메뉴 건너뛰기




Volumn 57, Issue 6, 2009, Pages 885-895

Trade-off between accuracy and interpretability: Experience-oriented fuzzy modeling via reduced-set vectors

Author keywords

Accuracy; Fuzzy modeling; Interpretability; Kernel; Reduced set vectors

Indexed keywords

ALGORITHMS; COMMERCE; CONTROL THEORY; LEARNING ALGORITHMS; LEARNING SYSTEMS; REGRESSION ANALYSIS; VECTORS;

EID: 60349129490     PISSN: 08981221     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.camwa.2008.10.040     Document Type: Article
Times cited : (8)

References (19)
  • 7
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Smola A.J., and Schölkopf B. A tutorial on support vector regression. Statistics and Computing 14 3 (2004) 199-222
    • (2004) Statistics and Computing , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 9
    • 1542333735 scopus 로고    scopus 로고
    • Support vector learning mechanism for fuzzy rule-based modeling: A new approach
    • Chiang J.H., and Hao P.Y. Support vector learning mechanism for fuzzy rule-based modeling: A new approach. IEEE Transactions on Fuzzy Systems 12 1 (2004) 1-12
    • (2004) IEEE Transactions on Fuzzy Systems , vol.12 , Issue.1 , pp. 1-12
    • Chiang, J.H.1    Hao, P.Y.2
  • 10
    • 33644990689 scopus 로고    scopus 로고
    • On support vector regression machines with linguistic interpretation of the kernel matrix
    • Leski J.M. On support vector regression machines with linguistic interpretation of the kernel matrix. Fuzzy Sets and Systems 157 (2006) 1092-1113
    • (2006) Fuzzy Sets and Systems , vol.157 , pp. 1092-1113
    • Leski, J.M.1
  • 11
    • 35748961989 scopus 로고    scopus 로고
    • Support vector fuzzy adaptive network in regression analysis
    • Shen J., Syau Y., and Lee E.S. Support vector fuzzy adaptive network in regression analysis. Computers and Mathematics with Applications 54 11-12 (2007) 1353-1366
    • (2007) Computers and Mathematics with Applications , vol.54 , Issue.11-12 , pp. 1353-1366
    • Shen, J.1    Syau, Y.2    Lee, E.S.3
  • 12
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • Cherkassky V., and Ma Y. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks 17 1 (2004) 113-126
    • (2004) Neural Networks , vol.17 , Issue.1 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2
  • 13
    • 0346881149 scopus 로고    scopus 로고
    • Experimentally optimal v in support vector regression for different noise models and parameters settings
    • Chalimourda A., Schölkopf B., and Smola A.J. Experimentally optimal v in support vector regression for different noise models and parameters settings. Neural Networks 17 1 (2004) 127-141
    • (2004) Neural Networks , vol.17 , Issue.1 , pp. 127-141
    • Chalimourda, A.1    Schölkopf, B.2    Smola, A.J.3
  • 14
    • 44049093391 scopus 로고    scopus 로고
    • The connection between regularization operators and support vector kernels
    • Smola A.J., and Schölkopf B. The connection between regularization operators and support vector kernels. Neural Networks 10 (1998) 1445-1454
    • (1998) Neural Networks , vol.10 , pp. 1445-1454
    • Smola, A.J.1    Schölkopf, B.2
  • 15
    • 0346881149 scopus 로고    scopus 로고
    • Experimentally optimal v in support vector regression for different noise models and parameters settings
    • Chalimourda A., Schölkopf B., and Smola A.J. Experimentally optimal v in support vector regression for different noise models and parameters settings. Neural Networks 17 1 (2004) 127-141
    • (2004) Neural Networks , vol.17 , Issue.1 , pp. 127-141
    • Chalimourda, A.1    Schölkopf, B.2    Smola, A.J.3
  • 17
    • 33646511274 scopus 로고    scopus 로고
    • A bottom-up method for simplifying support vector solutions
    • Nguyen D., and Ho T.B. A bottom-up method for simplifying support vector solutions. IEEE Transactions on Neural Network 17 3 (2006) 792-796
    • (2006) IEEE Transactions on Neural Network , vol.17 , Issue.3 , pp. 792-796
    • Nguyen, D.1    Ho, T.B.2
  • 19
    • 0026839028 scopus 로고
    • Nonlinear control via approximate input-output linearization: The ball and beam example
    • Hauser J., Sastry S., and Kokotović P. Nonlinear control via approximate input-output linearization: The ball and beam example. IEEE Transactions on Automatic Control 37 3 (1992) 392-398
    • (1992) IEEE Transactions on Automatic Control , vol.37 , Issue.3 , pp. 392-398
    • Hauser, J.1    Sastry, S.2    Kokotović, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.