메뉴 건너뛰기




Volumn 27, Issue 7, 2015, Pages 1461-1495

A Hebbian/anti-Hebbian neural network for linear subspace learning: A derivation frommultidimensional scaling of streaming data

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTIFICIAL NEURAL NETWORK; BIOLOGICAL MODEL; LEARNING; NERVE CELL; PRINCIPAL COMPONENT ANALYSIS; STATISTICAL MODEL;

EID: 84930973862     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/NECO_a_00745     Document Type: Letter
Times cited : (109)

References (45)
  • 3
    • 0030197052 scopus 로고    scopus 로고
    • Unsupervised neural network learning procedures for feature extraction and classification
    • Becker, S., & Plumbley, M. (1996). Unsupervised neural network learning procedures for feature extraction and classification. Appl. Intell., 6(3), 185-203.
    • (1996) Appl. Intell. , vol.6 , Issue.3 , pp. 185-203
    • Becker, S.1    Plumbley, M.2
  • 7
    • 33746044179 scopus 로고    scopus 로고
    • Online tracking of linear subspaces
    • G. Lugois & H. U. Simon (Eds.), New York: Springer.
    • Crammer, K. (2006). Online tracking of linear subspaces. In G. Lugois & H. U. Simon (Eds.), Learning theory (pp. 438-452). New York: Springer.
    • (2006) Learning theory , pp. 438-452
    • Crammer, K.1
  • 8
    • 0141628141 scopus 로고    scopus 로고
    • Neural networks and principal component analysis.
    • Y.-H. Hu & J.-N. Hwang (Eds.), Boca Raton, FL: CRC Press.
    • Diamantaras, K. (2002).Neural networks and principal component analysis. In Y.-H. Hu & J.-N. Hwang (Eds.), Handbook of neural networks in signal processing. Boca Raton, FL: CRC Press.
    • (2002) Handbook of neural networks in signal processing.
    • Diamantaras, K.1
  • 12
    • 0026727495 scopus 로고
    • Convergence analysis of local feature extraction algorithms
    • Hornik, K., & Kuan, C.-M. (1992). Convergence analysis of local feature extraction algorithms. Neural Networks, 5, 229-240.
    • (1992) Neural Networks , vol.5 , pp. 229-240
    • Hornik, K.1    Kuan, C.-M.2
  • 14
    • 0003535249 scopus 로고
    • New York: Scientific American Library/ Scientific American Books
    • Hubel, D. H. (1995). Eye, brain, and vision. New York: Scientific American Library/ Scientific American Books.
    • (1995) Eye, brain, and vision
    • Hubel, D.H.1
  • 16
    • 0020248893 scopus 로고
    • New methods for stochastic approximation of truncated Karhunen-Loeve expansions.
    • New York: Springer-Verlag.
    • Karhunen, J., & Oja, E. (1982). New methods for stochastic approximation of truncated Karhunen-Loeve expansions. In Proc. 6th Int. Conf. on Pattern Recognition (pp. 550-553). New York: Springer-Verlag.
    • (1982) Proc. 6th Int. Conf. on Pattern Recognition , pp. 550-553
    • Karhunen, J.1    Oja, E.2
  • 19
    • 0028427087 scopus 로고
    • Adaptive principal component extraction (APEX) and applications
    • Kung, S.-Y., Diamantaras, K., & Taur, J.-S. (1994). Adaptive principal component extraction (APEX) and applications. IEEE T Signal Proces., 42, 1202-1217.
    • (1994) IEEE T Signal Proces. , vol.42 , pp. 1202-1217
    • Kung, S.-Y.1    Diamantaras, K.2    Taur, J.-S.3
  • 21
    • 84931001649 scopus 로고
    • Dynamics of learning in recurrent feature-discovery networks.
    • D. Touretzky & R. Lippmann (Eds.), San Mateo, CA: Morgan Kaufmann.
    • Leen, T. K. (1990). Dynamics of learning in recurrent feature-discovery networks. In D. Touretzky & R. Lippmann (Eds.), Advances in neural information processing systems, 3 (pp. 70-76). San Mateo, CA: Morgan Kaufmann.
    • (1990) Advances in neural information processing systems , vol.3 , pp. 70-76
    • Leen, T.K.1
  • 22
    • 0010226653 scopus 로고
    • Dynamics of learning in linear feature-discovery networks
    • Leen, T. K. (1991). Dynamics of learning in linear feature-discovery networks. Network, 2(1), 85-105.
    • (1991) Network , vol.2 , Issue.1 , pp. 85-105
    • Leen, T.K.1
  • 23
    • 0023981750 scopus 로고
    • Self-organization in a perceptual network
    • Linsker, R. (1988). Self-organization in a perceptual network. IEEE Computer, 21, 105-117.
    • (1988) IEEE Computer , vol.21 , pp. 105-117
    • Linsker, R.1
  • 24
    • 0026223084 scopus 로고
    • On the convergence of a matrix splitting algorithm for the symmetric monotone linear complementarity problem
    • Luo, Z. Q., & Tseng, P. (1991). On the convergence of a matrix splitting algorithm for the symmetric monotone linear complementarity problem. SIAM J. Control Optim., 29, 1037-1060.
    • (1991) SIAM J. Control Optim. , vol.29 , pp. 1037-1060
    • Luo, Z.Q.1    Tseng, P.2
  • 26
    • 0020464111 scopus 로고
    • Simplified neuron model as a principal component analyzer
    • Oja, E. (1982). Simplified neuron model as a principal component analyzer. J. Math. Biol., 15, 267-273.
    • (1982) J. Math. Biol. , vol.15 , pp. 267-273
    • Oja, E.1
  • 27
    • 0026954958 scopus 로고
    • Principal components, minor components, and linear neural networks
    • Oja, E. (1992). Principal components, minor components, and linear neural networks. Neural Networks, 5, 927-935.
    • (1992) Neural Networks , vol.5 , pp. 927-935
    • Oja, E.1
  • 28
    • 0022013023 scopus 로고
    • On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix
    • Oja, E., & Karhunen, J. (1985). On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix. J. Math. Anal. Appl., 106(1), 69-84.
    • (1985) J. Math. Anal. Appl. , vol.106 , Issue.1 , pp. 69-84
    • Oja, E.1    Karhunen, J.2
  • 29
    • 0005653333 scopus 로고
    • On the linear iteration procedures for symmetric matrices.
    • Ostrowksi A. M., (1954). On the linear iteration procedures for symmetric matrices. Rend. Mat. Appl., 14, 140-163.
    • (1954) Rend. Mat. Appl. , vol.14 , pp. 140-163
    • Ostrowksi, A.M.1
  • 30
    • 0000325341 scopus 로고
    • On lines and planes of closest fit to systems of points in space
    • Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. Philos Mag., 2, 559-572.
    • (1901) Philos Mag. , vol.2 , pp. 559-572
    • Pearson, K.1
  • 31
    • 0027287094 scopus 로고
    • A Hebbian/anti-Hebbian network which optimizes information capacity by orthonormalizing the principal subspace
    • Piscataway, NJ: IEEE.
    • Plumbley, M. D. (1993). A Hebbian/anti-Hebbian network which optimizes information capacity by orthonormalizing the principal subspace. In Proceedings of the International Conference on Artificial Neural Networks (pp. 86-90). Piscataway, NJ: IEEE.
    • (1993) Proceedings of the International Conference on Artificial Neural Networks , pp. 86-90
    • Plumbley, M.D.1
  • 32
    • 0029057616 scopus 로고
    • Lyapunov functions for convergence of principal component algorithms
    • Plumbley,M.D. (1995). Lyapunov functions for convergence of principal component algorithms. Neural Networks, 8(1), 11-23.
    • (1995) Neural Networks , vol.8 , Issue.1 , pp. 11-23
    • Plumbley, M.D.1
  • 34
    • 0039879187 scopus 로고
    • On the convergence of the classical iterative procedures for symmetric matrices
    • Reich, E. (1949). On the convergence of the classical iterative procedures for symmetric matrices. Ann. Math. Statistics, 20, 448-451.
    • (1949) Ann. Math. Statistics , vol.20 , pp. 448-451
    • Reich, E.1
  • 35
    • 0025164912 scopus 로고
    • Development of feature detectors by selforganization
    • Rubner, J., & Schulten, K. (1990). Development of feature detectors by selforganization. Biol. Cybern., 62, 193-199.
    • (1990) Biol. Cybern. , vol.62 , pp. 193-199
    • Rubner, J.1    Schulten, K.2
  • 36
    • 84956074083 scopus 로고
    • A self-organizing network for principal-component analysis
    • Rubner, J., & Tavan, P. (1989). A self-organizing network for principal-component analysis. Europhysics Letters, 10(7), 693.
    • (1989) Europhysics Letters , vol.10 , Issue.7 , pp. 693
    • Rubner, J.1    Tavan, P.2
  • 37
    • 0024883243 scopus 로고
    • Optimal unsupervised learning in a single-layer linear feedforward neural network.
    • Sanger, T. (1989).Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Networks, 2(6), 459-473.
    • (1989) Neural Networks , vol.2 , Issue.6 , pp. 459-473
    • Sanger, T.1
  • 40
    • 84950351930 scopus 로고
    • Multidimensional scaling: I. Theory and method.
    • Torgerson,W. (1952).Multidimensional scaling: I. Theory and method. Psychometrika, 17, 401-419.
    • (1952) Psychometrika , vol.17 , pp. 401-419
    • Torgerson, sW.1
  • 41
    • 56349165656 scopus 로고    scopus 로고
    • Randomized online PCA algorithms with regret bounds that are logarithmic in the dimension
    • Warmuth, M., & Kuzmin, D. (2008). Randomized online PCA algorithms with regret bounds that are logarithmic in the dimension. J. Mach. Learn. Res., 9(10), 2287- 2320.
    • (2008) J. Mach. Learn. Res. , vol.9 , Issue.10 , pp. 2287-2320
    • Warmuth, M.1    Kuzmin, D.2
  • 42
    • 84898939890 scopus 로고    scopus 로고
    • On a connection between kernel PCA and metric multidimensional scaling.
    • T. K. Leen, T. G. Dietterich, & V. Tresp (Eds.), Cambridge, MA: MIT Press.
    • Williams, C. (2001). On a connection between kernel PCA and metric multidimensional scaling. In T. K. Leen, T. G. Dietterich, & V. Tresp (Eds.), Advances in neural information processing systems, 13 (pp. 675-681). Cambridge, MA: MIT Press.
    • (2001) Advances in neural information processing systems , vol.13 , pp. 675-681
    • Williams, C.1
  • 43
    • 0029196852 scopus 로고
    • Projection approximation subspace tracking
    • Yang, B. (1995). Projection approximation subspace tracking. IEEE T Signal Proces., 43, 95-107.
    • (1995) IEEE T Signal Proces. , vol.43 , pp. 95-107
    • Yang, B.1
  • 44
    • 0002361037 scopus 로고
    • Discussion of a set of points in terms of their mutual distances
    • Young, G., & Householder, A. (1938). Discussion of a set of points in terms of their mutual distances. Psychometrika, 3(1), 19-22.
    • (1938) Psychometrika , vol.3 , Issue.1 , pp. 19-22
    • Young, G.1    Householder, A.2
  • 45
    • 0036858172 scopus 로고    scopus 로고
    • On the discrete-time dynamics of the basic Hebbian neural network node
    • Zufiria, P. J. (2002). On the discrete-time dynamics of the basic Hebbian neural network node. IEEE Trans. Neural Netw., 13, 1342-1352.
    • (2002) IEEE Trans. Neural Netw. , vol.13 , pp. 1342-1352
    • Zufiria, P.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.