-
1
-
-
0002652285
-
A maximum entropy approach to natural language processing
-
A. Berger, V. Della Pietra, and S. Della Pietra. A maximum entropy approach to natural language processing. Computational Linguistics, 22(1):39-71, 1996.
-
(1996)
Computational Linguistics
, vol.22
, Issue.1
, pp. 39-71
-
-
Berger, A.1
Della Pietra, V.2
Della Pietra, S.3
-
4
-
-
56049109090
-
Map-reduce for machine learning on multicore
-
C. Chu, S. Kim, Y. Lin, Y. Yu, G. Bradski, A. Ng, and K. Olukotun. Map-Reduce for machine learning on multicore. In Advances in Neural Information Processing Systems, 2007.
-
(2007)
Advances in Neural Information Processing Systems
-
-
Chu, C.1
Kim, S.2
Lin, Y.3
Yu, Y.4
Bradski, G.5
Ng, A.6
Olukotun, K.7
-
5
-
-
0036643072
-
Logistic regression, AdaBoost and bregman distances
-
M. Collins, R. Schapire, and Y. Singer. Logistic regression, AdaBoost and Bregman distances. Machine Learning, 48, 2002.
-
Machine Learning
, vol.48
, pp. 2002
-
-
Collins, M.1
Schapire, R.2
Singer, Y.3
-
6
-
-
56749103116
-
Sample selection bias correction theory
-
Springer
-
C. Cortes, M. Mohri, M. Riley, and A. Rostamizadeh. Sample selection bias correction theory. In Proceedings of ALT 2008, volume 5254 of LNCS, pages 38-53. Springer, 2008.
-
(2008)
Proceedings of ALT 2008, Volume 5254 of LNCS
, pp. 38-53
-
-
Cortes, C.1
Mohri, M.2
Riley, M.3
Rostamizadeh, A.4
-
8
-
-
0031120321
-
Inducing features of random fields
-
S. Della Pietra, V. Della Pietra, J. Lafferty, R. Technol, and S. Brook. Inducing features of random fields. IEEE transactions on pattern analysis and machine intelligence, 19(4):380-393, 1997.
-
(1997)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.19
, Issue.4
, pp. 380-393
-
-
Della Pietra, S.1
Della Pietra, V.2
Lafferty, J.3
Technol, R.4
Brook, S.5
-
10
-
-
77956734744
-
-
D. Graff, J. Kong, K. Chen, and K. Maeda. English gigaword third edition, linguistic data consortium, philadelphia, 2007.
-
(2007)
English Gigaword Third Edition, Linguistic Data Consortium, Philadelphia
-
-
Graff, D.1
Kong, J.2
Chen, K.3
Maeda, K.4
-
11
-
-
11944266539
-
Information theory and statistical mechanics
-
E. T. Jaynes. Information theory and statistical mechanics. Physical Review, 106(4):620630, 1957.
-
(1957)
Physical Review
, vol.106
, Issue.4
, pp. 620630
-
-
Jaynes, E.T.1
-
14
-
-
84876811202
-
RCV1: A new benchmark collection for text categorization research
-
D. Lewis, Y. Yang, T. Rose, and F. Li. RCV1: A new benchmark collection for text categorization research. Journal of Machine Learning Research, 5:361-397, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 361-397
-
-
Lewis, D.1
Yang, Y.2
Rose, T.3
Li, F.4
-
16
-
-
34249852033
-
Building a large annotated corpus of English: The penn treebank
-
M. Marcus, M. Marcinkiewicz, and B. Santorini. Building a large annotated corpus of English: The Penn Treebank. Computational linguistics, 19(2):313-330, 1993.
-
(1993)
Computational Linguistics
, vol.19
, Issue.2
, pp. 313-330
-
-
Marcus, M.1
Marcinkiewicz, M.2
Santorini, B.3
-
17
-
-
0001035413
-
On the method of bounded differences
-
Cambridge University Press, Cambridge
-
C. McDiarmid. On the method of bounded differences. In Surveys in Combinatorics, pages 148-188. Cambridge University Press, Cambridge, 1989.
-
(1989)
Surveys in Combinatorics
, pp. 148-188
-
-
McDiarmid, C.1
-
19
-
-
84944486544
-
Prediction and entropy of printed English
-
C. E. Shannon. Prediction and entropy of printed English. Bell Systems Technical Journal, 30:50-64, 1951.
-
(1951)
Bell Systems Technical Journal
, vol.30
, pp. 50-64
-
-
Shannon, C.E.1
-
20
-
-
71149087699
-
Feature hashing for large scale multitask learning
-
K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg. Feature hashing for large scale multitask learning. In International Conference on Machine Learning, 2009.
-
(2009)
International Conference on Machine Learning
-
-
Weinberger, K.1
Dasgupta, A.2
Langford, J.3
Smola, A.4
Attenberg, J.5
-
21
-
-
14344259207
-
Solving large scale linear prediction problems using stochastic gradient descent algorithms
-
T. Zhang. Solving large scale linear prediction problems using stochastic gradient descent algorithms. In International Conference on Machine Learning, 2004.
-
(2004)
International Conference on Machine Learning
-
-
Zhang, T.1
|