-
3
-
-
63149190200
-
A generalized-constraint neural network model: Associating partially known relationships for nonlinear regressions
-
May
-
B. G. Hu, H. B. Qu, Y. Wang, and S. H. Yang, "A generalized- constraint neural network model: Associating partially known relationships for nonlinear regressions," Inf. Sci., vol. 179, no. 12, pp. 1929-1943, May 2009.
-
(2009)
Inf. Sci.
, vol.179
, Issue.12
, pp. 1929-1943
-
-
Hu, B.G.1
Qu, H.B.2
Wang, Y.3
Yang, S.H.4
-
4
-
-
70350714258
-
Logic-oriented neural networks for fuzzy neurocomputing
-
Dec
-
W. Pedrycz and R. A. Aliev, "Logic-oriented neural networks for fuzzy neurocomputing," Neurocomputing, vol. 73, nos. 1-3, pp. 10-23, Dec. 2009.
-
(2009)
Neurocomputing
, vol.73
, Issue.1-3
, pp. 10-23
-
-
Pedrycz, W.1
Aliev, R.A.2
-
6
-
-
68149165759
-
A new learning paradigm: Learning using privileged information
-
Jul
-
V. Vapnik and A. Vashist, "A new learning paradigm: Learning using privileged information," Neural Netw., vol. 22, nos. 5-6, pp. 544-557, Jul. 2009.
-
(2009)
Neural Netw.
, vol.22
, Issue.5-6
, pp. 544-557
-
-
Vapnik, V.1
Vashist, A.2
-
7
-
-
40649086418
-
Incorporating prior knowledge in support vector machines for classification: A review
-
DOI 10.1016/j.neucom.2007.04.010, PII S0925231207001439
-
F. Lauer and G. Bloch, "Incorporating prior knowledge in support vector machines for classification: A review," Neurocomputing, vol. 71, nos. 7-9, pp. 1578-1594, Mar. 2008. (Pubitemid 351373181)
-
(2008)
Neurocomputing
, vol.71
, Issue.7-9
, pp. 1578-1594
-
-
Lauer, F.1
Bloch, G.2
-
8
-
-
34147200308
-
How to add transparency to artificial neural networks
-
B. G. Hu, Y. Wang, S. H. Yang, and H. B. Qu, "How to add transparency to artificial neural networks," Pattern Recognit. Artif. Intell., vol. 20, no. 1, pp. 72-84, 2007. (Pubitemid 46577304)
-
(2007)
Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence
, vol.20
, Issue.1
, pp. 72-84
-
-
Hu, B.-G.1
Wang, Y.2
Yang, S.-H.3
Qu, H.-B.4
-
10
-
-
67349165372
-
-
Ph.D. thesis, Faculty Inf. Technol., Univ. Technology, Sydney, Australia
-
T. Yu, "Incorporating prior domain knowledge into inductive machine learning: Its implementation in contemporary capital markets," Ph.D. thesis, Faculty Inf. Technol., Univ. Technology, Sydney, Australia, 2007.
-
(2007)
Incorporating Prior Domain Knowledge into Inductive Machine Learning: Its Implementation in Contemporary Capital Markets
-
-
Yu, T.1
-
11
-
-
36849072437
-
Incorporating prior knowledge in support vector regression
-
DOI 10.1007/s10994-007-5035-5
-
F. Lauer and G. Bloch, "Incorporating prior knowledge in support vector regression," Mach. Learn., vol. 70, no. 1, pp. 89-118, 2008. (Pubitemid 50004032)
-
(2008)
Machine Learning
, vol.70
, Issue.1
, pp. 89-118
-
-
Lauer, F.1
Bloch, G.2
-
12
-
-
0028482883
-
Rule generation from neural networks
-
Aug
-
L. M. Fu, "Rule generation from neural networks," IEEE Trans. Syst., Man, Cybern., vol. 24, no. 8, pp. 1114-1124, Aug. 1994.
-
(1994)
IEEE Trans. Syst., Man, Cybern.
, vol.24
, Issue.8
, pp. 1114-1124
-
-
Fu, L.M.1
-
13
-
-
0032208720
-
The truth will come to light: Directions and challenges in extracting the knowledge embedded within trained artificial neural networks
-
PII S1045922798061839
-
A. Tickle, R. Andrews, M. Golea, and J. Diederich, "The truth will come to light: Directions and challenges in extracting the knowledge embedded within trained artificial neural networks," IEEE Trans. Neural Netw., vol. 9, no. 6, pp. 1057-1068, Nov. 1998. (Pubitemid 128742391)
-
(1998)
IEEE Transactions on Neural Networks
, vol.9
, Issue.6
, pp. 1057-1068
-
-
Tickle, A.B.1
Andrews, R.2
Golea, M.3
Diederich, J.4
-
14
-
-
0036565303
-
Extraction of rules from artificial neural networks for nonlinear regression
-
DOI 10.1109/TNN.2002.1000125, PII S1045922702044491
-
R. Setiono, W. K. Leow, and J. M. Zurada, "Extraction of rules from artificial neural networks for nonlinear regression," IEEE Trans. Neural Netw., vol. 13, no. 3, pp. 564-577, May 2002. (Pubitemid 34669648)
-
(2002)
IEEE Transactions on Neural Networks
, vol.13
, Issue.3
, pp. 564-577
-
-
Setiono, R.1
Leow, W.K.2
Zurada, J.M.3
-
15
-
-
68549115709
-
Decompositional rule extraction from support vector machines by active learning
-
Feb
-
D. Martens, B. Baesens, and T. V. Gestel, "Decompositional rule extraction from support vector machines by active learning," IEEE Trans. Knowl. Data Eng., vol. 21, no. 2, pp. 178-191, Feb. 2009.
-
(2009)
IEEE Trans. Knowl. Data Eng.
, vol.21
, Issue.2
, pp. 178-191
-
-
Martens, D.1
Baesens, B.2
Gestel, T.V.3
-
16
-
-
79951671371
-
Guiding hidden layer representations for improved rule extraction from neural networks
-
Feb.
-
T. Q. Huynh and J. A. Reggia, "Guiding hidden layer representations for improved rule extraction from neural networks," IEEE Trans. Neural Netw., vol. 22, no. 2, pp. 264-275, Feb. 2011.
-
(2011)
IEEE Trans. Neural Netw.
, vol.22
, Issue.2
, pp. 264-275
-
-
Huynh, T.Q.1
Reggia, J.A.2
-
17
-
-
0003682772
-
-
Dept. Comput. Sci., Rutgers Univ., Cream Ridge, NJ, Tech. Rep. CBM-TR
-
T. Mitchell, "The need for biases in learning generalizations," Dept. Comput. Sci., Rutgers Univ., Cream Ridge, NJ, Tech. Rep. CBM-TR-117, 1980.
-
(1980)
The Need for Biases in Learning Generalizations
, vol.117
-
-
Mitchell, T.1
-
18
-
-
0025490985
-
Networks for approximation and learning
-
Sep
-
T. Poggio and F. Girosi, "Networks for approximation and learning," Proc. IEEE, vol. 78, no. 9, pp. 1481-1497, Sep. 1990.
-
(1990)
Proc. IEEE
, vol.78
, Issue.9
, pp. 1481-1497
-
-
Poggio, T.1
Girosi, F.2
-
21
-
-
0028529307
-
Knowledge-based artificial neural networks
-
Oct
-
G. Towell and J. Shavlik, "Knowledge-based artificial neural networks," Artif. Intell., vol. 70, nos. 1-2, pp. 119-165, Oct. 1994.
-
(1994)
Artif. Intell.
, vol.70
, Issue.1-2
, pp. 119-165
-
-
Towell, G.1
Shavlik, J.2
-
22
-
-
0027601884
-
ANFIS: Adaptive-network-based fuzzy inference system
-
May-Jun
-
J.-S. R. Jang, "ANFIS: Adaptive-network-based fuzzy inference system," IEEE Trans. Syst., Man, Cybern., vol. 23, no. 3, pp. 665-685, May-Jun. 1993.
-
(1993)
IEEE Trans. Syst., Man, Cybern.
, vol.23
, Issue.3
, pp. 665-685
-
-
Jang, J.-S.R.1
-
23
-
-
0002704818
-
A practical Bayesian framework for backpropagation networks
-
D. J. C. MacKay, "A practical Bayesian framework for backpropagation networks," Neural Comput., vol. 4, no. 3, pp. 448-472, 1992.
-
(1992)
Neural Comput.
, vol.4
, Issue.3
, pp. 448-472
-
-
MacKay, D.J.C.1
-
24
-
-
0026806616
-
A hybrid neural network-first principles approach to process modeling
-
Oct
-
D. Psichogios and L. H. Ungar, "A hybrid neural network-first principles approach to process modeling," AIChE J., vol. 38, no. 10, pp. 1499-1511, Oct. 1992.
-
(1992)
AIChE J.
, vol.38
, Issue.10
, pp. 1499-1511
-
-
Psichogios, D.1
Ungar, L.H.2
-
25
-
-
0028484335
-
Modeling chemical processes using prior knowledge and neural networks
-
Aug
-
M. L. Thompson and M. A. Kramer, "Modeling chemical processes using prior knowledge and neural networks," AIChE J., vol. 40, no. 8, pp. 1328-1340, Aug. 1994.
-
(1994)
AIChE J.
, vol.40
, Issue.8
, pp. 1328-1340
-
-
Thompson, M.L.1
Kramer, M.A.2
-
26
-
-
51749084180
-
Prior knowledge in support vector kernels
-
B. Scholkopf, P. Simard, A. Smola, and V. Vapnik, "Prior knowledge in support vector kernels," in Proc. Adv. Neural Inf. Process. Syst., vol. 10. 1998, pp. 640-646.
-
(1998)
Proc. Adv. Neural Inf. Process. Syst.
, vol.10
, pp. 640-646
-
-
Scholkopf, B.1
Simard, P.2
Smola, A.3
Vapnik, V.4
-
27
-
-
0032203371
-
Incorporating prior information in machine learning by creating virtual examples
-
Nov
-
P. Niyogi, F. Girosi, and T. Poggio, "Incorporating prior information in machine learning by creating virtual examples," Proc. IEEE, vol. 86, no. 11, pp. 2196-2209, Nov. 1998.
-
(1998)
Proc. IEEE
, vol.86
, Issue.11
, pp. 2196-2209
-
-
Niyogi, P.1
Girosi, F.2
Poggio, T.3
-
28
-
-
0033225865
-
An introduction to variational methods for graphical models
-
M.I. Jordan, Ed. Cambridge, MA: MIT Press
-
M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul, "An introduction to variational methods for graphical models," in Learning in Graphical Models, M. I. Jordan, Ed. Cambridge, MA: MIT Press, 1999.
-
(1999)
Learning in Graphical Models
-
-
Jordan, M.I.1
Ghahramani, Z.2
Jaakkola, T.S.3
Saul, L.K.4
-
29
-
-
70449886674
-
RBF networks for nonlinear models subject to linear constraints
-
Nanchang, China, Aug
-
Y. J. Qu and B. G. Hu, "RBF networks for nonlinear models subject to linear constraints," in Proc. IEEE Int. Conf. Granular Comput., Nanchang, China, Aug. 2009, pp. 482-487.
-
(2009)
Proc. IEEE Int. Conf. Granular Comput.
, pp. 482-487
-
-
Qu, Y.J.1
Hu, B.G.2
-
30
-
-
79959455231
-
Neural-network based regression model with prior from ranking information
-
Barcelona, Spain, Jul.
-
Y. J. Qu, B. Dai, and B. G. Hu, "Neural-network based regression model with prior from ranking information," in Proc. Int. Joint Conf. Neural Netw., Barcelona, Spain, Jul. 2010, pp. 3005-3012.
-
(2010)
Proc. Int. Joint Conf. Neural Netw.
, pp. 3005-3012
-
-
Qu, Y.J.1
Dai, B.2
Hu, B.G.3
-
34
-
-
1542365112
-
Dimensionality reduction via sparse support vector machines
-
Mar
-
J. Bi, K. Bennett, M. Embrechts, C. Breneman, and M. Song, "Dimensionality reduction via sparse support vector machines," J. Mach. Learn. Res., vol. 3, pp. 1229-1243, Mar. 2003.
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 1229-1243
-
-
Bi, J.1
Bennett, K.2
Embrechts, M.3
Breneman, C.4
Song, M.5
-
35
-
-
80051545883
-
Support vector machines with constraints for sparsity in the primal parameters
-
Aug.
-
V. Gomez-Verdejo, M. Martinez-Ramon, J. Arenas-Garcia, M. Lazaro-Gredilla, and H. Molina-Bulla, "Support vector machines with constraints for sparsity in the primal parameters," IEEE Trans. Neural Netw., vol. 22, no. 8, pp. 1269-1283, Aug. 2011.
-
(2011)
IEEE Trans. Neural Netw.
, vol.22
, Issue.8
, pp. 1269-1283
-
-
Gomez-Verdejo, V.1
Martinez-Ramon, M.2
Arenas-Garcia, J.3
Lazaro-Gredilla, M.4
Molina-Bulla, H.5
-
36
-
-
77950297986
-
Comparison of universal approximators incorporating partial monotonicity by structure
-
May
-
A. Minin, M. Velikova, B. Lang, and H. Daniels, "Comparison of universal approximators incorporating partial monotonicity by structure," Neural Netw., vol. 23, no. 4, pp. 471-475, May 2010.
-
(2010)
Neural Netw.
, vol.23
, Issue.4
, pp. 471-475
-
-
Minin, A.1
Velikova, M.2
Lang, B.3
Daniels, H.4
-
37
-
-
78649634814
-
Mixtures of monotone networks for prediction
-
M. Velikova, H. Daniels, and A. Feelders, "Mixtures of monotone networks for prediction," Int. J. Comput. Intell., vol. 3, no. 3, pp. 204-214, 2006.
-
(2006)
Int. J. Comput. Intell.
, vol.3
, Issue.3
, pp. 204-214
-
-
Velikova, M.1
Daniels, H.2
Feelders, A.3
-
38
-
-
67650471279
-
Incorporating functional knowledge in neural networks
-
Jun
-
C. Dugas, Y. Bengio, F. Bélisle, C. Nadeau, and R. Garcia, "Incorporating functional knowledge in neural networks," J. Mach. Learn. Res., vol. 10, pp. 1239-1262, Jun. 2009.
-
(2009)
J. Mach. Learn. Res.
, vol.10
, pp. 1239-1262
-
-
Dugas, C.1
Bengio, Y.2
Bélisle, F.3
Nadeau, C.4
Garcia, R.5
-
39
-
-
77953123580
-
Monotone and partially monotone neural networks
-
Jun.
-
H. Daniels and M. Velikova, "Monotone and partially monotone neural networks," IEEE Trans. Neural Netw., vol. 21, no. 6, pp. 906-917, Jun. 2010.
-
(2010)
IEEE Trans. Neural Netw.
, vol.21
, Issue.6
, pp. 906-917
-
-
Daniels, H.1
Velikova, M.2
-
40
-
-
29344472579
-
Knowledge-based kernel approximation
-
Sep
-
O. L. Mangasarian, J. W. Shavlik, and E. W. Wild, "Knowledge-based kernel approximation," J. Mach. Learn. Res., vol. 5, pp. 1127-1141, Sep. 2004.
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 1127-1141
-
-
Mangasarian, O.L.1
Shavlik, J.W.2
Wild, E.W.3
-
41
-
-
33846086864
-
Nonlinear knowledge in kernel approximation
-
DOI 10.1109/TNN.2006.886354
-
O. L. Mangasarian and E. W. Wild, "Nonlinear knowledge in kernel approximation," IEEE Trans. Neural Netw., vol. 18, no. 1, pp. 300-306, Jan. 2007. (Pubitemid 46062936)
-
(2007)
IEEE Transactions on Neural Networks
, vol.18
, Issue.1
, pp. 300-306
-
-
Mangasarian, O.L.1
Wild, E.W.2
-
42
-
-
76749157156
-
Cutting plane method for continuously constrained kernel-based regression
-
Feb.
-
Z. Sun, Z. K. Zhang, H. G. Wang, and M. Jiang, "Cutting plane method for continuously constrained kernel-based regression," IEEE Trans. Neural Netw., vol. 21, no. 2, pp. 238-247, Feb. 2010.
-
(2010)
IEEE Trans. Neural Netw.
, vol.21
, Issue.2
, pp. 238-247
-
-
Sun, Z.1
Zhang, Z.K.2
Wang, H.G.3
Jiang, M.4
-
43
-
-
84898971943
-
Kernel dependency estimation
-
J. Weston, O. Chapelle, A. Elisseeff, B. Scholkopf, and V. Vapnik, "Kernel dependency estimation," in Proc. Adv. Neural Inf. Syst., vol. 15. 2003, pp. 873-880.
-
(2003)
Proc. Adv. Neural Inf. Syst.
, vol.15
, pp. 873-880
-
-
Weston, J.1
Chapelle, O.2
Elisseeff, A.3
Scholkopf, B.4
Vapnik, V.5
-
44
-
-
49049090861
-
A constrained optimization approach to preserving prior knowledge during incremental training
-
Jun
-
S. Ferrari and M. Jensenius, "A constrained optimization approach to preserving prior knowledge during incremental training," IEEE Trans. Neural Netw., vol. 19, no. 6, pp. 996-1009, Jun. 2008.
-
(2008)
IEEE Trans. Neural Netw.
, vol.19
, Issue.6
, pp. 996-1009
-
-
Ferrari, S.1
Jensenius, M.2
-
45
-
-
0038597789
-
Study on the algorithms of selecting the radial basis function center
-
M. X. Zhu and D. L. Zhang, "Study on the algorithms of selecting the radial basis function center," J. Anhui Univ., vol. 24, no. 1, pp. 72-78, 2000.
-
(2000)
J. Anhui Univ.
, vol.24
, Issue.1
, pp. 72-78
-
-
Zhu, M.X.1
Zhang, D.L.2
-
49
-
-
0025399567
-
Identification and control of dynamical systems using neural networks
-
DOI 10.1109/72.80202
-
K. S. Narendra and K. Parthasarathy, "Identification and control of dynamical systems using neural networks," IEEE Trans. Neural Netw., vol. 1, no. 1, pp. 4-27, Mar. 1990. (Pubitemid 20689507)
-
(1990)
IEEE Transactions on Neural Networks
, vol.1
, Issue.1
, pp. 4-27
-
-
Narendra Kumpati, S.1
Parthasarathy Kannan2
-
50
-
-
67649344705
-
A growing and pruning method for radial basis function networks
-
Jun
-
M. Bortman and M. Aladjem, "A growing and pruning method for radial basis function networks," IEEE Trans. Neural Netw., vol. 20, no. 6, pp. 1039-1045, Jun. 2009.
-
(2009)
IEEE Trans. Neural Netw.
, vol.20
, Issue.6
, pp. 1039-1045
-
-
Bortman, M.1
Aladjem, M.2
|