, J.M.6
  • 12
    • 77649270111 scopus 로고    scopus 로고
    • Pre-vascularization of in vitro three-dimensional tissues created by cell sheet engineering
    • [12] Asakawa, N., Shimizu, T., Tsuda, Y., Sekiya, S., Sasagawa, T., Yamato, M., et al. Pre-vascularization of in vitro three-dimensional tissues created by cell sheet engineering. Biomaterials 31 (2010), 3903–3909.
    • (2010) Biomaterials , vol.31 , pp. 3903-3909
    • Asakawa, N.1    Shimizu, T.2    Tsuda, Y.3    Sekiya, S.4    Sasagawa, T.5    Yamato, M.6
  • 13
    • 84902550109 scopus 로고    scopus 로고
    • Microfluidic techniques for development of 3D vascularized tissue
    • [13] Hasan, A., Paul, A., Vrana, N.E., Zhao, X., Memic, A., Hwang, Y.S., et al. Microfluidic techniques for development of 3D vascularized tissue. Biomaterials 35 (2014), 7308–7325.
    • (2014) Biomaterials , vol.35 , pp. 7308-7325
    • Hasan, A.1    Paul, A.2    Vrana, N.E.3    Zhao, X.4    Memic, A.5    Hwang, Y.S.6
  • 14
    • 80355132748 scopus 로고    scopus 로고
    • Bioengineering human microvascular networks in immunodeficient mice. Journal of visualized experiments
    • [14] Lin, R.Z., Melero-Martin, J.M., Bioengineering human microvascular networks in immunodeficient mice. Journal of visualized experiments. JoVE, 2011, e3065.
    • (2011) JoVE , pp. e3065
    • Lin, R.Z.1    Melero-Martin, J.M.2
  • 15
    • 84905725612 scopus 로고    scopus 로고
    • 3D bioprinting of tissues and organs
    • [15] Murphy, S.V., Atala, A., 3D bioprinting of tissues and organs. Nat. Biotechnol. 32 (2014), 773–785.
    • (2014) Nat. Biotechnol. , vol.32 , pp. 773-785
    • Murphy, S.V.1    Atala, A.2
  • 16
    • 85065220413 scopus 로고    scopus 로고
    • Controlled positioning of cells in biomaterials—approaches towards 3D tissue printing
    • [16] Wüst, S., Müller, R., Hofmann, S., Controlled positioning of cells in biomaterials—approaches towards 3D tissue printing. J. Funct. Biomater. 2 (2011), 119–154.
    • (2011) J. Funct. Biomater. , vol.2 , pp. 119-154
    • Wüst, S.1    Müller, R.2    Hofmann, S.3
  • 20
    • 77953651709 scopus 로고    scopus 로고
    • Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates
    • [20] Skardal, A., Zhang, J., Prestwich, G.D., Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials 31 (2010), 6173–6181.
    • (2010) Biomaterials , vol.31 , pp. 6173-6181
    • Skardal, A.1    Zhang, J.2    Prestwich, G.D.3
  • 21
    • 84922024541 scopus 로고    scopus 로고
    • Versatile fabrication of vascularizable scaffolds for large tissue engineering in bioreactor
    • [21] Tocchio, A., Tamplenizza, M., Martello, F., Gerges, I., Rossi, E., Argentiere, S., et al. Versatile fabrication of vascularizable scaffolds for large tissue engineering in bioreactor. Biomaterials 45 (2015), 124–131.
    • (2015) Biomaterials , vol.45 , pp. 124-131
    • Tocchio, A.1    Tamplenizza, M.2    Martello, F.3    Gerges, I.4    Rossi, E.5    Argentiere, S.6
  • 22
    • 84903737158 scopus 로고    scopus 로고
    • Creating perfused functional vascular channels using 3D bio-printing technology
    • [22] Lee, V.K., Kim, D.Y., Ngo, H., Lee, Y., Seo, L., Yoo, S.-S., et al. Creating perfused functional vascular channels using 3D bio-printing technology. Biomaterials 35 (2014), 8092–8102.
    • (2014) Biomaterials , vol.35 , pp. 8092-8102
    • Lee, V.K.1    Kim, D.Y.2    Ngo, H.3    Lee, Y.4    Seo, L.5    Yoo, S.-S.6
  • 23
    • 84901915693 scopus 로고    scopus 로고
    • Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs
    • [23] Bertassoni, L.E., Cecconi, M., Manoharan, V., Nikkhah, M., Hjortnaes, J., Cristino, A.L., et al. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab. Chip 14 (2014), 2202–2211.
    • (2014) Lab. Chip , vol.14 , pp. 2202-2211
    • Bertassoni, L.E.1    Cecconi, M.2    Manoharan, V.3    Nikkhah, M.4    Hjortnaes, J.5    Cristino, A.L.6
  • 25
    • 84866355664 scopus 로고    scopus 로고
    • Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues
    • [25] Miller, J.S., Stevens, K.R., Yang, M.T., Baker, B.M., Nguyen, D.-H.T., Cohen, D.M., et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 11 (2012), 768–774.
    • (2012) Nat. Mater. , vol.11 , pp. 768-774
    • Miller, J.S.1    Stevens, K.R.2    Yang, M.T.3    Baker, B.M.4    Nguyen, D.-H.T.5    Cohen, D.M.6
  • 26
    • 69249208450 scopus 로고    scopus 로고
    • Scaffold-free vascular tissue engineering using bioprinting
    • [26] Norotte, C., Marga, F.S., Niklason, L.E., Forgacs, G., Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30 (2009), 5910–5917.
    • (2009) Biomaterials , vol.30 , pp. 5910-5917
    • Norotte, C.1    Marga, F.S.2    Niklason, L.E.3    Forgacs, G.4
  • 27
    • 84939125652 scopus 로고    scopus 로고
    • Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery
    • [27] Gao, Q., He, Y., Fu, J.Z., Liu, A., Ma, L., Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials 61 (2015), 203–215.
    • (2015) Biomaterials , vol.61 , pp. 203-215
    • Gao, Q.1    He, Y.2    Fu, J.Z.3    Liu, A.4    Ma, L.5
  • 28
    • 84938066460 scopus 로고    scopus 로고
    • Direct bioprinting of vessel-like tubular microfluidic channels
    • [28] Zhang, Y., Yu, Y., Ozbolat, I.T., Direct bioprinting of vessel-like tubular microfluidic channels. J. Nanotechnol. Eng. Med., 4, 2013, 020902.
    • (2013) J. Nanotechnol. Eng. Med. , vol.4 , pp. 020902
    • Zhang, Y.1    Yu, Y.2    Ozbolat, I.T.3
  • 29
    • 84914159054 scopus 로고    scopus 로고
    • In vitro study of directly bioprinted perfusable vasculature conduits
    • [29] Zhang, Y., Yu, Y., Akkouch, A., Dababneh, A., Dolati, F., Ozbolat, I.T., In vitro study of directly bioprinted perfusable vasculature conduits. Biomater. Sci. 3 (2015), 134–143.
    • (2015) Biomater. Sci. , vol.3 , pp. 134-143
    • Zhang, Y.1    Yu, Y.2    Akkouch, A.3    Dababneh, A.4    Dolati, F.5    Ozbolat, I.T.6
  • 30
    • 84877736127 scopus 로고    scopus 로고
    • Characterization of printable cellular micro-fluidic channels for tissue engineering
    • [30] Zhang, Y., Yu, Y., Chen, H., Ozbolat, I.T., Characterization of printable cellular micro-fluidic channels for tissue engineering. Biofabrication, 5, 2013, 025004.
    • (2013) Biofabrication , vol.5 , pp. 025004
    • Zhang, Y.1    Yu, Y.2    Chen, H.3    Ozbolat, I.T.4
  • 32
    • 34748902324 scopus 로고    scopus 로고
    • Microengineered hydrogels for tissue engineering
    • [32] Khademhosseini, A., Langer, R., Microengineered hydrogels for tissue engineering. Biomaterials 28 (2007), 5087–5092.
    • (2007) Biomaterials , vol.28 , pp. 5087-5092
    • Khademhosseini, A.1    Langer, R.2
  • 33
    • 79953067209 scopus 로고    scopus 로고
    • Hyaluronic acid hydrogels for biomedical applications
    • [33] Burdick, J.A., Prestwich, G.D., Hyaluronic acid hydrogels for biomedical applications. Adv. Mater. 23 (2011), H41–H56.
    • (2011) Adv. Mater. , vol.23 , pp. H41-H56
    • Burdick, J.A.1    Prestwich, G.D.2
  • 35
    • 84870253512 scopus 로고    scopus 로고
    • Hydrogels for biomedical applications
    • [35] Hoffman, A.S., Hydrogels for biomedical applications. Adv. Drug Del Rev. 64 (2012), 18–23.
    • (2012) Adv. Drug Del Rev. , vol.64 , pp. 18-23
    • Hoffman, A.S.1
  • 37
    • 84898677725 scopus 로고    scopus 로고
    • Increasing mechanical strength of gelatin hydrogels by divalent metal ion removal
    • [37] Xing, Q., Yates, K., Vogt, C., Qian, Z., Frost, M.C., Zhao, F., Increasing mechanical strength of gelatin hydrogels by divalent metal ion removal. Sci. Rep., 4, 2014, 4706.
    • (2014) Sci. Rep. , vol.4 , pp. 4706
    • Xing, Q.1    Yates, K.2    Vogt, C.3    Qian, Z.4    Frost, M.C.5    Zhao, F.6
  • 39
    • 84960905071 scopus 로고    scopus 로고
    • 3D bioprinting system to produce human-scale tissue constructs with structural integrity
    • [39] Kang, H.W., Lee, S.J., Ko, I.K., Kengla, C., Yoo, J.J., Atala, A.A., 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 34 (2016), 312–319.
    • (2016) Nat. Biotechnol. , vol.34 , pp. 312-319
    • Kang, H.W.1    Lee, S.J.2    Ko, I.K.3    Kengla, C.4    Yoo, J.J.5    Atala, A.A.6
  • 44
    • 84955703987 scopus 로고    scopus 로고
    • Microfluidic bioprinting of heterogeneous 3D tissue constructs using low-viscosity bioink
    • [44] Colosi, C., Shin, S.R., Manoharan, V., Massa, S., Costantini, M., Barbetta, A., et al. Microfluidic bioprinting of heterogeneous 3D tissue constructs using low-viscosity bioink. Adv. Mater. 28 (2016), 677–684.
    • (2016) Adv. Mater. , vol.28 , pp. 677-684
    • Colosi, C.1    Shin, S.R.2    Manoharan, V.3    Massa, S.4    Costantini, M.5    Barbetta, A.6
  • 45
    • 84879607867 scopus 로고    scopus 로고
    • Directed differentiation of size-controlled embryoid bodies towards endothelial and cardiac lineages in RGD-modified poly(ethylene glycol) hydrogels
    • [45] Schukur, L., Zorlutuna, P., Cha, J.M., Bae, H., Khademhosseini, A., Directed differentiation of size-controlled embryoid bodies towards endothelial and cardiac lineages in RGD-modified poly(ethylene glycol) hydrogels. Adv. Healthc. Mater. 2 (2013), 195–205.
    • (2013) Adv. Healthc. Mater. , vol.2 , pp. 195-205
    • Schukur, L.1    Zorlutuna, P.2    Cha, J.M.3    Bae, H.4    Khademhosseini, A.5
  • 47
    • 84870241190 scopus 로고    scopus 로고
    • Osteogenic and angiogenic potentials of monocultured and co-cultured human-bone-marrow-derived mesenchymal stem cells and human-umbilical-vein endothelial cells on three-dimensional porous beta-tricalcium phosphate scaffold
    • [47] Kang, Y., Kim, S., Fahrenholtz, M., Khademhosseini, A., Yang, Y., Osteogenic and angiogenic potentials of monocultured and co-cultured human-bone-marrow-derived mesenchymal stem cells and human-umbilical-vein endothelial cells on three-dimensional porous beta-tricalcium phosphate scaffold. Acta Biomater. 9 (2013), 4906–4915.
    • (2013) Acta Biomater. , vol.9 , pp. 4906-4915
    • Kang, Y.1    Kim, S.2    Fahrenholtz, M.3    Khademhosseini, A.4    Yang, Y.5
  • 48
    • 84959172061 scopus 로고    scopus 로고
    • Effects of the poly(ethylene glycol) hydrogel crosslinking mechanism on protein release
    • [48] Lee, S., Tong, X., Yang, F., Effects of the poly(ethylene glycol) hydrogel crosslinking mechanism on protein release. Biomater. Sci. 4 (2016), 405–411.
    • (2016) Biomater. Sci. , vol.4 , pp. 405-411
    • Lee, S.1    Tong, X.2    Yang, F.3
  • 49
    • 79953055440 scopus 로고    scopus 로고
    • Oppositely charged gelatin nanospheres as building blocks for injectable and biodegradable gels
    • [49] Wang, H., Hansen, M.B., Lowik, D.W., van Hest, J.C., Li, Y., Jansen, J.A., et al. Oppositely charged gelatin nanospheres as building blocks for injectable and biodegradable gels. Adv. Mater. 23 (2011), H119–H124.
    • (2011) Adv. Mater. , vol.23 , pp. H119-H124
    • Wang, H.1    Hansen, M.B.2    Lowik, D.W.3    van Hest, J.C.4    Li, Y.5    Jansen, J.A.6
  • 50
    • 84901923061 scopus 로고    scopus 로고
    • Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink
    • [50] Pati, F., Jang, J., Ha, D.H., Won Kim, S., Rhie, J.W., Shim, J.H., et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat. Commun., 5, 2014, 3935.
    • (2014) Nat. Commun. , vol.5 , pp. 3935
    • Pati, F.1    Jang, J.2    Ha, D.H.3    Won Kim, S.4    Rhie, J.W.5    Shim, J.H.6
  • 51
    • 79959546065 scopus 로고    scopus 로고
    • Synthesis and characterization of tunable poly(ethylene glycol): gelatin methacrylate composite hydrogels
    • [51] Hutson, C.B., Nichol, J.W., Aubin, H., Bae, H., Yamanlar, S., Al-Haque, S., et al. Synthesis and characterization of tunable poly(ethylene glycol): gelatin methacrylate composite hydrogels. Tissue Eng. Part A 17 (2011), 1713–1723.
    • (2011) Tissue Eng. Part A , vol.17 , pp. 1713-1723
    • Hutson, C.B.1    Nichol, J.W.2    Aubin, H.3    Bae, H.4    Yamanlar, S.5    Al-Haque, S.6
  • 53
    • 24744458412 scopus 로고    scopus 로고
    • Vascular endothelial growth factor (VEGF-A) expression in human mesenchymal stem cells: autocrine and paracrine role on osteoblastic and endothelial differentiation
    • [53] Mayer, H., Bertram, H., Lindenmaier, W., Korff, T., Weber, H., Weich, H., Vascular endothelial growth factor (VEGF-A) expression in human mesenchymal stem cells: autocrine and paracrine role on osteoblastic and endothelial differentiation. J. Cell. Biochem. 95 (2005), 827–839.
    • (2005) J. Cell. Biochem. , vol.95 , pp. 827-839
    • Mayer, H.1    Bertram, H.2    Lindenmaier, W.3    Korff, T.4    Weber, H.5    Weich, H.6
  • 54
    • 0038308502 scopus 로고    scopus 로고
    • Vascular endothelial growth factor principally acts as the main angiogenic factor in the early stage of human osteoblastogenesis
    • [54] Furumatsu, T., Vascular endothelial growth factor principally acts as the main angiogenic factor in the early stage of human osteoblastogenesis. J. Biochem. 133 (2003), 633–639.
    • (2003) J. Biochem. , vol.133 , pp. 633-639
    • Furumatsu, T.1
  • 55
    • 78650754334 scopus 로고    scopus 로고
    • Culture media for the differentiation of mesenchymal stromal cells
    • [55] Vater, C., Kasten, P., Stiehler, M., Culture media for the differentiation of mesenchymal stromal cells. Acta Biomater. 7 (2011), 463–477.
    • (2011) Acta Biomater. , vol.7 , pp. 463-477
    • Vater, C.1    Kasten, P.2    Stiehler, M.3
  • 56
    • 77957845081 scopus 로고    scopus 로고
    • Bone marrow mesenchymal stem cells: historical overview and concepts
    • [56] Charbord, P., Bone marrow mesenchymal stem cells: historical overview and concepts. Hum. Gene Ther. 21 (2010), 1045–1056.
    • (2010) Hum. Gene Ther. , vol.21 , pp. 1045-1056
    • Charbord, P.1
  • 57
    • 8644264026 scopus 로고    scopus 로고
    • Transforming growth factor-beta1 signaling contributes to development of smooth muscle cells from embryonic stem cells
    • [57] Sinha, S., Hoofnagle, M.H., Kingston, P.A., McCanna, M.E., Owens, G.K., Transforming growth factor-beta1 signaling contributes to development of smooth muscle cells from embryonic stem cells. Am. J. Physiol. Cell Physiol. 287 (2004), C1560–C1568.
    • (2004) Am. J. Physiol. Cell Physiol. , vol.287 , pp. C1560-C1568
    • Sinha, S.1    Hoofnagle, M.H.2    Kingston, P.A.3    McCanna, M.E.4    Owens, G.K.5
  • 58
    • 84878243724 scopus 로고    scopus 로고
    • Metre-long cell-laden microfibres exhibit tissue morphologies and functions
    • [58] Onoe, H., Okitsu, T., Itou, A., Kato-Negishi, M., Gojo, R., Kiriya, D., et al. Metre-long cell-laden microfibres exhibit tissue morphologies and functions. Nat. Mater. 12 (2013), 584–590.
    • (2013) Nat. Mater. , vol.12 , pp. 584-590
    • Onoe, H.1    Okitsu, T.2    Itou, A.3    Kato-Negishi, M.4    Gojo, R.5    Kiriya, D.6
  • 59
    • 78751682352 scopus 로고    scopus 로고
    • Elucidating the role of matrix stiffness in 3D cell migration and remodeling
    • [59] Ehrbar, M., Sala, A., Lienemann, P., Ranga, A., Mosiewicz, K., Bittermann, A., et al. Elucidating the role of matrix stiffness in 3D cell migration and remodeling. Biophys. J. 100 (2011), 284–293.
    • (2011) Biophys. J. , vol.100 , pp. 284-293
    • Ehrbar, M.1    Sala, A.2    Lienemann, P.3    Ranga, A.4    Mosiewicz, K.5    Bittermann, A.6
  • 60
    • 84884211629 scopus 로고    scopus 로고
    • 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels
    • [60] Duan, B., Hockaday, L.A., Kang, K.H., Butcher, J.T., 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J. Biomed. Mater. Res. Part A 101 (2013), 1255–1264.
    • (2013) J. Biomed. Mater. Res. Part A , vol.101 , pp. 1255-1264
    • Duan, B.1    Hockaday, L.A.2    Kang, K.H.3    Butcher, J.T.4
  • 61
    • 84924301781 scopus 로고    scopus 로고
    • 3D printing of HEK 293FT cell-laden hydrogel into macroporous constructs with high cell viability and normal biological functions
    • [61] Ouyang, L., Yao, R., Chen, X., Na, J., Sun, W., 3D printing of HEK 293FT cell-laden hydrogel into macroporous constructs with high cell viability and normal biological functions. Biofabrication, 7, 2015, 015010.
    • (2015) Biofabrication , vol.7 , pp. 015010
    • Ouyang, L.1    Yao, R.2    Chen, X.3    Na, J.4    Sun, W.5
  • 63
    • 84923829773 scopus 로고    scopus 로고
    • A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels
    • [63] Rutz, A.L., Hyland, K.E., Jakus, A.E., Burghardt, W.R., Shah, R.N., A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels. Adv. Mater. 27 (2015), 1607–1614.
    • (2015) Adv. Mater. , vol.27 , pp. 1607-1614
    • Rutz, A.L.1    Hyland, K.E.2    Jakus, A.E.3    Burghardt, W.R.4    Shah, R.N.5
  • 64
    • 0028238580 scopus 로고
    • Spatial and temporal relationships between cadherins and PECAM-1 in cell-cell junctions of human endothelial cells
    • [64] Ayalon, O., Sabanai, H., Lampugnani, M.-G., Dejana, E., Geiger, B., Spatial and temporal relationships between cadherins and PECAM-1 in cell-cell junctions of human endothelial cells. J. Cell Biol. 126 (1994), 247–258.
    • (1994) J. Cell Biol. , vol.126 , pp. 247-258
    • Ayalon, O.1    Sabanai, H.2    Lampugnani, M.-G.3    Dejana, E.4    Geiger, B.5
  • 65
    • 0034647532 scopus 로고    scopus 로고
    • Platelet-endothelial cell adhesion molecule-1 (CD31), a scaffolding molecule for selected catenin family members whose binding is mediated by different tyrosine and serine/threonine phosphorylation
    • [65] Ilan, N., Cheung, L., Pinter, E., Madri, J.A., Platelet-endothelial cell adhesion molecule-1 (CD31), a scaffolding molecule for selected catenin family members whose binding is mediated by different tyrosine and serine/threonine phosphorylation. J. Biol. Chem. 275 (2000), 21435–21443.
    • (2000) J. Biol. Chem. , vol.275 , pp. 21435-21443
    • Ilan, N.1    Cheung, L.2    Pinter, E.3    Madri, J.A.4
  • 66
    • 42649103301 scopus 로고    scopus 로고
    • Renal expression of alpha-smooth muscle actin and c-Met in children with Henoch–Schönlein purpura nephritis
    • [66] Kawasaki, Y., Imaizumi, T., Matsuura, H., Ohara, S., Takano, K., Suyama, K., et al. Renal expression of alpha-smooth muscle actin and c-Met in children with Henoch–Schönlein purpura nephritis. Pediatr. Nephrol. 23 (2008), 913–919.
    • (2008) Pediatr. Nephrol. , vol.23 , pp. 913-919
    • Kawasaki, Y.1    Imaizumi, T.2    Matsuura, H.3    Ohara, S.4    Takano, K.5    Suyama, K.6
  • 67
    • 0242405617 scopus 로고    scopus 로고
    • Endothelial-pericyte interactions in angiogenesis
    • [67] Gerhardt, H., Betsholtz, C., Endothelial-pericyte interactions in angiogenesis. Cell tissue Res. 314 (2003), 15–23.
    • (2003) Cell tissue Res. , vol.314 , pp. 15-23
    • Gerhardt, H.1    Betsholtz, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.