메뉴 건너뛰기




Volumn 23, Issue 4, 2010, Pages 471-475

Comparison of universal approximators incorporating partial monotonicity by structure

Author keywords

Model predictive control; Neural networks; Partial monotonicity; Reliable control; Robust modelling

Indexed keywords

APPROXIMATION ERRORS; APPROXIMATION PERFORMANCE; BEST FUNCTION; CONTROL LAWS; DATA SETS; IN-CONTROL; INPUT-OUTPUT RELATIONS; MIN-MAX; MONOTONE FUNCTIONS; MONOTONICITY; MULTI LAYER PERCEPTRON; RELIABLE CONTROL; SAFETY-CRITICAL DOMAIN; UNIVERSAL APPROXIMATION; UNIVERSAL APPROXIMATORS;

EID: 77950297986     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neunet.2009.09.002     Document Type: Article
Times cited : (25)

References (11)
  • 1
    • 77950298138 scopus 로고    scopus 로고
    • De Moor B.L.R.(Ed.), DaISy: Database for the Identification of Systems, Department of Electrical Engineering, ESAT/SISTA, K.U. Leuven, Belgium, 2005-01-04
    • De Moor, B.L.R., (Ed.), (2005). DaISy: Database for the Identification of Systems, Department of Electrical Engineering, ESAT/SISTA, K.U. Leuven, Belgium, 2005-01-04. http://www.esat.kuleuven.ac.be/sista/daisy/.
    • (2005)
  • 2
    • 0034517586 scopus 로고    scopus 로고
    • Estimating monotonic functions and their bounds
    • Kay H., Ungar L.H. Estimating monotonic functions and their bounds. AIChE Journal 2000, 46:2426.
    • (2000) AIChE Journal , vol.46 , pp. 2426
    • Kay, H.1    Ungar, L.H.2
  • 3
    • 33646246992 scopus 로고    scopus 로고
    • Monotonic multi-layer perceptron networks as universal approximators
    • Springer
    • Lang B. Monotonic multi-layer perceptron networks as universal approximators. Formal models and their applications, ICANN 2005 2005, vol. 3697:31-37. Springer.
    • (2005) Formal models and their applications, ICANN 2005 , vol.3697 , pp. 31-37
    • Lang, B.1
  • 5
    • 84898968939 scopus 로고    scopus 로고
    • In Advances in neural information processing systems Cambridge, MA
    • Sill, J. (1998). Monotonic networks. In Advances in neural information processing systems (pp. 661-667) Vol. 10. Cambridge, MA.
    • (1998) Monotonic networks , vol.10 , pp. 661-667
    • Sill, J.1
  • 6
    • 84899018382 scopus 로고    scopus 로고
    • In Advances in neural information processing systems Cambridge, MA
    • Sill, J., & Abu-Mostafa, Y.S. (1997). Monotonicity hints. In Advances in neural information processing systems (pp. 634-640) Vol. 9. Cambridge, MA.
    • (1997) Monotonicity hints , vol.9 , pp. 634-640
    • Sill, J.1    Abu-Mostafa, Y.S.2
  • 7
    • 2442528734 scopus 로고    scopus 로고
    • Embedding monotonicity and concavity information in the training of multiphase flow neural network correlations by means of genetic algorithms
    • Tarca L.A., Grandjean B.P.A., Larachi F. Embedding monotonicity and concavity information in the training of multiphase flow neural network correlations by means of genetic algorithms. Computers and Chemical Engineering 2004, 28(9):1701-1713.
    • (2004) Computers and Chemical Engineering , vol.28 , Issue.9 , pp. 1701-1713
    • Tarca, L.A.1    Grandjean, B.P.A.2    Larachi, F.3
  • 8
    • 0142138179 scopus 로고    scopus 로고
    • Introducing the state space bounded derivative network for commercial transition control
    • In Proceedings of the American control conference
    • Turner, P., Guiver, J., & Brian, L. (2003). Introducing the state space bounded derivative network for commercial transition control. In Proceedings of the American control conference.
    • (2003)
    • Turner, P.1    Guiver, J.2    Brian, L.3
  • 9
    • 0034353741 scopus 로고    scopus 로고
    • Monotonic optimization: problems and solution approaches
    • Tuy H. Monotonic optimization: problems and solution approaches. SIAM Journal on Optimization 2000, 11(2):464-494.
    • (2000) SIAM Journal on Optimization , vol.11 , Issue.2 , pp. 464-494
    • Tuy, H.1
  • 10
    • 58949091993 scopus 로고    scopus 로고
    • Partially monotone networks applied to breast cancer detection on mammograms
    • Proceedings of the 18th international conference on artificial neural networks
    • Velikova M., Daniels H., Samulski M. Partially monotone networks applied to breast cancer detection on mammograms. LNCS 2008, Vol. 5163:917-926.
    • (2008) LNCS , vol.5163 , pp. 917-926
    • Velikova, M.1    Daniels, H.2    Samulski, M.3
  • 11
    • 0033346039 scopus 로고    scopus 로고
    • Feed forward networks with monotone constraints. In IEEE international joint conference on neural networks Washington, DC, USA
    • Zhang, H., & Zhang, Z. (1999). Feed forward networks with monotone constraints. In IEEE international joint conference on neural networks (pp. 1820-1823) Vol. 3. Washington, DC, USA.
    • (1999) , vol.3 , pp. 1820-1823
    • Zhang, H.1    Zhang, Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.