메뉴 건너뛰기




Volumn 22, Issue 12 PART 2, 2011, Pages 2447-2459

Generalized constraint neural network regression model subject to linear priors

Author keywords

Linear constraints; linear priors; nonlinear regression; radial basis function networks; transparency

Indexed keywords

COMPUTATIONAL COSTS; GENERALIZED CONSTRAINT; HIGHER-DEGREE; LAGRANGE; LEAST-SQUARES APPROACH; LINEAR CONSTRAINTS; LINEAR PRIORS; MODELING APPROACH; MONOTONICITY; MULTIPLIER TECHNIQUES; NON-LINEAR REGRESSION; NUMERICAL INVESTIGATIONS; RADIAL BASIS FUNCTIONS; REAL-WORLD DATASETS; REGRESSION MODEL; REGRESSION PROBLEM; STRUCTURAL MODES;

EID: 83655201363     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2011.2167348     Document Type: Article
Times cited : (45)

References (50)
  • 3
    • 63149190200 scopus 로고    scopus 로고
    • A generalized-constraint neural network model: Associating partially known relationships for nonlinear regressions
    • May
    • B. G. Hu, H. B. Qu, Y. Wang, and S. H. Yang, "A generalized- constraint neural network model: Associating partially known relationships for nonlinear regressions," Inf. Sci., vol. 179, no. 12, pp. 1929-1943, May 2009.
    • (2009) Inf. Sci. , vol.179 , Issue.12 , pp. 1929-1943
    • Hu, B.G.1    Qu, H.B.2    Wang, Y.3    Yang, S.H.4
  • 4
    • 70350714258 scopus 로고    scopus 로고
    • Logic-oriented neural networks for fuzzy neurocomputing
    • Dec
    • W. Pedrycz and R. A. Aliev, "Logic-oriented neural networks for fuzzy neurocomputing," Neurocomputing, vol. 73, nos. 1-3, pp. 10-23, Dec. 2009.
    • (2009) Neurocomputing , vol.73 , Issue.1-3 , pp. 10-23
    • Pedrycz, W.1    Aliev, R.A.2
  • 6
    • 68149165759 scopus 로고    scopus 로고
    • A new learning paradigm: Learning using privileged information
    • Jul
    • V. Vapnik and A. Vashist, "A new learning paradigm: Learning using privileged information," Neural Netw., vol. 22, nos. 5-6, pp. 544-557, Jul. 2009.
    • (2009) Neural Netw. , vol.22 , Issue.5-6 , pp. 544-557
    • Vapnik, V.1    Vashist, A.2
  • 7
    • 40649086418 scopus 로고    scopus 로고
    • Incorporating prior knowledge in support vector machines for classification: A review
    • DOI 10.1016/j.neucom.2007.04.010, PII S0925231207001439
    • F. Lauer and G. Bloch, "Incorporating prior knowledge in support vector machines for classification: A review," Neurocomputing, vol. 71, nos. 7-9, pp. 1578-1594, Mar. 2008. (Pubitemid 351373181)
    • (2008) Neurocomputing , vol.71 , Issue.7-9 , pp. 1578-1594
    • Lauer, F.1    Bloch, G.2
  • 11
    • 36849072437 scopus 로고    scopus 로고
    • Incorporating prior knowledge in support vector regression
    • DOI 10.1007/s10994-007-5035-5
    • F. Lauer and G. Bloch, "Incorporating prior knowledge in support vector regression," Mach. Learn., vol. 70, no. 1, pp. 89-118, 2008. (Pubitemid 50004032)
    • (2008) Machine Learning , vol.70 , Issue.1 , pp. 89-118
    • Lauer, F.1    Bloch, G.2
  • 12
    • 0028482883 scopus 로고
    • Rule generation from neural networks
    • Aug
    • L. M. Fu, "Rule generation from neural networks," IEEE Trans. Syst., Man, Cybern., vol. 24, no. 8, pp. 1114-1124, Aug. 1994.
    • (1994) IEEE Trans. Syst., Man, Cybern. , vol.24 , Issue.8 , pp. 1114-1124
    • Fu, L.M.1
  • 13
    • 0032208720 scopus 로고    scopus 로고
    • The truth will come to light: Directions and challenges in extracting the knowledge embedded within trained artificial neural networks
    • PII S1045922798061839
    • A. Tickle, R. Andrews, M. Golea, and J. Diederich, "The truth will come to light: Directions and challenges in extracting the knowledge embedded within trained artificial neural networks," IEEE Trans. Neural Netw., vol. 9, no. 6, pp. 1057-1068, Nov. 1998. (Pubitemid 128742391)
    • (1998) IEEE Transactions on Neural Networks , vol.9 , Issue.6 , pp. 1057-1068
    • Tickle, A.B.1    Andrews, R.2    Golea, M.3    Diederich, J.4
  • 14
    • 0036565303 scopus 로고    scopus 로고
    • Extraction of rules from artificial neural networks for nonlinear regression
    • DOI 10.1109/TNN.2002.1000125, PII S1045922702044491
    • R. Setiono, W. K. Leow, and J. M. Zurada, "Extraction of rules from artificial neural networks for nonlinear regression," IEEE Trans. Neural Netw., vol. 13, no. 3, pp. 564-577, May 2002. (Pubitemid 34669648)
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.3 , pp. 564-577
    • Setiono, R.1    Leow, W.K.2    Zurada, J.M.3
  • 15
    • 68549115709 scopus 로고    scopus 로고
    • Decompositional rule extraction from support vector machines by active learning
    • Feb
    • D. Martens, B. Baesens, and T. V. Gestel, "Decompositional rule extraction from support vector machines by active learning," IEEE Trans. Knowl. Data Eng., vol. 21, no. 2, pp. 178-191, Feb. 2009.
    • (2009) IEEE Trans. Knowl. Data Eng. , vol.21 , Issue.2 , pp. 178-191
    • Martens, D.1    Baesens, B.2    Gestel, T.V.3
  • 16
    • 79951671371 scopus 로고    scopus 로고
    • Guiding hidden layer representations for improved rule extraction from neural networks
    • Feb.
    • T. Q. Huynh and J. A. Reggia, "Guiding hidden layer representations for improved rule extraction from neural networks," IEEE Trans. Neural Netw., vol. 22, no. 2, pp. 264-275, Feb. 2011.
    • (2011) IEEE Trans. Neural Netw. , vol.22 , Issue.2 , pp. 264-275
    • Huynh, T.Q.1    Reggia, J.A.2
  • 17
    • 0003682772 scopus 로고
    • Dept. Comput. Sci., Rutgers Univ., Cream Ridge, NJ, Tech. Rep. CBM-TR
    • T. Mitchell, "The need for biases in learning generalizations," Dept. Comput. Sci., Rutgers Univ., Cream Ridge, NJ, Tech. Rep. CBM-TR-117, 1980.
    • (1980) The Need for Biases in Learning Generalizations , vol.117
    • Mitchell, T.1
  • 18
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Sep
    • T. Poggio and F. Girosi, "Networks for approximation and learning," Proc. IEEE, vol. 78, no. 9, pp. 1481-1497, Sep. 1990.
    • (1990) Proc. IEEE , vol.78 , Issue.9 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 21
    • 0028529307 scopus 로고
    • Knowledge-based artificial neural networks
    • Oct
    • G. Towell and J. Shavlik, "Knowledge-based artificial neural networks," Artif. Intell., vol. 70, nos. 1-2, pp. 119-165, Oct. 1994.
    • (1994) Artif. Intell. , vol.70 , Issue.1-2 , pp. 119-165
    • Towell, G.1    Shavlik, J.2
  • 22
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference system
    • May-Jun
    • J.-S. R. Jang, "ANFIS: Adaptive-network-based fuzzy inference system," IEEE Trans. Syst., Man, Cybern., vol. 23, no. 3, pp. 665-685, May-Jun. 1993.
    • (1993) IEEE Trans. Syst., Man, Cybern. , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.-S.R.1
  • 23
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • D. J. C. MacKay, "A practical Bayesian framework for backpropagation networks," Neural Comput., vol. 4, no. 3, pp. 448-472, 1992.
    • (1992) Neural Comput. , vol.4 , Issue.3 , pp. 448-472
    • MacKay, D.J.C.1
  • 24
    • 0026806616 scopus 로고
    • A hybrid neural network-first principles approach to process modeling
    • Oct
    • D. Psichogios and L. H. Ungar, "A hybrid neural network-first principles approach to process modeling," AIChE J., vol. 38, no. 10, pp. 1499-1511, Oct. 1992.
    • (1992) AIChE J. , vol.38 , Issue.10 , pp. 1499-1511
    • Psichogios, D.1    Ungar, L.H.2
  • 25
    • 0028484335 scopus 로고
    • Modeling chemical processes using prior knowledge and neural networks
    • Aug
    • M. L. Thompson and M. A. Kramer, "Modeling chemical processes using prior knowledge and neural networks," AIChE J., vol. 40, no. 8, pp. 1328-1340, Aug. 1994.
    • (1994) AIChE J. , vol.40 , Issue.8 , pp. 1328-1340
    • Thompson, M.L.1    Kramer, M.A.2
  • 27
    • 0032203371 scopus 로고    scopus 로고
    • Incorporating prior information in machine learning by creating virtual examples
    • Nov
    • P. Niyogi, F. Girosi, and T. Poggio, "Incorporating prior information in machine learning by creating virtual examples," Proc. IEEE, vol. 86, no. 11, pp. 2196-2209, Nov. 1998.
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2196-2209
    • Niyogi, P.1    Girosi, F.2    Poggio, T.3
  • 28
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • M.I. Jordan, Ed. Cambridge, MA: MIT Press
    • M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul, "An introduction to variational methods for graphical models," in Learning in Graphical Models, M. I. Jordan, Ed. Cambridge, MA: MIT Press, 1999.
    • (1999) Learning in Graphical Models
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.S.3    Saul, L.K.4
  • 29
    • 70449886674 scopus 로고    scopus 로고
    • RBF networks for nonlinear models subject to linear constraints
    • Nanchang, China, Aug
    • Y. J. Qu and B. G. Hu, "RBF networks for nonlinear models subject to linear constraints," in Proc. IEEE Int. Conf. Granular Comput., Nanchang, China, Aug. 2009, pp. 482-487.
    • (2009) Proc. IEEE Int. Conf. Granular Comput. , pp. 482-487
    • Qu, Y.J.1    Hu, B.G.2
  • 30
    • 79959455231 scopus 로고    scopus 로고
    • Neural-network based regression model with prior from ranking information
    • Barcelona, Spain, Jul.
    • Y. J. Qu, B. Dai, and B. G. Hu, "Neural-network based regression model with prior from ranking information," in Proc. Int. Joint Conf. Neural Netw., Barcelona, Spain, Jul. 2010, pp. 3005-3012.
    • (2010) Proc. Int. Joint Conf. Neural Netw. , pp. 3005-3012
    • Qu, Y.J.1    Dai, B.2    Hu, B.G.3
  • 34
    • 1542365112 scopus 로고    scopus 로고
    • Dimensionality reduction via sparse support vector machines
    • Mar
    • J. Bi, K. Bennett, M. Embrechts, C. Breneman, and M. Song, "Dimensionality reduction via sparse support vector machines," J. Mach. Learn. Res., vol. 3, pp. 1229-1243, Mar. 2003.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1229-1243
    • Bi, J.1    Bennett, K.2    Embrechts, M.3    Breneman, C.4    Song, M.5
  • 36
    • 77950297986 scopus 로고    scopus 로고
    • Comparison of universal approximators incorporating partial monotonicity by structure
    • May
    • A. Minin, M. Velikova, B. Lang, and H. Daniels, "Comparison of universal approximators incorporating partial monotonicity by structure," Neural Netw., vol. 23, no. 4, pp. 471-475, May 2010.
    • (2010) Neural Netw. , vol.23 , Issue.4 , pp. 471-475
    • Minin, A.1    Velikova, M.2    Lang, B.3    Daniels, H.4
  • 37
    • 78649634814 scopus 로고    scopus 로고
    • Mixtures of monotone networks for prediction
    • M. Velikova, H. Daniels, and A. Feelders, "Mixtures of monotone networks for prediction," Int. J. Comput. Intell., vol. 3, no. 3, pp. 204-214, 2006.
    • (2006) Int. J. Comput. Intell. , vol.3 , Issue.3 , pp. 204-214
    • Velikova, M.1    Daniels, H.2    Feelders, A.3
  • 39
    • 77953123580 scopus 로고    scopus 로고
    • Monotone and partially monotone neural networks
    • Jun.
    • H. Daniels and M. Velikova, "Monotone and partially monotone neural networks," IEEE Trans. Neural Netw., vol. 21, no. 6, pp. 906-917, Jun. 2010.
    • (2010) IEEE Trans. Neural Netw. , vol.21 , Issue.6 , pp. 906-917
    • Daniels, H.1    Velikova, M.2
  • 41
    • 33846086864 scopus 로고    scopus 로고
    • Nonlinear knowledge in kernel approximation
    • DOI 10.1109/TNN.2006.886354
    • O. L. Mangasarian and E. W. Wild, "Nonlinear knowledge in kernel approximation," IEEE Trans. Neural Netw., vol. 18, no. 1, pp. 300-306, Jan. 2007. (Pubitemid 46062936)
    • (2007) IEEE Transactions on Neural Networks , vol.18 , Issue.1 , pp. 300-306
    • Mangasarian, O.L.1    Wild, E.W.2
  • 42
    • 76749157156 scopus 로고    scopus 로고
    • Cutting plane method for continuously constrained kernel-based regression
    • Feb.
    • Z. Sun, Z. K. Zhang, H. G. Wang, and M. Jiang, "Cutting plane method for continuously constrained kernel-based regression," IEEE Trans. Neural Netw., vol. 21, no. 2, pp. 238-247, Feb. 2010.
    • (2010) IEEE Trans. Neural Netw. , vol.21 , Issue.2 , pp. 238-247
    • Sun, Z.1    Zhang, Z.K.2    Wang, H.G.3    Jiang, M.4
  • 44
    • 49049090861 scopus 로고    scopus 로고
    • A constrained optimization approach to preserving prior knowledge during incremental training
    • Jun
    • S. Ferrari and M. Jensenius, "A constrained optimization approach to preserving prior knowledge during incremental training," IEEE Trans. Neural Netw., vol. 19, no. 6, pp. 996-1009, Jun. 2008.
    • (2008) IEEE Trans. Neural Netw. , vol.19 , Issue.6 , pp. 996-1009
    • Ferrari, S.1    Jensenius, M.2
  • 45
    • 0038597789 scopus 로고    scopus 로고
    • Study on the algorithms of selecting the radial basis function center
    • M. X. Zhu and D. L. Zhang, "Study on the algorithms of selecting the radial basis function center," J. Anhui Univ., vol. 24, no. 1, pp. 72-78, 2000.
    • (2000) J. Anhui Univ. , vol.24 , Issue.1 , pp. 72-78
    • Zhu, M.X.1    Zhang, D.L.2
  • 49
    • 0025399567 scopus 로고
    • Identification and control of dynamical systems using neural networks
    • DOI 10.1109/72.80202
    • K. S. Narendra and K. Parthasarathy, "Identification and control of dynamical systems using neural networks," IEEE Trans. Neural Netw., vol. 1, no. 1, pp. 4-27, Mar. 1990. (Pubitemid 20689507)
    • (1990) IEEE Transactions on Neural Networks , vol.1 , Issue.1 , pp. 4-27
    • Narendra Kumpati, S.1    Parthasarathy Kannan2
  • 50
    • 67649344705 scopus 로고    scopus 로고
    • A growing and pruning method for radial basis function networks
    • Jun
    • M. Bortman and M. Aladjem, "A growing and pruning method for radial basis function networks," IEEE Trans. Neural Netw., vol. 20, no. 6, pp. 1039-1045, Jun. 2009.
    • (2009) IEEE Trans. Neural Netw. , vol.20 , Issue.6 , pp. 1039-1045
    • Bortman, M.1    Aladjem, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.