-
1
-
-
33744961676
-
Applications of Machine Learning in Cancer Prediction and Prognosis
-
Cruz JA, Wishart DS. Applications of Machine Learning in Cancer Prediction and Prognosis. Cancer Inform. 2006;2:59-77.
-
(2006)
Cancer Inform
, vol.2
, pp. 59-77
-
-
Cruz, J.A.1
Wishart, D.S.2
-
2
-
-
28944450149
-
Prediction of protein - protein interactions using random decision forest framework
-
Chen X, Liu M. Prediction of protein - protein interactions using random decision forest framework. Bioinformatics. 2005;21:4394-400.
-
(2005)
Bioinformatics
, vol.21
, pp. 4394-4400
-
-
Chen, X.1
Liu, M.2
-
3
-
-
0033044637
-
Machine learning approaches for the prediction of signal peptides and other protein sorting signals
-
Nielsen H, Brunak S, von Heijne G. Machine learning approaches for the prediction of signal peptides and other protein sorting signals. Protein Eng Des Sel. 1999;12:3-9.
-
(1999)
Protein Eng Des Sel
, vol.12
, pp. 3-9
-
-
Nielsen, H.1
Brunak, S.2
Heijne, G.3
-
4
-
-
0034740222
-
Drug design by machine learning: support vector machines for pharmaceutical data analysis
-
Burbidge R, Trotter M, Buxton B, Holden S. Drug design by machine learning: support vector machines for pharmaceutical data analysis. Comput Chem. 2001;26:5-14.
-
(2001)
Comput Chem
, vol.26
, pp. 5-14
-
-
Burbidge, R.1
Trotter, M.2
Buxton, B.3
Holden, S.4
-
5
-
-
79956124247
-
An active role for machine learning in drug development
-
Murphy RF. An active role for machine learning in drug development. Nat Chem Biol. 2014;7:327-30.
-
(2014)
Nat Chem Biol
, vol.7
, pp. 327-330
-
-
Murphy, R.F.1
-
6
-
-
84921758024
-
SeqControl: process control for DNA sequencing
-
Chong LC, Albuquerque MA, Harding NJ, Caloian C, Chan-seng-yue M, De Borja R, Fraser M, Denroche RE, Beck TA, Van Der KT, Bristow RG, Mcpherson JD, Boutros PC. SeqControl: process control for DNA sequencing. Nat Methods. 2014;11:1071-8.
-
(2014)
Nat Methods
, vol.11
, pp. 1071-1078
-
-
Chong, L.C.1
Albuquerque, M.A.2
Harding, N.J.3
Caloian, C.4
Chan-seng-yue, M.5
Borja, R.6
Fraser, M.7
Denroche, R.E.8
Beck, T.A.9
Der, K.T.10
Bristow, R.G.11
Mcpherson, J.D.12
Boutros, P.C.13
-
7
-
-
55449125185
-
Support vector machines and kernels for computational biology
-
Ben-Hur A, Ong CS, Sonnenburg S, Schölkopf B, Rätsch G. Support vector machines and kernels for computational biology. PLoS Comput Biol. 2008;4, e1000173.
-
(2008)
PLoS Comput Biol
, vol.4
-
-
Ben-Hur, A.1
Ong, C.S.2
Sonnenburg, S.3
Schölkopf, B.4
Rätsch, G.5
-
8
-
-
0142192295
-
Conditional Random Fields : Probabilistic Models for Segmenting and Labeling Sequence Data
-
Lafferty J, McCallum A, Pereira FCN. Conditional Random Fields : Probabilistic Models for Segmenting and Labeling Sequence Data. In: Proc 18th Int Conf Mach Learn. 2001. p. 282-9.
-
(2001)
Proc 18th Int Conf Mach Learn.
, pp. 282-289
-
-
Lafferty, J.1
McCallum, A.2
Pereira, F.C.N.3
-
9
-
-
48549094895
-
A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification
-
Statnikov A, Wang L, Aliferis CF. A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinforma. 2008;9:1-10.
-
(2008)
BMC Bioinforma
, vol.9
, pp. 1-10
-
-
Statnikov, A.1
Wang, L.2
Aliferis, C.F.3
-
10
-
-
0036161259
-
Gene Selection for Cancer Classification using Support Vector Machines
-
Guyon I, Weston J, Barnhill S. Gene Selection for Cancer Classification using Support Vector Machines. Mach Learn. 2002;46:389-422.
-
(2002)
Mach Learn
, vol.46
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
-
11
-
-
0141743613
-
Machine learning approaches to lung cancer prediction from mass spectra
-
Hilario M, Kalousis A, Müller M, Pellegrini C. Machine learning approaches to lung cancer prediction from mass spectra. Proteomics. 2003;3:1716-9.
-
(2003)
Proteomics
, vol.3
, pp. 1716-1719
-
-
Hilario, M.1
Kalousis, A.2
Müller, M.3
Pellegrini, C.4
-
12
-
-
2942596534
-
Ensemble machine learning on gene expression data for cancer classification
-
Tan AC, Gilbert D. Ensemble machine learning on gene expression data for cancer classification. Appl Bioinforma. 2003;2:1-10.
-
(2003)
Appl Bioinforma
, vol.2
, pp. 1-10
-
-
Tan, A.C.1
Gilbert, D.2
-
13
-
-
49149129916
-
Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study
-
Shedden K, Taylor JMG, Enkemann SA, Tsao MS, Yeatman TJ, Gerald WL, Eschrich S, Jurisica I, Giordano TJ, Misek DE, Chang AC, Zhu CQ, Strumpf D, Hanash S, Shepherd FA, Ding K, Seymour L, Naoki K, Pennell N, Weir B, Verhaak R, Ladd-Acosta C, Golub T, Gruidl M, Sharma A, Szoke J, Zakowski M, Rusch V, Kris M, Viale A, et al. Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat Med. 2008;14:822-7.
-
(2008)
Nat Med
, vol.14
, pp. 822-827
-
-
Shedden, K.1
Taylor, J.M.G.2
Enkemann, S.A.3
Tsao, M.S.4
Yeatman, T.J.5
Gerald, W.L.6
Eschrich, S.7
Jurisica, I.8
Giordano, T.J.9
Misek, D.E.10
Chang, A.C.11
Zhu, C.Q.12
Strumpf, D.13
Hanash, S.14
Shepherd, F.A.15
Ding, K.16
Seymour, L.17
Naoki, K.18
Pennell, N.19
Weir, B.20
Verhaak, R.21
Ladd-Acosta, C.22
Golub, T.23
Gruidl, M.24
Sharma, A.25
Szoke, J.26
Zakowski, M.27
Rusch, V.28
Kris, M.29
Viale, A.30
more..
-
14
-
-
2942729848
-
Gene expression profiles predict complete pathologic response to neoadjuvant paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide chemotherapy in breast cancer
-
Ayers M, Symmans WF, Stec J, Damokosh AI, Clark E, Hess K, Lecocke M, Metivier J, Booser D, Ibrahim N, Valero V, Royce M, Arun B, Whitman G, Ross J, Sneige N, Hortobagyi GN, Pusztai L. Gene expression profiles predict complete pathologic response to neoadjuvant paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide chemotherapy in breast cancer. J Clin Oncol. 2004;22:2284-93.
-
(2004)
J Clin Oncol
, vol.22
, pp. 2284-2293
-
-
Ayers, M.1
Symmans, W.F.2
Stec, J.3
Damokosh, A.I.4
Clark, E.5
Hess, K.6
Lecocke, M.7
Metivier, J.8
Booser, D.9
Ibrahim, N.10
Valero, V.11
Royce, M.12
Arun, B.13
Whitman, G.14
Ross, J.15
Sneige, N.16
Hortobagyi, G.N.17
Pusztai, L.18
-
15
-
-
18244409933
-
Diffuse large B-cell lymphoma outcome prediction by gene- expression profiling and supervised machine learning
-
Shipp M, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RCT, Gaasenbeek M, Angelo M, Reich M, Pinkus GS, Ray TS, Koval MA, Last KW, Norton A, Lister A, Mesirov J, Neuberg D, Lander ES, Aster JC, Golub TR. Diffuse large B-cell lymphoma outcome prediction by gene- expression profiling and supervised machine learning. Nat Med. 2002;8:68-74.
-
(2002)
Nat Med
, vol.8
, pp. 68-74
-
-
Shipp, M.1
Ross, K.N.2
Tamayo, P.3
Weng, A.P.4
Kutok, J.L.5
Aguiar, R.C.T.6
Gaasenbeek, M.7
Angelo, M.8
Reich, M.9
Pinkus, G.S.10
Ray, T.S.11
Koval, M.A.12
Last, K.W.13
Norton, A.14
Lister, A.15
Mesirov, J.16
Neuberg, D.17
Lander, E.S.18
Aster, J.C.19
Golub, T.R.20
more..
-
16
-
-
20744448405
-
Multiclass cancer classification and biomarker discovery using GA-based algorithms
-
Liu JJ, Cutler G, Li W, Pan Z, Peng S, Hoey T, Chen L, Ling XB. Multiclass cancer classification and biomarker discovery using GA-based algorithms. Bioinformatics. 2005;21:2691-7.
-
(2005)
Bioinformatics
, vol.21
, pp. 2691-2697
-
-
Liu, J.J.1
Cutler, G.2
Li, W.3
Pan, Z.4
Peng, S.5
Hoey, T.6
Chen, L.7
Ling, X.B.8
-
17
-
-
0142008803
-
A data-analytic strategy for protein biomarker discovery: profiling of high-dimensional proteomic data for cancer detection
-
Yasui Y, Pepe M, Thompson ML, Adam B-L, Wright JR GL, Qu Y, Potter JD, Winget M, Thornquist M, Feng Z. A data-analytic strategy for protein biomarker discovery: profiling of high-dimensional proteomic data for cancer detection. Biostatistics. 2003;4:449-63.
-
(2003)
Biostatistics
, vol.4
, pp. 449-463
-
-
Yasui, Y.1
Pepe, M.2
Thompson, M.L.3
Adam, B.-L.4
Wright J.R, G.L.5
Qu, Y.6
Potter, J.D.7
Winget, M.8
Thornquist, M.9
Feng, Z.10
-
18
-
-
0035478854
-
Random Forests
-
Breiman L. Random Forests. Mach Learn. 2001;45:5-32.
-
(2001)
Mach Learn
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
19
-
-
30644464444
-
Gene selection and classification of microarray data using random forest
-
Díaz-Uriarte R, De Andrés SA. Gene selection and classification of microarray data using random forest. BMC Bioinforma. 2006;7:1-13.
-
(2006)
BMC Bioinforma
, vol.7
, pp. 1-13
-
-
Díaz-Uriarte, R.1
Andrés, S.A.2
-
20
-
-
33847096395
-
Bias in random forest variable importance measures: illustrations, sources and a solution
-
Strobl C, Boulesteix A-L, Zeileis A, Hothorn T. Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinforma. 2007;8:25.
-
(2007)
BMC Bioinforma
, vol.8
, pp. 25
-
-
Strobl, C.1
Boulesteix, A.-L.2
Zeileis, A.3
Hothorn, T.4
-
21
-
-
0345040873
-
Classification and Regression by randomForest
-
Liaw A, Wiener M. Classification and Regression by randomForest. R News. 2002;2:18-22.
-
(2002)
R News
, vol.2
, pp. 18-22
-
-
Liaw, A.1
Wiener, M.2
-
22
-
-
33646018046
-
Evaluation of Different Biological Data and Computational Classification Methods for Use in Protein Interaction Prediction
-
Qi Y, Bar-Joseph Z, Klein-Seetharaman J. Evaluation of Different Biological Data and Computational Classification Methods for Use in Protein Interaction Prediction. Proteins. 2006;63:490-500.
-
(2006)
Proteins
, vol.63
, pp. 490-500
-
-
Qi, Y.1
Bar-Joseph, Z.2
Klein-Seetharaman, J.3
-
23
-
-
84859414659
-
Decision Forests: A Unified Framework for Classification, Regression, Density Estimation, Manifold Learning and Semi-Supervised Learning
-
Criminisi A, Shotton J, Konukoglu E. Decision Forests: A Unified Framework for Classification, Regression, Density Estimation, Manifold Learning and Semi-Supervised Learning. Found Trends® Comput Graph Vis. 2011;7:81-227.
-
(2011)
Found Trends® Comput Graph Vis
, vol.7
, pp. 81-227
-
-
Criminisi, A.1
Shotton, J.2
Konukoglu, E.3
-
24
-
-
0003991665
-
Introduction to the Bootstrap
-
New York: Chapman & Hall
-
Efron B, Tibshirani R. Introduction to the Bootstrap. New York: Chapman & Hall; 1993.
-
(1993)
-
-
Efron, B.1
Tibshirani, R.2
-
25
-
-
0345548657
-
Random forest: a classification and regression tool for compound classification and QSAR modeling
-
Svetnik V, Liaw A, Tong C, Culberson JC, Sheridan RP, Feuston BP. Random forest: a classification and regression tool for compound classification and QSAR modeling. J Chem Inf Comput Sci. 2003;43:1947-58.
-
(2003)
J Chem Inf Comput Sci
, vol.43
, pp. 1947-1958
-
-
Svetnik, V.1
Liaw, A.2
Tong, C.3
Culberson, J.C.4
Sheridan, R.P.5
Feuston, B.P.6
-
26
-
-
0004140497
-
Out-of-Bag Estimation
-
Breiman L. Out-of-Bag Estimation. 1996. p. 1-13.
-
(1996)
, pp. 1-13
-
-
Breiman, L.1
-
27
-
-
0030211964
-
Bagging Predictors
-
Breiman L. Bagging Predictors. Mach Learn. 1996;24:123-40.
-
(1996)
Mach Learn
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
28
-
-
0030344230
-
Heuristics of Instability and Stabilization in Model Selection
-
Breiman L. Heuristics of Instability and Stabilization in Model Selection. Ann Stat. 1996;24:2350-83.
-
(1996)
Ann Stat
, vol.24
, pp. 2350-2383
-
-
Breiman, L.1
-
29
-
-
0003684449
-
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
2nd ed. New York: Springer
-
Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd ed. New York: Springer; 2005.
-
(2005)
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
30
-
-
33749554766
-
Machine Learning Benchmarks and Random Forest Regression
-
Segal MR. Machine Learning Benchmarks and Random Forest Regression. 2004.
-
(2004)
-
-
Segal, M.R.1
-
31
-
-
0001931577
-
An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants
-
Bauer E, Kohavi R. An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants. Mach Learn. 2011;38:1-38.
-
(2011)
Mach Learn
, vol.38
, pp. 1-38
-
-
Bauer, E.1
Kohavi, R.2
-
32
-
-
0034250160
-
An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization
-
Dietterich TG. An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization. Mach Learn. 2000;40:139-57.
-
(2000)
Mach Learn
, vol.40
, pp. 139-157
-
-
Dietterich, T.G.1
-
33
-
-
0000551189
-
Popular Ensemble Methods: An Emperical Study
-
Opitz D, Maclin R. Popular Ensemble Methods: An Emperical Study. J Artif Intell Res. 1999;11:169-98.
-
(1999)
J Artif Intell Res
, vol.11
, pp. 169-198
-
-
Opitz, D.1
Maclin, R.2
-
37
-
-
43249104379
-
Application of machine learning algorithms to predict coronary artery calcification with a sibship-based design
-
Sun YV, Bielak LF, Peyser PA, Turner ST, Sheedy PF, Boerwinkle E, Kardia SLR. Application of machine learning algorithms to predict coronary artery calcification with a sibship-based design. Genet Epidemiol. 2008;32:350-60.
-
(2008)
Genet Epidemiol
, vol.32
, pp. 350-360
-
-
Sun, Y.V.1
Bielak, L.F.2
Peyser, P.A.3
Turner, S.T.4
Sheedy, P.F.5
Boerwinkle, E.6
Kardia, S.L.R.7
-
38
-
-
77958469133
-
Multigenic Modeling of Complex Disease by Random Forest
-
Sun YV. Multigenic Modeling of Complex Disease by Random Forest. Adv Genet. 2010;72:73-99.
-
(2010)
Adv Genet
, vol.72
, pp. 73-99
-
-
Sun, Y.V.1
-
40
-
-
35748978234
-
Empirical characterization of random forest variable importance measures
-
Archer KJ, Kimes RV. Empirical characterization of random forest variable importance measures. Comput Stat Data Anal. 2008;52:2249-60.
-
(2008)
Comput Stat Data Anal
, vol.52
, pp. 2249-2260
-
-
Archer, K.J.1
Kimes, R.V.2
-
41
-
-
79551641353
-
Letter to the editor: Stability of Random Forest importance measures
-
Calle ML, Urrea V. Letter to the editor: Stability of Random Forest importance measures. Brief Bioinform. 2011;12:86-9.
-
(2011)
Brief Bioinform
, vol.12
, pp. 86-89
-
-
Calle, M.L.1
Urrea, V.2
-
43
-
-
84867539048
-
A few useful things to know about machine learning
-
Domingos P. A few useful things to know about machine learning. Commun ACM. 2012;55:78-87.
-
(2012)
Commun ACM
, vol.55
, pp. 78-87
-
-
Domingos, P.1
-
44
-
-
84929573413
-
Kernel Learning Algorithms for Face Recognition
-
New York: Springer
-
Li J-B, Chu S-C, Pan J-S. Kernel Learning Algorithms for Face Recognition. New York: Springer; 2013. p. 1-17.
-
(2013)
, pp. 1-17
-
-
Li, J-B.1
Chu, S-C.2
Pan, J-S.3
-
46
-
-
34547673383
-
Cost-sensitive boosting for classification of imbalanced data
-
Sun Y, Kamel MS, Wong AKC, Wang Y. Cost-sensitive boosting for classification of imbalanced data. Pattern Recognit. 2007;40:3358-78.
-
(2007)
Pattern Recognit
, vol.40
, pp. 3358-3378
-
-
Sun, Y.1
Kamel, M.S.2
Wong, A.K.C.3
Wang, Y.4
-
52
-
-
79958810091
-
Breiman and Cutler's random forests for classification and regression
-
Breiman L, Cutler A, Liaw A, Wiener M. Breiman and Cutler's random forests for classification and regression. 2015.
-
(2015)
-
-
Breiman, L.1
Cutler, A.2
Liaw, A.3
Wiener, M.4
-
53
-
-
85164392958
-
A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection
-
In: Kaufmann M, editor
-
Kohavi R. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. In: Kaufmann M, editor. International Joint Conference on Artificial Intelligence (IJCAI). 1995. p. 1137-43.
-
(1995)
International Joint Conference on Artificial Intelligence (IJCAI)
, pp. 1137-1143
-
-
Kohavi, R.1
-
54
-
-
0011996706
-
Manual - Setting up, using, and udnerstanding random forests v4.0
-
Leo Breiman. Manual - Setting up, using, and udnerstanding random forests v4.0. https://www.stat.berkeley.edu/~breiman/Using_random_forests_v4.0.pdf.
-
-
-
Breiman, L.1
-
55
-
-
84987722417
-
HPCI
-
Boutros lab. HPCI. http://search.cpan.org/dist/HPCI/.
-
-
-
-
56
-
-
84958861146
-
doMC: Foreach parallel adaptor for the multicore package
-
Revolution Analytics. doMC: Foreach parallel adaptor for the multicore package. 2014.
-
(2014)
-
-
-
57
-
-
84964927929
-
R: A language and environment for statistical computing
-
R Core Team. R: A language and environment for statistical computing. 2015.
-
(2015)
-
-
-
58
-
-
79952709519
-
pROC: an open-source package for R and S+ to analyze and compare ROC curves
-
Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, Müller M. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinforma. 2011;18:77.
-
(2011)
BMC Bioinforma
, vol.18
, pp. 77
-
-
Robin, X.1
Turck, N.2
Hainard, A.3
Tiberti, N.4
Lisacek, F.5
Sanchez, J.-C.6
Müller, M.7
-
59
-
-
0024521543
-
A Concordance Correlation Coefficient to Evaluate Reproducibility
-
Lin LI. A Concordance Correlation Coefficient to Evaluate Reproducibility. Biometrics. 1989;45:255-68.
-
(1989)
Biometrics
, vol.45
, pp. 255-268
-
-
Lin, L.I.1
-
60
-
-
57149090641
-
Lattice: Multivariate Data Visualization with R
-
New York: Springer
-
Sarkar D. Lattice: Multivariate Data Visualization with R. New York: Springer; 2008.
-
(2008)
-
-
Sarkar, D.1
-
61
-
-
84898741168
-
latticeExtra: Extra Graphical Utilities Based on Lattice
-
Sarkar D, Andrews F. latticeExtra: Extra Graphical Utilities Based on Lattice. 2013.
-
(2013)
-
-
Sarkar, D.1
Andrews, F.2
-
62
-
-
84925257833
-
The application of sparse estimation of covariance matrix to quadratic discriminant analysis
-
Sun J, Zhao H. The application of sparse estimation of covariance matrix to quadratic discriminant analysis. BMC Bioinforma. 2015;16:48.
-
(2015)
BMC Bioinforma
, vol.16
, pp. 48
-
-
Sun, J.1
Zhao, H.2
-
63
-
-
84923930979
-
A systematic evaluation of high-dimensional, ensemble-based regression for exploring large model spaces in microbiome analyses
-
Shankar J, Szpakowski S, Solis NV, Mounaud S, Liu H, Losada L, Nierman WC, Filler SG. A systematic evaluation of high-dimensional, ensemble-based regression for exploring large model spaces in microbiome analyses. BMC Bioinforma. 2015;16:31.
-
(2015)
BMC Bioinforma
, vol.16
, pp. 31
-
-
Shankar, J.1
Szpakowski, S.2
Solis, N.V.3
Mounaud, S.4
Liu, H.5
Losada, L.6
Nierman, W.C.7
Filler, S.G.8
-
64
-
-
84930943472
-
Aro: a machine learning approach to identifying single molecules and estimating classification error in fluorescence microscopy images
-
Wu AC-Y, Rifkin SA. Aro: a machine learning approach to identifying single molecules and estimating classification error in fluorescence microscopy images. BMC Bioinforma. 2015;16:102.
-
(2015)
BMC Bioinforma
, vol.16
, pp. 102
-
-
Wu, A.-Y.1
Rifkin, S.A.2
-
65
-
-
84925402614
-
Sigma-RF: prediction of the variability of spatial restraints in template-based modeling by random forest
-
Lee J, Lee K, Joung I, Joo K, Brooks BR, Lee J. Sigma-RF: prediction of the variability of spatial restraints in template-based modeling by random forest. BMC Bioinforma. 2015;16:94.
-
(2015)
BMC Bioinforma
, vol.16
, pp. 94
-
-
Lee, J.1
Lee, K.2
Joung, I.3
Joo, K.4
Brooks, B.R.5
Lee, J.6
-
66
-
-
84928554654
-
PaPI: pseudo amino acid composition to score human protein-coding variants
-
Limongelli I, Marini S, Bellazzi R. PaPI: pseudo amino acid composition to score human protein-coding variants. BMC Bioinforma. 2015;16:123.
-
(2015)
BMC Bioinforma
, vol.16
, pp. 123
-
-
Limongelli, I.1
Marini, S.2
Bellazzi, R.3
-
67
-
-
84931262233
-
Controlling false discoveries in high-dimensional situations: boosting with stability selection
-
Hofner B, Boccuto L, Göker M. Controlling false discoveries in high-dimensional situations: boosting with stability selection. BMC Bioinforma. 2015;16:144.
-
(2015)
BMC Bioinforma
, vol.16
, pp. 144
-
-
Hofner, B.1
Boccuto, L.2
Göker, M.3
-
68
-
-
84930504807
-
A multi-view genomic data simulator
-
Fratello M, Serra A, Fortino V, Raiconi G, Tagliaferri R, Greco D. A multi-view genomic data simulator. BMC Bioinforma. 2015;16:151.
-
(2015)
BMC Bioinforma
, vol.16
, pp. 151
-
-
Fratello, M.1
Serra, A.2
Fortino, V.3
Raiconi, G.4
Tagliaferri, R.5
Greco, D.6
-
69
-
-
84929306893
-
ProtDCal: A program to compute general-purpose-numerical descriptors for sequences and 3D-structures of proteins
-
Ruiz-Blanco YB, Paz W, Green J, Marrero-Ponce Y. ProtDCal: A program to compute general-purpose-numerical descriptors for sequences and 3D-structures of proteins. BMC Bioinforma. 2015;16:162.
-
(2015)
BMC Bioinforma
, vol.16
, pp. 162
-
-
Ruiz-Blanco, Y.B.1
Paz, W.2
Green, J.3
Marrero-Ponce, Y.4
-
70
-
-
84938976710
-
Learning-guided automatic three dimensional synapse quantification for drosophila neurons
-
Sanders J, Singh A, Sterne G, Ye B, Zhou J. Learning-guided automatic three dimensional synapse quantification for drosophila neurons. BMC Bioinforma. 2015;16:177.
-
(2015)
BMC Bioinforma
, vol.16
, pp. 177
-
-
Sanders, J.1
Singh, A.2
Sterne, G.3
Ye, B.4
Zhou, J.5
-
72
-
-
84934979868
-
Factors affecting the accuracy of a class prediction model in gene expression data
-
Novianti PW, Jong VL, Roes KCB, Eijkemans MJC. Factors affecting the accuracy of a class prediction model in gene expression data. BMC Bioinforma. 2015;16:199.
-
(2015)
BMC Bioinforma
, vol.16
, pp. 199
-
-
Novianti, P.W.1
Jong, V.L.2
Roes, K.C.B.3
Eijkemans, M.J.C.4
-
73
-
-
85019235741
-
Optimal combination of feature selection and classification via local hyperplane based learning strategy
-
Cheng X, Cai H, Zhang Y, Xu B, Su W. Optimal combination of feature selection and classification via local hyperplane based learning strategy. BMC Bioinforma. 2015;16:219.
-
(2015)
BMC Bioinforma
, vol.16
, pp. 219
-
-
Cheng, X.1
Cai, H.2
Zhang, Y.3
Xu, B.4
Su, W.5
-
74
-
-
84937675219
-
Knowledge transfer via classification rules using functional mapping for integrative modeling of gene expression data
-
Ogoe HA, Visweswaran S, Lu X, Gopalakrishnan V. Knowledge transfer via classification rules using functional mapping for integrative modeling of gene expression data. BMC Bioinforma. 2015;16:226.
-
(2015)
BMC Bioinforma
, vol.16
, pp. 226
-
-
Ogoe, H.A.1
Visweswaran, S.2
Lu, X.3
Gopalakrishnan, V.4
-
75
-
-
84938074577
-
SuRankCo: supervised ranking of contigs in de novo assemblies
-
Kuhring M, Dabrowski PW, Piro VC, Nitsche A, Renard BY. SuRankCo: supervised ranking of contigs in de novo assemblies. BMC Bioinforma. 2015;16:240.
-
(2015)
BMC Bioinforma
, vol.16
, pp. 240
-
-
Kuhring, M.1
Dabrowski, P.W.2
Piro, V.C.3
Nitsche, A.4
Renard, B.Y.5
-
77
-
-
84938970333
-
RNA-binding residues prediction using structural features
-
Ren H, Shen Y. RNA-binding residues prediction using structural features. BMC Bioinforma. 2015;16:249.
-
(2015)
BMC Bioinforma
, vol.16
, pp. 249
-
-
Ren, H.1
Shen, Y.2
-
78
-
-
84939481400
-
MVDA: a multi-view genomic data integration methodology
-
Serra A, Fratello M, Fortino V, Raiconi G, Tagliaferri R, Greco D. MVDA: a multi-view genomic data integration methodology. BMC Bioinforma. 2015;16:261.
-
(2015)
BMC Bioinforma
, vol.16
, pp. 261
-
-
Serra, A.1
Fratello, M.2
Fortino, V.3
Raiconi, G.4
Tagliaferri, R.5
Greco, D.6
-
79
-
-
84940886273
-
Seq-ing improved gene expression estimates from microarrays using machine learning
-
Korir PK, Geeleher P, Seoighe C. Seq-ing improved gene expression estimates from microarrays using machine learning. BMC Bioinforma. 2015;16:286.
-
(2015)
BMC Bioinforma
, vol.16
, pp. 286
-
-
Korir, P.K.1
Geeleher, P.2
Seoighe, C.3
-
80
-
-
84941634830
-
mAPKL: R/ Bioconductor package for detecting gene exemplars and revealing their characteristics
-
Sakellariou A, Spyrou G. mAPKL: R/ Bioconductor package for detecting gene exemplars and revealing their characteristics. BMC Bioinforma. 2015;16:291.
-
(2015)
BMC Bioinforma
, vol.16
, pp. 291
-
-
Sakellariou, A.1
Spyrou, G.2
-
81
-
-
84941636848
-
A methodology for exploring biomarker-phenotype associations: application to flow cytometry data and systemic sclerosis clinical manifestations
-
Huang H, Fava A, Guhr T, Cimbro R, Rosen A, Boin F, Ellis H. A methodology for exploring biomarker-phenotype associations: application to flow cytometry data and systemic sclerosis clinical manifestations. BMC Bioinforma. 2015;16:293.
-
(2015)
BMC Bioinforma
, vol.16
, pp. 293
-
-
Huang, H.1
Fava, A.2
Guhr, T.3
Cimbro, R.4
Rosen, A.5
Boin, F.6
Ellis, H.7
-
82
-
-
84942019335
-
Boosting for high-dimensional two-class prediction
-
Blagus R, Lusa L. Boosting for high-dimensional two-class prediction. BMC Bioinforma. 2015;16:300.
-
(2015)
BMC Bioinforma
, vol.16
, pp. 300
-
-
Blagus, R.1
Lusa, L.2
-
83
-
-
84942510664
-
NetBenchmark: a bioconductor package for reproducible benchmarks of gene regulatory network inference
-
Bellot P, Olsen C, Salembier P, Oliveras-Vergés A, Meyer PE. NetBenchmark: a bioconductor package for reproducible benchmarks of gene regulatory network inference. BMC Bioinforma. 2015;16:312.
-
(2015)
BMC Bioinforma
, vol.16
, pp. 312
-
-
Bellot, P.1
Olsen, C.2
Salembier, P.3
Oliveras-Vergés, A.4
Meyer, P.E.5
-
84
-
-
84942521494
-
Label noise in subtype discrimination of class C G protein-coupled receptors: A systematic approach to the analysis of classification errors
-
König C, Cárdenas MI, Giraldo J, Alquézar R, Vellido A. Label noise in subtype discrimination of class C G protein-coupled receptors: A systematic approach to the analysis of classification errors. BMC Bioinforma. 2015;16:314.
-
(2015)
BMC Bioinforma
, vol.16
, pp. 314
-
-
König, C.1
Cárdenas, M.I.2
Giraldo, J.3
Alquézar, R.4
Vellido, A.5
-
85
-
-
84945531855
-
Peak shape clustering reveals biological insights
-
Cremona MA, Sangalli LM, Vantini S, Dellino GI, Pelicci PG, Secchi P, Riva L. Peak shape clustering reveals biological insights. BMC Bioinforma. 2015;16:349.
-
(2015)
BMC Bioinforma
, vol.16
, pp. 349
-
-
Cremona, M.A.1
Sangalli, L.M.2
Vantini, S.3
Dellino, G.I.4
Pelicci, P.G.5
Secchi, P.6
Riva, L.7
-
87
-
-
84960388815
-
Proposal of supervised data analysis strategy of plasma miRNAs from hybridisation array data with an application to assess hemolysis-related deregulation
-
Landoni E, Miceli R, Callari M, Tiberio P, Appierto V, Angeloni V, Mariani L, Daidone MG. Proposal of supervised data analysis strategy of plasma miRNAs from hybridisation array data with an application to assess hemolysis-related deregulation. BMC Bioinforma. 2015;16:388.
-
(2015)
BMC Bioinforma
, vol.16
, pp. 388
-
-
Landoni, E.1
Miceli, R.2
Callari, M.3
Tiberio, P.4
Appierto, V.5
Angeloni, V.6
Mariani, L.7
Daidone, M.G.8
|