메뉴 건너뛰기




Volumn 17, Issue , 2016, Pages 1-47

Monotonic calibrated interpolated look-up tables

Author keywords

Interpolation; Interpretability; Look up tables; Monotonicity

Indexed keywords

ARTIFICIAL INTELLIGENCE; CALIBRATION; CONSTRAINT THEORY; INTERPOLATION; LEARNING SYSTEMS;

EID: 84989181117     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (143)

References (75)
  • 2
    • 84990556304 scopus 로고
    • Application of the back propagation neural network algorithm with monotonicity constraints for two-group classification problems
    • N. P. Archer and S. Wang. Application of the back propagation neural network algorithm with monotonicity constraints for two-group classification problems. Decision Sciences, 24(1):60-75, 1993.
    • (1993) Decision Sciences , vol.24 , Issue.1 , pp. 60-75
    • Archer, N.P.1    Wang, S.2
  • 3
    • 84889843868 scopus 로고    scopus 로고
    • Learning with submodular functions: A convex optimization perspective
    • F. Bach. Learning with submodular functions: A convex optimization perspective. Foundations and Trends in Machine Learning, 6(2), 2013.
    • (2013) Foundations and Trends in Machine Learning , vol.6 , Issue.2
    • Bach, F.1
  • 5
    • 84990617887 scopus 로고
    • Automatic generation of symbolic multiattribute ordinal knowledge based DSS: Methodology and applications
    • A. Ben-David. Automatic generation of symbolic multiattribute ordinal knowledge based DSS: methodology and applications. Decision Sciences, pages 1357-1372, 1992.
    • (1992) Decision Sciences , pp. 1357-1372
    • Ben-David, A.1
  • 6
    • 84989166462 scopus 로고
    • Monotonicity maintenance in information-theoretic machine learning algorithms
    • A. Ben-David. Monotonicity maintenance in information-theoretic machine learning algorithms. Machine Learning, 21:35-50, 1995.
    • (1995) Machine Learning , vol.21 , pp. 35-50
    • Ben-David, A.1
  • 7
    • 84990576492 scopus 로고
    • Learning and classification of monotonic ordinal concepts
    • A. Ben-David, L. Sterling, and Y. H. Pao. Learning and classification of monotonic ordinal concepts. Computational Intelligence, 5(1):45-49, 1989.
    • (1989) Computational Intelligence , vol.5 , Issue.1 , pp. 45-49
    • Ben-David, A.1    Sterling, L.2    Pao, Y.H.3
  • 8
  • 9
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 14
    • 77953123580 scopus 로고    scopus 로고
    • Monotone and partially monotone neural networks
    • H. Daniels and M. Velikova. Monotone and partially monotone neural networks. IEEE Trans. Neural Networks, 21(6):906-917, 2010.
    • (2010) IEEE Trans. Neural Networks , vol.21 , Issue.6 , pp. 906-917
    • Daniels, H.1    Velikova, M.2
  • 16
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. Journal Machine Learning Research, 12:2121-2159, 2011.
    • (2011) Journal Machine Learning Research , vol.12 , pp. 2121-2159
    • Duchi, J.1    Hazan, E.2    Singer, Y.3
  • 20
    • 79951749535 scopus 로고    scopus 로고
    • Monotone relabeling in ordinal classification
    • A. Feelders. Monotone relabeling in ordinal classification. Proc. IEEE Conf. Data Mining, pages 803-808, 2010.
    • (2010) Proc. IEEE Conf. Data Mining , pp. 803-808
    • Feelders, A.1
  • 24
    • 84865418516 scopus 로고    scopus 로고
    • Optimized regression for efficient function evaluation
    • Sept.
    • E. K. Garcia, R. Arora, and M. R. Gupta. Optimized regression for efficient function evaluation. IEEE Trans. Image Processing, 21(9):4128-4140, Sept. 2012.
    • (2012) IEEE Trans. Image Processing , vol.21 , Issue.9 , pp. 4128-4140
    • Garcia, E.K.1    Arora, R.2    Gupta, M.R.3
  • 25
    • 64549120231 scopus 로고    scopus 로고
    • A study of statistical techniques and performance measures for genetics-based machine learning: Accuracy and interpretability
    • S. Garcia, A. Fernandez, J. Luengo, and F. Herrera. A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability. Soft Computing, 13:959-977, 2009.
    • (2009) Soft Computing , vol.13 , pp. 959-977
    • Garcia, S.1    Fernandez, A.2    Luengo, J.3    Herrera, F.4
  • 27
    • 38049017983 scopus 로고    scopus 로고
    • Sorting the slow way: An analysis of perversely awful randomized sorting algorithms
    • Springer
    • H. Gruber, M. Holzer, and O. Ruepp. Sorting the slow way: an analysis of perversely awful randomized sorting algorithms. In Fun with Algorithms, pages 183-197. Springer, 2007.
    • (2007) Fun with Algorithms , pp. 183-197
    • Gruber, H.1    Holzer, M.2    Ruepp, O.3
  • 32
    • 0037470272 scopus 로고    scopus 로고
    • Generalized monotonic regression using random change points
    • C. C. Holmes and N. A. Heard. Generalized monotonic regression using random change points. Statistics in Medicine, 22:623-638, 2003.
    • (2003) Statistics in Medicine , vol.22 , pp. 623-638
    • Holmes, C.C.1    Heard, N.A.2
  • 34
    • 33751186914 scopus 로고    scopus 로고
    • Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning
    • H. Ishibuchi and Y. Nojima. Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning. International Journal of Approximate Reasoning, 44:4-31, 2007.
    • (2007) International Journal of Approximate Reasoning , vol.44 , pp. 4-31
    • Ishibuchi, H.1    Nojima, Y.2
  • 39
    • 0034517586 scopus 로고    scopus 로고
    • Estimating monotonic functions and their bounds
    • H. Kay and L. H. Ungar. Estimating monotonic functions and their bounds. AIChE Journal, 46(12):2426-2434, 2000.
    • (2000) AIChE Journal , vol.46 , Issue.12 , pp. 2426-2434
    • Kay, H.1    Ungar, L.H.2
  • 42
    • 36849072437 scopus 로고    scopus 로고
    • Incorporating prior knowledge in support vector regression
    • F. Lauer and G. Bloch. Incorporating prior knowledge in support vector regression. Machine Learning, 70(1):89-118, 2008.
    • (2008) Machine Learning , vol.70 , Issue.1 , pp. 89-118
    • Lauer, F.1    Bloch, G.2
  • 43
    • 84989164593 scopus 로고    scopus 로고
    • Quadratically gated mixture of experts for incomplete data classification
    • X. Liao, H. Li, and L. Carin. Quadratically gated mixture of experts for incomplete data classification. Proc. ICML, 2007.
    • (2007) Proc. ICML
    • Liao, X.1    Li, H.2    Carin, L.3
  • 45
    • 36849074743 scopus 로고    scopus 로고
    • A linear fit gets the correct monotonicity directions
    • Malik Magdon-Ismail and J. Sill. A linear fit gets the correct monotonicity directions. Machine Learning, pages 21-43, 2008.
    • (2008) Machine Learning , pp. 21-43
    • Magdon-Ismail, M.1    Sill, J.2
  • 47
    • 84966232067 scopus 로고
    • Dissection of the hypercube into simplexes
    • D. G. Mead. Dissection of the hypercube into simplexes.Proc. Amer. Math. Soc., 76:302-304, 1979.
    • (1979) Proc. Amer. Math. Soc. , vol.76 , pp. 302-304
    • Mead, D.G.1
  • 48
    • 77950297986 scopus 로고    scopus 로고
    • Comparison of universal approximators incorporating partial monotonicity by structure
    • A. Minin, M. Velikova, B. Lang, and H. Daniels. Comparison of universal approximators incorporating partial monotonicity by structure. Neural Networks, 23(4):471-475, 2010.
    • (2010) Neural Networks , vol.23 , Issue.4 , pp. 471-475
    • Minin, A.1    Velikova, M.2    Lang, B.3    Daniels, H.4
  • 49
    • 54049083751 scopus 로고
    • Feasible nonparametric estimation of multiargument monotone functions
    • H. Mukarjee and S. Stern. Feasible nonparametric estimation of multiargument monotone functions. Journal of the American Statistical Association, 89(425):77-80, 1994.
    • (1994) Journal of the American Statistical Association , vol.89 , Issue.425 , pp. 77-80
    • Mukarjee, H.1    Stern, S.2
  • 50
    • 2942642731 scopus 로고    scopus 로고
    • Bayesian isotonic regression and trend analysis
    • B. Neelon and D. B. Dunson. Bayesian isotonic regression and trend analysis. Biometrics, 60:398-406, 2004.
    • (2004) Biometrics , vol.60 , pp. 398-406
    • Neelon, B.1    Dunson, D.B.2
  • 51
    • 70450197241 scopus 로고    scopus 로고
    • Robust stochastic approximation approach to stochastic programming
    • January
    • A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to stochastic programming. SIAM Journal on Optimization, 19(4):1574-1609, January 2009.
    • (2009) SIAM Journal on Optimization , vol.19 , Issue.4 , pp. 1574-1609
    • Nemirovski, A.1    Juditsky, A.2    Lan, G.3    Shapiro, A.4
  • 53
    • 3242735194 scopus 로고    scopus 로고
    • Inducing interpretable voting classifiers without trading accuracy for simplicity: Theoretical results, approximation algorithms, and experiments
    • R. Nock. Inducing interpretable voting classifiers without trading accuracy for simplicity: Theoretical results, approximation algorithms, and experiments. Journal Artificial Intelligence Research, 17:137-170, 2002.
    • (2002) Journal Artificial Intelligence Research , vol.17 , pp. 137-170
    • Nock, R.1
  • 54
    • 34047166331 scopus 로고    scopus 로고
    • Post-pruning in decision tree induction using multiple performance measures
    • K.-M. Osei-Bryson. Post-pruning in decision tree induction using multiple performance measures. Computers and Operations Research, 34:3331-3345, 2007.
    • (2007) Computers and Operations Research , vol.34 , pp. 3331-3345
    • Osei-Bryson, K.-M.1
  • 55
    • 9444280557 scopus 로고    scopus 로고
    • Classification trees for problems with monotonicity constraints
    • R. Potharst and A. J. Feelders. Classification trees for problems with monotonicity constraints. ACM SIGKDD Explorations, pages 1-10, 2002a.
    • (2002) ACM SIGKDD Explorations , pp. 1-10
    • Potharst, R.1    Feelders, A.J.2
  • 57
    • 83655201363 scopus 로고    scopus 로고
    • Generalized constraint neural network regression model subject to linear priors
    • Y.-J. Qu and B.-G. Hu. Generalized constraint neural network regression model subject to linear priors. IEEE Trans. on Neural Networks, 22(11):2447-2459, 2011.
    • (2011) IEEE Trans. on Neural Networks , vol.22 , Issue.11 , pp. 2447-2459
    • Qu, Y.-J.1    Hu, B.-G.2
  • 59
    • 33947325162 scopus 로고    scopus 로고
    • Learning interpretable SVMs for biological sequence classification
    • G. Rätsch, S. Sonnenburg, and C. Schäfer. Learning interpretable SVMs for biological sequence classification. BMC Bioinformatics, 7, 2006.
    • (2006) BMC Bioinformatics , vol.7
    • Rätsch, G.1    Sonnenburg, S.2    Schäfer, C.3
  • 61
    • 0000413446 scopus 로고    scopus 로고
    • A geometric approach to maximum-speed n-dimensional continuous linear interpolation in rectangular grids
    • R. Rovatti, M. Borgatti, and R. Guerrieri. A geometric approach to maximum-speed n-dimensional continuous linear interpolation in rectangular grids. IEEE Trans. on Computers, 47(8):894-899, 1998.
    • (1998) IEEE Trans. on Computers , vol.47 , Issue.8 , pp. 894-899
    • Rovatti, R.1    Borgatti, M.2    Guerrieri, R.3
  • 62
    • 84989185976 scopus 로고    scopus 로고
    • Some geometric probability problems involving the Eulerian numbers
    • F. Schimdt and R. Simon. Some geometric probability problems involving the Eulerian numbers. Electronic Journal of Combinatorics, 4(2), 2007.
    • (2007) Electronic Journal of Combinatorics , vol.4 , Issue.2
    • Schimdt, F.1    Simon, R.2
  • 65
    • 84864824669 scopus 로고    scopus 로고
    • A review on the interpretability-accuracy trade-off in evolutionary multi-objective fuzzy systems (EMOFS)
    • P. K. Shukla and S. P. Tripathi. A review on the interpretability-accuracy trade-off in evolutionary multi-objective fuzzy systems (EMOFS). Information, 2012.
    • (2012) Information
    • Shukla, P.K.1    Tripathi, S.P.2
  • 68
    • 0000080396 scopus 로고
    • Statistical and knowledge-based approaches to clinical decision support systems, with an application in gastroenterology
    • D. J. Spiegelhalter and R. P. Knill-Jones. Statistical and knowledge-based approaches to clinical decision support systems, with an application in gastroenterology. Journal of the Royal Statistical Society A, 147:35-77, 1984.
    • (1984) Journal of the Royal Statistical Society A , vol.147 , pp. 35-77
    • Spiegelhalter, D.J.1    Knill-Jones, R.P.2
  • 72
    • 84989179348 scopus 로고    scopus 로고
    • Evaluating trauma patients: Addressing missing covariates with joint optimization
    • A. van Esbroeck, S. Singh, I. Rubinfeld, and Z. Syed. Evaluating trauma patients: Addressing missing covariates with joint optimization. Proc. AAAI, 2014.
    • (2014) Proc. AAAI
    • Van Esbroeck, A.1    Singh, S.2    Rubinfeld, I.3    Syed, Z.4
  • 73
    • 0000148392 scopus 로고
    • Inequality-constrained multivariate smoothing splines with application to the estimation of posterior probabilities
    • M. Villalobos and G. Wahba. Inequality-constrained multivariate smoothing splines with application to the estimation of posterior probabilities. Journal of the American Statistical Association, 82(397):239-248, 1987.
    • (1987) Journal of the American Statistical Association , vol.82 , Issue.397 , pp. 239-248
    • Villalobos, M.1    Wahba, G.2
  • 74
    • 0001064620 scopus 로고
    • A neural network method of density estimation for univariate unimodal data
    • S. Wang. A neural network method of density estimation for univariate unimodal data. Neural Computing & Applications, 2(3):160-167, 1994.
    • (1994) Neural Computing & Applications , vol.2 , Issue.3 , pp. 160-167
    • Wang, S.1
  • 75
    • 60349129490 scopus 로고    scopus 로고
    • Trade-off between accuracy and interpretability: Experience-oriented fuzzy modeling via reduced-set vectors
    • L. Yu and J. Xiao. Trade-off between accuracy and interpretability: experience-oriented fuzzy modeling via reduced-set vectors. Computers and Mathematics with Applications, 57:885-895, 2012.
    • (2012) Computers and Mathematics with Applications , vol.57 , pp. 885-895
    • Yu, L.1    Xiao, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.