-
1
-
-
84875700547
-
Stochastic optimization for PCA and PLS.
-
Piscataway, NJ: IEEE.
-
Arora, R., Cotter, A., Livescu, K., & Srebro, N. (2012). Stochastic optimization for PCA and PLS. In Proceedings of the Allerton Conference on Communication, Control, and Computing (pp. 861-868). Piscataway, NJ: IEEE.
-
(2012)
Proceedings of the Allerton Conference on Communication, Control, and Computing
, pp. 861-868
-
-
Arora, R.1
Cotter, A.2
Livescu, K.3
Srebro, N.4
-
3
-
-
0030197052
-
Unsupervised neural network learning procedures for feature extraction and classification
-
Becker, S., & Plumbley, M. (1996). Unsupervised neural network learning procedures for feature extraction and classification. Appl. Intell., 6(3), 185-203.
-
(1996)
Appl. Intell.
, vol.6
, Issue.3
, pp. 185-203
-
-
Becker, S.1
Plumbley, M.2
-
7
-
-
33746044179
-
Online tracking of linear subspaces
-
G. Lugois & H. U. Simon (Eds.), New York: Springer.
-
Crammer, K. (2006). Online tracking of linear subspaces. In G. Lugois & H. U. Simon (Eds.), Learning theory (pp. 438-452). New York: Springer.
-
(2006)
Learning theory
, pp. 438-452
-
-
Crammer, K.1
-
8
-
-
0141628141
-
Neural networks and principal component analysis.
-
Y.-H. Hu & J.-N. Hwang (Eds.), Boca Raton, FL: CRC Press.
-
Diamantaras, K. (2002).Neural networks and principal component analysis. In Y.-H. Hu & J.-N. Hwang (Eds.), Handbook of neural networks in signal processing. Boca Raton, FL: CRC Press.
-
(2002)
Handbook of neural networks in signal processing.
-
-
Diamantaras, K.1
-
11
-
-
84955462631
-
Robust stochastic principal component analysis.
-
Goes, J., Zhang, T., Arora, R., & Lerman, G. (2014). Robust stochastic principal component analysis. In Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics (pp. 266-274). http://jmlr.org/proceedings /papers/v33/
-
(2014)
Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics
, pp. 266-274
-
-
Goes, J.1
Zhang, T.2
Arora, R.3
Lerman, G.4
-
12
-
-
0026727495
-
Convergence analysis of local feature extraction algorithms
-
Hornik, K., & Kuan, C.-M. (1992). Convergence analysis of local feature extraction algorithms. Neural Networks, 5, 229-240.
-
(1992)
Neural Networks
, vol.5
, pp. 229-240
-
-
Hornik, K.1
Kuan, C.-M.2
-
13
-
-
84901281540
-
A neuron as a signal processing device.
-
Piscataway, NJ: IEEE.
-
Hu, T., Towfic, Z., Pehlevan, C., Genkin, A., & Chklovskii, D. (2013). A neuron as a signal processing device. In Proceedings of the Asilomar Conference on Signals, Systems and Computers (pp. 362-366). Piscataway, NJ: IEEE.
-
(2013)
Proceedings of the Asilomar Conference on Signals, Systems and Computers
, pp. 362-366
-
-
Hu, T.1
Towfic, Z.2
Pehlevan, C.3
Genkin, A.4
Chklovskii, D.5
-
14
-
-
0003535249
-
-
New York: Scientific American Library/ Scientific American Books
-
Hubel, D. H. (1995). Eye, brain, and vision. New York: Scientific American Library/ Scientific American Books.
-
(1995)
Eye, brain, and vision
-
-
Hubel, D.H.1
-
16
-
-
0020248893
-
New methods for stochastic approximation of truncated Karhunen-Loeve expansions.
-
New York: Springer-Verlag.
-
Karhunen, J., & Oja, E. (1982). New methods for stochastic approximation of truncated Karhunen-Loeve expansions. In Proc. 6th Int. Conf. on Pattern Recognition (pp. 550-553). New York: Springer-Verlag.
-
(1982)
Proc. 6th Int. Conf. on Pattern Recognition
, pp. 550-553
-
-
Karhunen, J.1
Oja, E.2
-
18
-
-
0025623681
-
Aneural network learning algorithm for adaptive principal component extraction (apex).
-
Piscataway, NJ: IEEE.
-
Kung, S., & Diamantaras,K. (1990).Aneural network learning algorithm for adaptive principal component extraction (apex). In Proceedings of the IEEE Conference on Acoustics, Speech, and Signal Processing (pp. 861-864). Piscataway, NJ: IEEE.
-
(1990)
Proceedings of the IEEE Conference on Acoustics, Speech, and Signal Processing
, pp. 861-864
-
-
Kung, S.1
Diamantaras, K.2
-
19
-
-
0028427087
-
Adaptive principal component extraction (APEX) and applications
-
Kung, S.-Y., Diamantaras, K., & Taur, J.-S. (1994). Adaptive principal component extraction (APEX) and applications. IEEE T Signal Proces., 42, 1202-1217.
-
(1994)
IEEE T Signal Proces.
, vol.42
, pp. 1202-1217
-
-
Kung, S.-Y.1
Diamantaras, K.2
Taur, J.-S.3
-
21
-
-
84931001649
-
Dynamics of learning in recurrent feature-discovery networks.
-
D. Touretzky & R. Lippmann (Eds.), San Mateo, CA: Morgan Kaufmann.
-
Leen, T. K. (1990). Dynamics of learning in recurrent feature-discovery networks. In D. Touretzky & R. Lippmann (Eds.), Advances in neural information processing systems, 3 (pp. 70-76). San Mateo, CA: Morgan Kaufmann.
-
(1990)
Advances in neural information processing systems
, vol.3
, pp. 70-76
-
-
Leen, T.K.1
-
22
-
-
0010226653
-
Dynamics of learning in linear feature-discovery networks
-
Leen, T. K. (1991). Dynamics of learning in linear feature-discovery networks. Network, 2(1), 85-105.
-
(1991)
Network
, vol.2
, Issue.1
, pp. 85-105
-
-
Leen, T.K.1
-
23
-
-
0023981750
-
Self-organization in a perceptual network
-
Linsker, R. (1988). Self-organization in a perceptual network. IEEE Computer, 21, 105-117.
-
(1988)
IEEE Computer
, vol.21
, pp. 105-117
-
-
Linsker, R.1
-
24
-
-
0026223084
-
On the convergence of a matrix splitting algorithm for the symmetric monotone linear complementarity problem
-
Luo, Z. Q., & Tseng, P. (1991). On the convergence of a matrix splitting algorithm for the symmetric monotone linear complementarity problem. SIAM J. Control Optim., 29, 1037-1060.
-
(1991)
SIAM J. Control Optim.
, vol.29
, pp. 1037-1060
-
-
Luo, Z.Q.1
Tseng, P.2
-
25
-
-
0003607151
-
-
Orlando, FL: Academic Press
-
Mardia, K., Kent, J., & Bibby, J. (1980). Multivariate analysis. Orlando, FL: Academic Press.
-
(1980)
Multivariate analysis
-
-
Mardia, K.1
Kent, J.2
Bibby, J.3
-
26
-
-
0020464111
-
Simplified neuron model as a principal component analyzer
-
Oja, E. (1982). Simplified neuron model as a principal component analyzer. J. Math. Biol., 15, 267-273.
-
(1982)
J. Math. Biol.
, vol.15
, pp. 267-273
-
-
Oja, E.1
-
27
-
-
0026954958
-
Principal components, minor components, and linear neural networks
-
Oja, E. (1992). Principal components, minor components, and linear neural networks. Neural Networks, 5, 927-935.
-
(1992)
Neural Networks
, vol.5
, pp. 927-935
-
-
Oja, E.1
-
28
-
-
0022013023
-
On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix
-
Oja, E., & Karhunen, J. (1985). On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix. J. Math. Anal. Appl., 106(1), 69-84.
-
(1985)
J. Math. Anal. Appl.
, vol.106
, Issue.1
, pp. 69-84
-
-
Oja, E.1
Karhunen, J.2
-
29
-
-
0005653333
-
On the linear iteration procedures for symmetric matrices.
-
Ostrowksi A. M., (1954). On the linear iteration procedures for symmetric matrices. Rend. Mat. Appl., 14, 140-163.
-
(1954)
Rend. Mat. Appl.
, vol.14
, pp. 140-163
-
-
Ostrowksi, A.M.1
-
30
-
-
0000325341
-
On lines and planes of closest fit to systems of points in space
-
Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. Philos Mag., 2, 559-572.
-
(1901)
Philos Mag.
, vol.2
, pp. 559-572
-
-
Pearson, K.1
-
31
-
-
0027287094
-
A Hebbian/anti-Hebbian network which optimizes information capacity by orthonormalizing the principal subspace
-
Piscataway, NJ: IEEE.
-
Plumbley, M. D. (1993). A Hebbian/anti-Hebbian network which optimizes information capacity by orthonormalizing the principal subspace. In Proceedings of the International Conference on Artificial Neural Networks (pp. 86-90). Piscataway, NJ: IEEE.
-
(1993)
Proceedings of the International Conference on Artificial Neural Networks
, pp. 86-90
-
-
Plumbley, M.D.1
-
32
-
-
0029057616
-
Lyapunov functions for convergence of principal component algorithms
-
Plumbley,M.D. (1995). Lyapunov functions for convergence of principal component algorithms. Neural Networks, 8(1), 11-23.
-
(1995)
Neural Networks
, vol.8
, Issue.1
, pp. 11-23
-
-
Plumbley, M.D.1
-
34
-
-
0039879187
-
On the convergence of the classical iterative procedures for symmetric matrices
-
Reich, E. (1949). On the convergence of the classical iterative procedures for symmetric matrices. Ann. Math. Statistics, 20, 448-451.
-
(1949)
Ann. Math. Statistics
, vol.20
, pp. 448-451
-
-
Reich, E.1
-
35
-
-
0025164912
-
Development of feature detectors by selforganization
-
Rubner, J., & Schulten, K. (1990). Development of feature detectors by selforganization. Biol. Cybern., 62, 193-199.
-
(1990)
Biol. Cybern.
, vol.62
, pp. 193-199
-
-
Rubner, J.1
Schulten, K.2
-
36
-
-
84956074083
-
A self-organizing network for principal-component analysis
-
Rubner, J., & Tavan, P. (1989). A self-organizing network for principal-component analysis. Europhysics Letters, 10(7), 693.
-
(1989)
Europhysics Letters
, vol.10
, Issue.7
, pp. 693
-
-
Rubner, J.1
Tavan, P.2
-
37
-
-
0024883243
-
Optimal unsupervised learning in a single-layer linear feedforward neural network.
-
Sanger, T. (1989).Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Networks, 2(6), 459-473.
-
(1989)
Neural Networks
, vol.2
, Issue.6
, pp. 459-473
-
-
Sanger, T.1
-
40
-
-
84950351930
-
Multidimensional scaling: I. Theory and method.
-
Torgerson,W. (1952).Multidimensional scaling: I. Theory and method. Psychometrika, 17, 401-419.
-
(1952)
Psychometrika
, vol.17
, pp. 401-419
-
-
Torgerson, sW.1
-
41
-
-
56349165656
-
Randomized online PCA algorithms with regret bounds that are logarithmic in the dimension
-
Warmuth, M., & Kuzmin, D. (2008). Randomized online PCA algorithms with regret bounds that are logarithmic in the dimension. J. Mach. Learn. Res., 9(10), 2287- 2320.
-
(2008)
J. Mach. Learn. Res.
, vol.9
, Issue.10
, pp. 2287-2320
-
-
Warmuth, M.1
Kuzmin, D.2
-
42
-
-
84898939890
-
On a connection between kernel PCA and metric multidimensional scaling.
-
T. K. Leen, T. G. Dietterich, & V. Tresp (Eds.), Cambridge, MA: MIT Press.
-
Williams, C. (2001). On a connection between kernel PCA and metric multidimensional scaling. In T. K. Leen, T. G. Dietterich, & V. Tresp (Eds.), Advances in neural information processing systems, 13 (pp. 675-681). Cambridge, MA: MIT Press.
-
(2001)
Advances in neural information processing systems
, vol.13
, pp. 675-681
-
-
Williams, C.1
-
43
-
-
0029196852
-
Projection approximation subspace tracking
-
Yang, B. (1995). Projection approximation subspace tracking. IEEE T Signal Proces., 43, 95-107.
-
(1995)
IEEE T Signal Proces.
, vol.43
, pp. 95-107
-
-
Yang, B.1
-
44
-
-
0002361037
-
Discussion of a set of points in terms of their mutual distances
-
Young, G., & Householder, A. (1938). Discussion of a set of points in terms of their mutual distances. Psychometrika, 3(1), 19-22.
-
(1938)
Psychometrika
, vol.3
, Issue.1
, pp. 19-22
-
-
Young, G.1
Householder, A.2
-
45
-
-
0036858172
-
On the discrete-time dynamics of the basic Hebbian neural network node
-
Zufiria, P. J. (2002). On the discrete-time dynamics of the basic Hebbian neural network node. IEEE Trans. Neural Netw., 13, 1342-1352.
-
(2002)
IEEE Trans. Neural Netw.
, vol.13
, pp. 1342-1352
-
-
Zufiria, P.J.1
|