메뉴 건너뛰기




Volumn 19, Issue 4, 2008, Pages 1574-1609

Robust stochastic approximat ion approach to stochastic programming

Author keywords

Complexity; Minimax problems; Mirror descent algorithm; Monte Carlo sampling; Saddle point; Sample average approximation method; Stochastic approximation; Stochastic programming

Indexed keywords

APPROXIMATION ALGORITHMS; APPROXIMATION THEORY; STOCHASTIC PROGRAMMING; STOCHASTIC SYSTEMS;

EID: 70450197241     PISSN: 10526234     EISSN: None     Source Type: Journal    
DOI: 10.1137/070704277     Document Type: Article
Times cited : (2290)

References (30)
  • 1
    • 84972574511 scopus 로고
    • Weighted sums of certain dependent random variables
    • K. AZUMA, Weighted sums of certain dependent random variables, Tökuku Math. J., 19 (1967), pp. 357-367.
    • (1967) Tökuku Math. J. , vol.19 , pp. 357-367
    • Azuma, K.1
  • 2
    • 17444361978 scopus 로고    scopus 로고
    • Non-Euclidean restricted memory level method for large-scale convex optimization
    • A. BEN-TAL AND A. NEMIROVSKI, Non-Euclidean restricted memory level method for large-scale convex optimization, Math. Program., 102 (2005), pp. 407-456.
    • (2005) Math. Program. , vol.102 , pp. 407-456
    • Ben-Tal, A.1    Nemirovski, A.2
  • 3
    • 0003505303 scopus 로고
    • Algorithmes Adaptatifs et Approximations Stochastiques
    • Masson, Paris, 1987 in French, Springer, New York, in English
    • A. BENVENISTE, M. MÉTIVIER, AND P. PRIOURET, Algorithmes Adaptatifs et Approximations Stochastiques, Masson, Paris, 1987 (in French). Adaptive Algorithms and Stochastic Approximations, Springer, New York, 1993 (in English).
    • (1993) Adaptive Algorithms and Stochastic Approximations
    • Benveniste, A.1    Métivier, M.2    Priouret, P.3
  • 4
    • 49949144765 scopus 로고
    • The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming
    • L. M. BREGMAN, The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming, Comput. Math. Math. Phys., 7 (1967), pp. 200-217.
    • (1967) Comput. Math. Math. Phys. , vol.7 , pp. 200-217
    • Bregman, L.M.1
  • 5
    • 0000792517 scopus 로고
    • On a stochastic approximation method
    • K. L. CHUNG, On a stochastic approximation method, Ann. Math. Statist., 25 (1954), pp. 463-483.
    • (1954) Ann. Math. Statist. , vol.25 , pp. 463-483
    • Chung, K.L.1
  • 6
    • 0020498889 scopus 로고
    • Stochastic quasigradient methods and their application to system optimization
    • Y. ERMOLIEV, Stochastic quasigradient methods and their application to system optimization, Stochastics, 9 (1983), pp. 1-36.
    • (1983) Stochastics , vol.9 , pp. 1-36
    • Ermoliev, Y.1
  • 7
    • 30244575435 scopus 로고
    • Nonstationary stochastic programming problems
    • A. A. GAIVORONSKI, Nonstationary stochastic programming problems, Kybernetika, 4 (1978), pp. 89-92.
    • (1978) Kybernetika , vol.4 , pp. 89-92
    • Gaivoronski, A.A.1
  • 8
    • 0024090156 scopus 로고
    • A new approach to the maximum flow problem
    • A. V. GOLDBERG AND R. E. TARJAN, A new approach to the maximum flow problem, J. ACM, 35 (1988), pp. 921-940.
    • (1988) J. ACM , vol.35 , pp. 921-940
    • Goldberg, A.V.1    Tarjan, R.E.2
  • 9
    • 0006630130 scopus 로고
    • A sublinear-time randomized approximation algorithm for matrix games
    • M. D. GRIGORIADIS AND L. G. KHACHIYAN, A sublinear-time randomized approximation algorithm for matrix games, Oper. Res. Lett., 18 (1995), pp. 53-58.
    • (1995) Oper. Res. Lett. , vol.18 , pp. 53-58
    • Grigoriadis, M.D.1    Khachiyan, L.G.2
  • 10
    • 31344435933 scopus 로고    scopus 로고
    • Recursive aggregation of estimators by the mirror descent algorithm with averaging
    • A. JUDITSKY, A. NAZIN, A. TSYBAKOV, AND N. VAYATIS, Recursive aggregation of estimators by the mirror descent algorithm with averaging, Probl. Inf. Transm., 41 (2005), pp. 368-384.
    • (2005) Probl. Inf. Transm. , vol.41 , pp. 368-384
    • Juditsky, A.1    Nazin, A.2    Tsybakov, A.3    Vayatis, N.4
  • 11
    • 0036013019 scopus 로고    scopus 로고
    • The sample average approximation method for stochastic discrete optimization
    • A. J. KLEYWEGT, A. SHAPIRO, AND T. HOMEM-DE-MELLO, The sample average approximation method for stochastic discrete optimization, SIAM J. Optim., 12 (2002), pp. 479-502.
    • (2002) SIAM J. Optim. , vol.12 , pp. 479-502
    • Kleywegt, A.J.1    Shapiro, A.2    Homem-De-Mello, T.3
  • 12
    • 33644697284 scopus 로고    scopus 로고
    • The empirical behavior of sampling methods for stochastic programming
    • J. LINDEROTH, A. SHAPIRO, AND S. WRIGHT, The empirical behavior of sampling methods for stochastic programming, Ann. Oper. Res., 142 (2006), pp. 215-241.
    • (2006) Ann. Oper. Res. , vol.142 , pp. 215-241
    • Linderoth, J.1    Shapiro, A.2    Wright, S.3
  • 13
    • 0032632474 scopus 로고    scopus 로고
    • Monte Carlo bounding techniques for determining solution quality in stochastic programs
    • W. K. MAK, D. P. MORTON, AND R. K. WOOD, Monte Carlo bounding techniques for determining solution quality in stochastic programs, Oper. Res. Lett., 24 (1999), pp. 47-56.
    • (1999) Oper. Res. Lett. , vol.24 , pp. 47-56
    • Mak, W.K.1    Morton, D.P.2    Wood, R.K.3
  • 14
    • 0018468345 scopus 로고
    • A comparison of three methods for selecting values of input variables in the analysis of output from a computer code
    • M. D. MCKAY, R. J. BECKMAN, AND W. J. CONOVER, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, 21 (1979), pp. 239-245.
    • (1979) Technometrics , vol.21 , pp. 239-245
    • Mckay, M.D.1    Beckman, R.J.2    Conover, W.J.3
  • 15
    • 4043065592 scopus 로고
    • On Cezari's convergence of the steepest descent method for approximating saddle point of convex-concave functions
    • in Russian
    • A. NEMIROVSKI AND D. YUDIN, On Cezari's convergence of the steepest descent method for approximating saddle point of convex-concave functions, Dokl. Akad. Nauk SSSR, 239 (1978) (in Russian).
    • (1978) Dokl. Akad. Nauk SSSR , vol.239
    • Nemirovski, A.1    Yudin, D.2
  • 16
    • 70450189442 scopus 로고
    • in English
    • Soviet Math. Dokl., 19 (1978) (in English).
    • (1978) Soviet Math. Dokl. , vol.19
  • 17
    • 0003692801 scopus 로고
    • Problem Complexity and Method Efficiency in Optimization
    • John Wiley, New York
    • A. NEMIROVSKI AND D. YUDIN, Problem Complexity and Method Efficiency in Optimization, Wiley-Intersci. Ser. Discrete Math. 15, John Wiley, New York, 1983.
    • (1983) Wiley-Intersci. Ser. Discrete Math. , vol.15
    • Nemirovski, A.1    Yudin, D.2
  • 18
    • 70450208502 scopus 로고    scopus 로고
    • Primal-dual subgradient methods for convex problems
    • Y. NESTEROV, Primal-dual subgradient methods for convex problems, Math. Program., Ser. B, http://www.springerlink.comcontent-b441795t5254m533.
    • Math. Program., Ser. B.
    • Nesterov, Y.1
  • 19
    • 0000828406 scopus 로고
    • New stochastic approximation type procedures
    • B. T. POLYAK, New stochastic approximation type procedures, Automat. i Telemekh., 7 (1990), pp. 98-107.
    • (1990) Automat. I Telemekh. , vol.7 , pp. 98-107
    • Polyak, B.T.1
  • 20
    • 0026899240 scopus 로고
    • Acceleration of stochastic approximation by averaging
    • B. T. POLYAK AND A. B. JUDITSKY, Acceleration of stochastic approximation by averaging, SIAM J. Control Optim., 30 (1992), pp. 838-855.
    • (1992) SIAM J. Control Optim. , vol.30 , pp. 838-855
    • Polyak, B.T.1    Juditsky, A.B.2
  • 22
    • 0000016172 scopus 로고
    • A stochastic approximation method
    • H. ROBBINS AND S. MONRO, A stochastic approximation method, Ann. Math. Stat., 22 (1951), pp. 400-407.
    • (1951) Ann. Math. Stat. , vol.22 , pp. 400-407
    • Robbins, H.1    Monro, S.2
  • 23
    • 0022693667 scopus 로고
    • A method of aggregate stochastic subgradients with on-line stepsize rules for convex stochastic programming problems
    • A. RUSZCZYŃSKI AND W. SYSKI, A method of aggregate stochastic subgradients with on-line stepsize rules for convex stochastic programming problems, Math. Prog. Stud., 28 (1986), pp. 113-131.
    • (1986) Math. Prog. Stud. , vol.28 , pp. 113-131
    • Ruszczyński, A.1    Syski, W.2
  • 24
    • 0000431134 scopus 로고
    • Asymptotic distribution of stochastic approximation
    • J. SACKS, Asymptotic distribution of stochastic approximation, Ann. Math. Stat., 29 (1958), pp. 373-409.
    • (1958) Ann. Math. Stat. , vol.29 , pp. 373-409
    • Sacks, J.1
  • 26
    • 77950512601 scopus 로고    scopus 로고
    • Monte Carlo sampling methods
    • A. Ruszczyński and A. Shapiro, eds., North-Holland, Amsterdam
    • A. SHAPIRO, Monte Carlo sampling methods, in Stochastic Programming, Handbook in OR & MS, Vol. 10, A. Ruszczyński and A. Shapiro, eds., North-Holland, Amsterdam, 2003.
    • (2003) Stochastic Programming, Handbook in OR & MS , vol.10
    • Shapiro, A.1
  • 27
    • 33750315463 scopus 로고    scopus 로고
    • On complexity of stochastic programming problems
    • V. Jeyakumar and A. M. Rubinov, eds., Springer, New York
    • A. SHAPIRO AND A. NEMIROVSKI, On complexity of stochastic programming problems, in Continuous Optimization: Current Trends and Applications, V. Jeyakumar and A. M. Rubinov, eds., Springer, New York, 2005, pp. 111-144.
    • (2005) Continuous Optimization: Current Trends and Applications , pp. 111-144
    • Shapiro, A.1    Nemirovski, A.2
  • 29
    • 0000649228 scopus 로고
    • The existence of probability measures with given marginals
    • V. STRASSEN, The existence of probability measures with given marginals, Ann. Math. Statist., 38 (1965), pp. 423-439.
    • (1965) Ann. Math. Statist. , vol.38 , pp. 423-439
    • Strassen, V.1
  • 30
    • 0037322974 scopus 로고    scopus 로고
    • The sample average approximation method applied to stochastic routing problems: A computational study
    • B. VERWEIJ, S. AHMED, A. J. KLEYWEGT, G. NEMHAUSER, AND A. SHAPIRO, The sample average approximation method applied to stochastic routing problems: A computational study, Comput. Optim. Appl., 24 (2003), pp. 289-333.
    • (2003) Comput. Optim. Appl. , vol.24 , pp. 289-333
    • Verweij, B.1    Ahmed, S.2    Kleywegt, A.J.3    Nemhauser, G.4    Shapiro, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.