메뉴 건너뛰기




Volumn 28, Issue 10, 2016, Pages 2213-2249

Dimensionality-dependent generalization bounds for k-dimensional coding schemes

Author keywords

[No Author keywords available]

Indexed keywords

ERRORS; FACTORIZATION; MATRIX ALGEBRA;

EID: 84988624672     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/NECO_a_00872     Document Type: Letter
Times cited : (49)

References (56)
  • 1
    • 0032609779 scopus 로고    scopus 로고
    • The effect of correlated variability on the accuracy of a population code
    • Abbott, L., & Dayan, P. (1999). The effect of correlated variability on the accuracy of a population code. Neural Computation, 11(1), 91-101.
    • (1999) Neural Computation , vol.11 , Issue.1 , pp. 91-101
    • Abbott, L.1    Dayan, P.2
  • 2
    • 0000356348 scopus 로고
    • Probability inequalities for empirical processes and a law of the iterated logarithm
    • Alexander, K. (1984). Probability inequalities for empirical processes and a law of the iterated logarithm. Annals of Probability, 12(4), 1041-1067.
    • (1984) Annals of Probability , vol.12 , Issue.4 , pp. 1041-1067
    • Alexander, K.1
  • 3
    • 84893020672 scopus 로고    scopus 로고
    • Improved sparse coding under the influence of perceptual attention
    • Amiri, A., & Haykin, S. (2014). Improved sparse coding under the influence of perceptual attention. Neural Computation, 26(2), 377-420.
    • (2014) Neural Computation , vol.26 , Issue.2 , pp. 377-420
    • Amiri, A.1    Haykin, S.2
  • 5
    • 27744461035 scopus 로고    scopus 로고
    • Improved minimax bounds on the test and training distortion of empirically designed vector quantizers
    • Antos, A. (2005). Improved minimax bounds on the test and training distortion of empirically designed vector quantizers. IEEE Transactions on Information Theory, 51(11), 4022-4032.
    • (2005) IEEE Transactions on Information Theory , vol.51 , Issue.11 , pp. 4022-4032
    • Antos, A.1
  • 6
    • 27744565348 scopus 로고    scopus 로고
    • Improved convergence rates in empirical vector quantizer design
    • Antos, A., Györfi, L., & György, A. (2005). Improved convergence rates in empirical vector quantizer design. IEEE Transactions on Information Theory, 51(11), 4013-4022.
    • (2005) IEEE Transactions on Information Theory , vol.51 , Issue.11 , pp. 4013-4022
    • Antos, A.1    Györfi, L.2    György, A.3
  • 7
  • 8
    • 0038453192 scopus 로고    scopus 로고
    • Rademacher and gaussian complexities: Risk bounds and structural results
    • Bartlett, P. L., & Mendelson, S. (2003). Rademacher and gaussian complexities: Risk bounds and structural results. Journal of Machine Learning Research, 3, 463-482.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 463-482
    • Bartlett, P.L.1    Mendelson, S.2
  • 17
    • 63249085556 scopus 로고    scopus 로고
    • Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis
    • Févotte, C., Bertin, N., & Durrieu, J.-L. (2009). Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis. Neural Computation, 21(3), 793-830.
    • (2009) Neural Computation , vol.21 , Issue.3 , pp. 793-830
    • Févotte, C.1    Bertin, N.2    Durrieu, J.-L.3
  • 22
    • 79959579027 scopus 로고    scopus 로고
    • Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent
    • Guan, N., Tao, D., Luo, Z., & Yuan, B. (2011). Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent. IEEE Transactions on Image Processing, 20(7), 2030-2048.
    • (2011) IEEE Transactions on Image Processing , vol.20 , Issue.7 , pp. 2030-2048
    • Guan, N.1    Tao, D.2    Luo, Z.3    Yuan, B.4
  • 23
    • 84861164231 scopus 로고    scopus 로고
    • NeNMF: An optimal gradient method for nonnegative matrix factorization
    • Guan, N., Tao, D., Luo, Z., & Yuan, B. (2012). NeNMF: An optimal gradient method for nonnegative matrix factorization. IEEE Transactions on Signal Processing, 60(6), 2882-2898.
    • (2012) IEEE Transactions on Signal Processing , vol.60 , Issue.6 , pp. 2882-2898
    • Guan, N.1    Tao, D.2    Luo, Z.3    Yuan, B.4
  • 25
    • 84947403595 scopus 로고
    • Probability inequalities for sums of bounded random variables
    • Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association, 58(301), 13-30.
    • (1963) Journal of the American Statistical Association , vol.58 , Issue.301 , pp. 13-30
    • Hoeffding, W.1
  • 26
    • 84871862380 scopus 로고    scopus 로고
    • Sparse coding on the spot: Spontaneous retinal waves suffice for orientation selectivity
    • Hunt, J. J., Ibbotson, M., & Goodhill, G. J. (2012). Sparse coding on the spot: Spontaneous retinal waves suffice for orientation selectivity. Neural Computation, 24(9), 2422-2433.
    • (2012) Neural Computation , vol.24 , Issue.9 , pp. 2422-2433
    • Hunt, J.J.1    Ibbotson, M.2    Goodhill, G.J.3
  • 27
    • 85032751780 scopus 로고    scopus 로고
    • Dictionary learning: What is the right representation for my signal?
    • Ivana, T., & Pascal, F. (2011). Dictionary learning: What is the right representation for my signal? IEEE Signal Processing Magazine, 4(2), 27-38.
    • (2011) IEEE Signal Processing Magazine , vol.4 , Issue.2 , pp. 27-38
    • Ivana, T.1    Pascal, F.2
  • 29
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by nonnegative matrix factorization
    • Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects by nonnegative matrix factorization. Nature, 401(6755), 788-791.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 30
    • 84884927865 scopus 로고    scopus 로고
    • Fast rates for empirical vector quantization
    • Levrard, C. (2013). Fast rates for empirical vector quantization. Electronic Journal of Statistics, 7, 1716-1746.
    • (2013) Electronic Journal of Statistics , vol.7 , pp. 1716-1746
    • Levrard, C.1
  • 31
    • 84924942603 scopus 로고    scopus 로고
    • Nonasymptotic bounds for vector quantization in Hilbert spaces
    • Levrard, C. (2015). Nonasymptotic bounds for vector quantization in Hilbert spaces. Annals of Statistics, 43(2), 592-619.
    • (2015) Annals of Statistics , vol.43 , Issue.2 , pp. 592-619
    • Levrard, C.1
  • 32
    • 0034228445 scopus 로고    scopus 로고
    • On the training distortion of vector quantizers
    • Linder, T. (2000). On the training distortion of vector quantizers. IEEE Transactions on Information Theory, 46(4), 1617-1623.
    • (2000) IEEE Transactions on Information Theory , vol.46 , Issue.4 , pp. 1617-1623
    • Linder, T.1
  • 33
    • 0028712639 scopus 로고
    • Rates of convergence in the source coding theorem, in empirical quantizer design, and in universal lossy source coding
    • Linder, T., Lugosi, G., & Zeger, K. (1994). Rates of convergence in the source coding theorem, in empirical quantizer design, and in universal lossy source coding. IEEE Transactions on Information Theory, 40(6), 1728-1740.
    • (1994) IEEE Transactions on Information Theory , vol.40 , Issue.6 , pp. 1728-1740
    • Linder, T.1    Lugosi, G.2    Zeger, K.3
  • 38
    • 84890560521 scopus 로고    scopus 로고
    • Multiview Hessian discriminative sparse coding for image annotation
    • Liu, W., Tao, D., Cheng, J., & Tang, Y. (2014). Multiview Hessian discriminative sparse coding for image annotation. Computer Vision and Image Understanding, 118, 50-60.
    • (2014) Computer Vision and Image Understanding , vol.118 , pp. 50-60
    • Liu, W.1    Tao, D.2    Cheng, J.3    Tang, Y.4
  • 41
    • 77958550281 scopus 로고    scopus 로고
    • K-dimensional coding schemes in Hilbert spaces
    • Maurer, A., & Pontil, M. (2010). K-dimensional coding schemes in Hilbert spaces. IEEE Transactions on Information Theory, 56(11), 5839-5846.
    • (2010) IEEE Transactions on Information Theory , vol.56 , Issue.11 , pp. 5839-5846
    • Maurer, A.1    Pontil, M.2
  • 44
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381(6583), 607-609.
    • (1996) Nature , vol.381 , Issue.6583 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 45
    • 84930973862 scopus 로고    scopus 로고
    • AHebbian/anti-Hebbian neural network for linear subspace learning: A derivation from multidimensional scaling of streaming data
    • Pehlevan, C., Hu, T., & Chklovskii, D. B. (2015).AHebbian/anti-Hebbian neural network for linear subspace learning: A derivation from multidimensional scaling of streaming data. Neural Computation, 27(1), 1461-1495.
    • (2015) Neural Computation , vol.27 , Issue.1 , pp. 1461-1495
    • Pehlevan, C.1    Hu, T.2    Chklovskii, D.B.3
  • 46
    • 0000963885 scopus 로고
    • A central limit theorem for k-means clustering
    • Pollard, D. (1982). A central limit theorem for k-means clustering. IEEE Transactions on Information Theory, 10(4), 912-926.
    • (1982) IEEE Transactions on Information Theory , vol.10 , Issue.4 , pp. 912-926
    • Pollard, D.1
  • 47
    • 3042526258 scopus 로고    scopus 로고
    • Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering
    • Quiroga, R. Q., Nadasdy, Z., & Ben-Shaul, Y. (2004). Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. NeuralComputation, 16(8), 1661-1687.
    • (2004) NeuralComputation , vol.16 , Issue.8 , pp. 1661-1687
    • Quiroga, R.Q.1    Nadasdy, Z.2    Ben-Shaul, Y.3
  • 48
    • 72249111970 scopus 로고    scopus 로고
    • Adaptive relevance matrices in learning vector quantization
    • Schneider, P., Biehl, M., & Hammer, B. (2009a). Adaptive relevance matrices in learning vector quantization. Neural Computation, 21(12), 3532-3561.
    • (2009) Neural Computation , vol.21 , Issue.12 , pp. 3532-3561
    • Schneider, P.1    Biehl, M.2    Hammer, B.3
  • 49
    • 70449713460 scopus 로고    scopus 로고
    • Distance learning in discriminative vector quantization
    • Schneider, P., Biehl, M., & Hammer, B. (2009b). Distance learning in discriminative vector quantization. Neural Computation, 21(10), 2942-2969.
    • (2009) Neural Computation , vol.21 , Issue.10 , pp. 2942-2969
    • Schneider, P.1    Biehl, M.2    Hammer, B.3
  • 50
    • 0001957366 scopus 로고
    • Sharper bounds for gaussian and empirical processes
    • Talagrand, M. (1994). Sharper bounds for gaussian and empirical processes. Annals of Probability, 22(1), 28-76.
    • (1994) Annals of Probability , vol.22 , Issue.1 , pp. 28-76
    • Talagrand, M.1
  • 56
    • 0347067948 scopus 로고    scopus 로고
    • Covering number bounds of certain regularized linear function classes
    • Zhang, T. (2002). Covering number bounds of certain regularized linear function classes. Journal of Machine Learning Research, 2, 527-550.
    • (2002) Journal of Machine Learning Research , vol.2 , pp. 527-550
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.