메뉴 건너뛰기




Volumn 17, Issue , 2002, Pages 137-170

Inducing interpretable voting classifiers without trading accuracy for simplicity: Theoretical results, approximation algorithms, and experiments

Author keywords

[No Author keywords available]

Indexed keywords

DATA MINING; DECISION MAKING; HEURISTIC METHODS; LEARNING SYSTEMS; SET THEORY; TREES (MATHEMATICS);

EID: 3242735194     PISSN: 10769757     EISSN: None     Source Type: Journal    
DOI: 10.1613/jair.986     Document Type: Article
Times cited : (10)

References (38)
  • 1
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Bauer, E., & Kohavi, R. (1999). An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning, 36, 105-139.
    • (1999) Machine Learning , vol.36 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123-140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 6
    • 0002117591 scopus 로고
    • A further comparison of splitting rules for Decision-Tree induction
    • Buntine, W., & Niblett, T. (1992). A further comparison of splitting rules for Decision-Tree induction. Machine Learning, 8, 75-85.
    • (1992) Machine Learning , vol.8 , pp. 75-85
    • Buntine, W.1    Niblett, T.2
  • 10
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • Dietterich, T. G. (2000). An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning, 40, 139-157.
    • (2000) Machine Learning , vol.40 , pp. 139-157
    • Dietterich, T.G.1
  • 15
    • 0034164230 scopus 로고    scopus 로고
    • Additive Logistic Regression: A Statistical View of Boosting
    • Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive Logistic Regression: a Statistical View of Boosting. Annals of Statistics, 28, 337-374.
    • (2000) Annals of Statistics , vol.28 , pp. 337-374
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 17
    • 51249185617 scopus 로고
    • The ellipsoid method and its consequences in combinatorial optimization
    • Grötschel, M., Lovàsz, L., & Schrijver, A. (1981). The ellipsoid method and its consequences in combinatorial optimization. Combinatorica, 1, 169-197.
    • (1981) Combinatorica , vol.1 , pp. 169-197
    • Grötschel, M.1    Lovàsz, L.2    Schrijver, A.3
  • 18
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used datasets
    • Holte, R. (1993). Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11, 63-91.
    • (1993) Machine Learning , vol.11 , pp. 63-91
    • Holte, R.1
  • 19
    • 0001815269 scopus 로고
    • Constructing optimal decision trees is NP-complete
    • Hyafil, L., & Rivest, R. (1976). Constructing optimal decision trees is NP-complete. Information Processing Letters, 5, 15-17.
    • (1976) Information Processing Letters , vol.5 , pp. 15-17
    • Hyafil, L.1    Rivest, R.2
  • 30
    • 0002836025 scopus 로고    scopus 로고
    • Minimizing symmetric submodular functions
    • Queyranne, M. (1998). Minimizing symmetric submodular functions. Mathematical Programming, 82, 3-12.
    • (1998) Mathematical Programming , vol.82 , pp. 3-12
    • Queyranne, M.1
  • 34
    • 1442267080 scopus 로고
    • Learning decision lists
    • Rivest, R. (1987). Learning decision lists. Machine Learning, 2, 229-246.
    • (1987) Machine Learning , vol.2 , pp. 229-246
    • Rivest, R.1
  • 35
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the Margin: A new explanation for the effectiveness of Voting methods
    • Schapire, R. E., Freund, Y., Bartlett, P., & Lee, W. S. (1998). Boosting the Margin: a new explanation for the effectiveness of Voting methods. Annals of statistics, 26, 1651-1686.
    • (1998) Annals of Statistics , vol.26 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.S.4
  • 37
    • 0021518106 scopus 로고
    • A theory of the learnable
    • Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM, 27, 1134-1142.
    • (1984) Communications of the ACM , vol.27 , pp. 1134-1142
    • Valiant, L.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.