메뉴 건너뛰기




Volumn 17, Issue 1, 2016, Pages

The parameter sensitivity of random forests

Author keywords

Computational biology; Ensemble methods; Machine learning; Microarray; Optimization; Parameterization; Random forest; SeqControl

Indexed keywords

ARTIFICIAL INTELLIGENCE; BIOINFORMATICS; CLASSIFICATION (OF INFORMATION); DECISION TREES; LEARNING SYSTEMS; MICROARRAYS; OPTIMIZATION; PARAMETERIZATION; SUPERVISED LEARNING;

EID: 84987750923     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/s12859-016-1228-x     Document Type: Article
Times cited : (112)

References (87)
  • 1
    • 33744961676 scopus 로고    scopus 로고
    • Applications of Machine Learning in Cancer Prediction and Prognosis
    • Cruz JA, Wishart DS. Applications of Machine Learning in Cancer Prediction and Prognosis. Cancer Inform. 2006;2:59-77.
    • (2006) Cancer Inform , vol.2 , pp. 59-77
    • Cruz, J.A.1    Wishart, D.S.2
  • 2
    • 28944450149 scopus 로고    scopus 로고
    • Prediction of protein - protein interactions using random decision forest framework
    • Chen X, Liu M. Prediction of protein - protein interactions using random decision forest framework. Bioinformatics. 2005;21:4394-400.
    • (2005) Bioinformatics , vol.21 , pp. 4394-4400
    • Chen, X.1    Liu, M.2
  • 3
    • 0033044637 scopus 로고    scopus 로고
    • Machine learning approaches for the prediction of signal peptides and other protein sorting signals
    • Nielsen H, Brunak S, von Heijne G. Machine learning approaches for the prediction of signal peptides and other protein sorting signals. Protein Eng Des Sel. 1999;12:3-9.
    • (1999) Protein Eng Des Sel , vol.12 , pp. 3-9
    • Nielsen, H.1    Brunak, S.2    Heijne, G.3
  • 4
    • 0034740222 scopus 로고    scopus 로고
    • Drug design by machine learning: support vector machines for pharmaceutical data analysis
    • Burbidge R, Trotter M, Buxton B, Holden S. Drug design by machine learning: support vector machines for pharmaceutical data analysis. Comput Chem. 2001;26:5-14.
    • (2001) Comput Chem , vol.26 , pp. 5-14
    • Burbidge, R.1    Trotter, M.2    Buxton, B.3    Holden, S.4
  • 5
    • 79956124247 scopus 로고    scopus 로고
    • An active role for machine learning in drug development
    • Murphy RF. An active role for machine learning in drug development. Nat Chem Biol. 2014;7:327-30.
    • (2014) Nat Chem Biol , vol.7 , pp. 327-330
    • Murphy, R.F.1
  • 8
    • 0142192295 scopus 로고    scopus 로고
    • Conditional Random Fields : Probabilistic Models for Segmenting and Labeling Sequence Data
    • Lafferty J, McCallum A, Pereira FCN. Conditional Random Fields : Probabilistic Models for Segmenting and Labeling Sequence Data. In: Proc 18th Int Conf Mach Learn. 2001. p. 282-9.
    • (2001) Proc 18th Int Conf Mach Learn. , pp. 282-289
    • Lafferty, J.1    McCallum, A.2    Pereira, F.C.N.3
  • 9
    • 48549094895 scopus 로고    scopus 로고
    • A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification
    • Statnikov A, Wang L, Aliferis CF. A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinforma. 2008;9:1-10.
    • (2008) BMC Bioinforma , vol.9 , pp. 1-10
    • Statnikov, A.1    Wang, L.2    Aliferis, C.F.3
  • 10
    • 0036161259 scopus 로고    scopus 로고
    • Gene Selection for Cancer Classification using Support Vector Machines
    • Guyon I, Weston J, Barnhill S. Gene Selection for Cancer Classification using Support Vector Machines. Mach Learn. 2002;46:389-422.
    • (2002) Mach Learn , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3
  • 11
    • 0141743613 scopus 로고    scopus 로고
    • Machine learning approaches to lung cancer prediction from mass spectra
    • Hilario M, Kalousis A, Müller M, Pellegrini C. Machine learning approaches to lung cancer prediction from mass spectra. Proteomics. 2003;3:1716-9.
    • (2003) Proteomics , vol.3 , pp. 1716-1719
    • Hilario, M.1    Kalousis, A.2    Müller, M.3    Pellegrini, C.4
  • 12
    • 2942596534 scopus 로고    scopus 로고
    • Ensemble machine learning on gene expression data for cancer classification
    • Tan AC, Gilbert D. Ensemble machine learning on gene expression data for cancer classification. Appl Bioinforma. 2003;2:1-10.
    • (2003) Appl Bioinforma , vol.2 , pp. 1-10
    • Tan, A.C.1    Gilbert, D.2
  • 18
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman L. Random Forests. Mach Learn. 2001;45:5-32.
    • (2001) Mach Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 19
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • Díaz-Uriarte R, De Andrés SA. Gene selection and classification of microarray data using random forest. BMC Bioinforma. 2006;7:1-13.
    • (2006) BMC Bioinforma , vol.7 , pp. 1-13
    • Díaz-Uriarte, R.1    Andrés, S.A.2
  • 20
    • 33847096395 scopus 로고    scopus 로고
    • Bias in random forest variable importance measures: illustrations, sources and a solution
    • Strobl C, Boulesteix A-L, Zeileis A, Hothorn T. Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinforma. 2007;8:25.
    • (2007) BMC Bioinforma , vol.8 , pp. 25
    • Strobl, C.1    Boulesteix, A.-L.2    Zeileis, A.3    Hothorn, T.4
  • 21
    • 0345040873 scopus 로고    scopus 로고
    • Classification and Regression by randomForest
    • Liaw A, Wiener M. Classification and Regression by randomForest. R News. 2002;2:18-22.
    • (2002) R News , vol.2 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 22
    • 33646018046 scopus 로고    scopus 로고
    • Evaluation of Different Biological Data and Computational Classification Methods for Use in Protein Interaction Prediction
    • Qi Y, Bar-Joseph Z, Klein-Seetharaman J. Evaluation of Different Biological Data and Computational Classification Methods for Use in Protein Interaction Prediction. Proteins. 2006;63:490-500.
    • (2006) Proteins , vol.63 , pp. 490-500
    • Qi, Y.1    Bar-Joseph, Z.2    Klein-Seetharaman, J.3
  • 23
    • 84859414659 scopus 로고    scopus 로고
    • Decision Forests: A Unified Framework for Classification, Regression, Density Estimation, Manifold Learning and Semi-Supervised Learning
    • Criminisi A, Shotton J, Konukoglu E. Decision Forests: A Unified Framework for Classification, Regression, Density Estimation, Manifold Learning and Semi-Supervised Learning. Found Trends® Comput Graph Vis. 2011;7:81-227.
    • (2011) Found Trends® Comput Graph Vis , vol.7 , pp. 81-227
    • Criminisi, A.1    Shotton, J.2    Konukoglu, E.3
  • 24
    • 0003991665 scopus 로고
    • Introduction to the Bootstrap
    • New York: Chapman & Hall
    • Efron B, Tibshirani R. Introduction to the Bootstrap. New York: Chapman & Hall; 1993.
    • (1993)
    • Efron, B.1    Tibshirani, R.2
  • 26
    • 0004140497 scopus 로고    scopus 로고
    • Out-of-Bag Estimation
    • Breiman L. Out-of-Bag Estimation. 1996. p. 1-13.
    • (1996) , pp. 1-13
    • Breiman, L.1
  • 27
    • 0030211964 scopus 로고    scopus 로고
    • Bagging Predictors
    • Breiman L. Bagging Predictors. Mach Learn. 1996;24:123-40.
    • (1996) Mach Learn , vol.24 , pp. 123-140
    • Breiman, L.1
  • 28
    • 0030344230 scopus 로고    scopus 로고
    • Heuristics of Instability and Stabilization in Model Selection
    • Breiman L. Heuristics of Instability and Stabilization in Model Selection. Ann Stat. 1996;24:2350-83.
    • (1996) Ann Stat , vol.24 , pp. 2350-2383
    • Breiman, L.1
  • 29
    • 0003684449 scopus 로고    scopus 로고
    • The Elements of Statistical Learning: Data Mining, Inference, and Prediction
    • 2nd ed. New York: Springer
    • Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd ed. New York: Springer; 2005.
    • (2005)
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3
  • 30
    • 33749554766 scopus 로고    scopus 로고
    • Machine Learning Benchmarks and Random Forest Regression
    • Segal MR. Machine Learning Benchmarks and Random Forest Regression. 2004.
    • (2004)
    • Segal, M.R.1
  • 31
    • 0001931577 scopus 로고    scopus 로고
    • An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants
    • Bauer E, Kohavi R. An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants. Mach Learn. 2011;38:1-38.
    • (2011) Mach Learn , vol.38 , pp. 1-38
    • Bauer, E.1    Kohavi, R.2
  • 32
    • 0034250160 scopus 로고    scopus 로고
    • An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization
    • Dietterich TG. An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization. Mach Learn. 2000;40:139-57.
    • (2000) Mach Learn , vol.40 , pp. 139-157
    • Dietterich, T.G.1
  • 33
    • 0000551189 scopus 로고    scopus 로고
    • Popular Ensemble Methods: An Emperical Study
    • Opitz D, Maclin R. Popular Ensemble Methods: An Emperical Study. J Artif Intell Res. 1999;11:169-98.
    • (1999) J Artif Intell Res , vol.11 , pp. 169-198
    • Opitz, D.1    Maclin, R.2
  • 38
    • 77958469133 scopus 로고    scopus 로고
    • Multigenic Modeling of Complex Disease by Random Forest
    • Sun YV. Multigenic Modeling of Complex Disease by Random Forest. Adv Genet. 2010;72:73-99.
    • (2010) Adv Genet , vol.72 , pp. 73-99
    • Sun, Y.V.1
  • 40
    • 35748978234 scopus 로고    scopus 로고
    • Empirical characterization of random forest variable importance measures
    • Archer KJ, Kimes RV. Empirical characterization of random forest variable importance measures. Comput Stat Data Anal. 2008;52:2249-60.
    • (2008) Comput Stat Data Anal , vol.52 , pp. 2249-2260
    • Archer, K.J.1    Kimes, R.V.2
  • 41
    • 79551641353 scopus 로고    scopus 로고
    • Letter to the editor: Stability of Random Forest importance measures
    • Calle ML, Urrea V. Letter to the editor: Stability of Random Forest importance measures. Brief Bioinform. 2011;12:86-9.
    • (2011) Brief Bioinform , vol.12 , pp. 86-89
    • Calle, M.L.1    Urrea, V.2
  • 43
    • 84867539048 scopus 로고    scopus 로고
    • A few useful things to know about machine learning
    • Domingos P. A few useful things to know about machine learning. Commun ACM. 2012;55:78-87.
    • (2012) Commun ACM , vol.55 , pp. 78-87
    • Domingos, P.1
  • 44
    • 84929573413 scopus 로고    scopus 로고
    • Kernel Learning Algorithms for Face Recognition
    • New York: Springer
    • Li J-B, Chu S-C, Pan J-S. Kernel Learning Algorithms for Face Recognition. New York: Springer; 2013. p. 1-17.
    • (2013) , pp. 1-17
    • Li, J-B.1    Chu, S-C.2    Pan, J-S.3
  • 46
    • 34547673383 scopus 로고    scopus 로고
    • Cost-sensitive boosting for classification of imbalanced data
    • Sun Y, Kamel MS, Wong AKC, Wang Y. Cost-sensitive boosting for classification of imbalanced data. Pattern Recognit. 2007;40:3358-78.
    • (2007) Pattern Recognit , vol.40 , pp. 3358-3378
    • Sun, Y.1    Kamel, M.S.2    Wong, A.K.C.3    Wang, Y.4
  • 51
    • 0346586663 scopus 로고    scopus 로고
    • SMOTE: Synthetic Minority Over-sampling Technique
    • Chawla NV, Bowyer KW, Hall LO. SMOTE: Synthetic Minority Over-sampling Technique. J Artif Intell Res. 2002;16:321-57.
    • (2002) J Artif Intell Res , vol.16 , pp. 321-357
    • Chawla, N.V.1    Bowyer, K.W.2    Hall, L.O.3
  • 52
    • 79958810091 scopus 로고    scopus 로고
    • Breiman and Cutler's random forests for classification and regression
    • Breiman L, Cutler A, Liaw A, Wiener M. Breiman and Cutler's random forests for classification and regression. 2015.
    • (2015)
    • Breiman, L.1    Cutler, A.2    Liaw, A.3    Wiener, M.4
  • 53
    • 85164392958 scopus 로고
    • A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection
    • In: Kaufmann M, editor
    • Kohavi R. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. In: Kaufmann M, editor. International Joint Conference on Artificial Intelligence (IJCAI). 1995. p. 1137-43.
    • (1995) International Joint Conference on Artificial Intelligence (IJCAI) , pp. 1137-1143
    • Kohavi, R.1
  • 54
    • 0011996706 scopus 로고    scopus 로고
    • Manual - Setting up, using, and udnerstanding random forests v4.0
    • Leo Breiman. Manual - Setting up, using, and udnerstanding random forests v4.0. https://www.stat.berkeley.edu/~breiman/Using_random_forests_v4.0.pdf.
    • Breiman, L.1
  • 55
    • 84987722417 scopus 로고    scopus 로고
    • HPCI
    • Boutros lab. HPCI. http://search.cpan.org/dist/HPCI/.
  • 56
    • 84958861146 scopus 로고    scopus 로고
    • doMC: Foreach parallel adaptor for the multicore package
    • Revolution Analytics. doMC: Foreach parallel adaptor for the multicore package. 2014.
    • (2014)
  • 57
    • 84964927929 scopus 로고    scopus 로고
    • R: A language and environment for statistical computing
    • R Core Team. R: A language and environment for statistical computing. 2015.
    • (2015)
  • 59
    • 0024521543 scopus 로고
    • A Concordance Correlation Coefficient to Evaluate Reproducibility
    • Lin LI. A Concordance Correlation Coefficient to Evaluate Reproducibility. Biometrics. 1989;45:255-68.
    • (1989) Biometrics , vol.45 , pp. 255-268
    • Lin, L.I.1
  • 60
    • 57149090641 scopus 로고    scopus 로고
    • Lattice: Multivariate Data Visualization with R
    • New York: Springer
    • Sarkar D. Lattice: Multivariate Data Visualization with R. New York: Springer; 2008.
    • (2008)
    • Sarkar, D.1
  • 61
    • 84898741168 scopus 로고    scopus 로고
    • latticeExtra: Extra Graphical Utilities Based on Lattice
    • Sarkar D, Andrews F. latticeExtra: Extra Graphical Utilities Based on Lattice. 2013.
    • (2013)
    • Sarkar, D.1    Andrews, F.2
  • 62
    • 84925257833 scopus 로고    scopus 로고
    • The application of sparse estimation of covariance matrix to quadratic discriminant analysis
    • Sun J, Zhao H. The application of sparse estimation of covariance matrix to quadratic discriminant analysis. BMC Bioinforma. 2015;16:48.
    • (2015) BMC Bioinforma , vol.16 , pp. 48
    • Sun, J.1    Zhao, H.2
  • 63
    • 84923930979 scopus 로고    scopus 로고
    • A systematic evaluation of high-dimensional, ensemble-based regression for exploring large model spaces in microbiome analyses
    • Shankar J, Szpakowski S, Solis NV, Mounaud S, Liu H, Losada L, Nierman WC, Filler SG. A systematic evaluation of high-dimensional, ensemble-based regression for exploring large model spaces in microbiome analyses. BMC Bioinforma. 2015;16:31.
    • (2015) BMC Bioinforma , vol.16 , pp. 31
    • Shankar, J.1    Szpakowski, S.2    Solis, N.V.3    Mounaud, S.4    Liu, H.5    Losada, L.6    Nierman, W.C.7    Filler, S.G.8
  • 64
    • 84930943472 scopus 로고    scopus 로고
    • Aro: a machine learning approach to identifying single molecules and estimating classification error in fluorescence microscopy images
    • Wu AC-Y, Rifkin SA. Aro: a machine learning approach to identifying single molecules and estimating classification error in fluorescence microscopy images. BMC Bioinforma. 2015;16:102.
    • (2015) BMC Bioinforma , vol.16 , pp. 102
    • Wu, A.-Y.1    Rifkin, S.A.2
  • 65
    • 84925402614 scopus 로고    scopus 로고
    • Sigma-RF: prediction of the variability of spatial restraints in template-based modeling by random forest
    • Lee J, Lee K, Joung I, Joo K, Brooks BR, Lee J. Sigma-RF: prediction of the variability of spatial restraints in template-based modeling by random forest. BMC Bioinforma. 2015;16:94.
    • (2015) BMC Bioinforma , vol.16 , pp. 94
    • Lee, J.1    Lee, K.2    Joung, I.3    Joo, K.4    Brooks, B.R.5    Lee, J.6
  • 66
    • 84928554654 scopus 로고    scopus 로고
    • PaPI: pseudo amino acid composition to score human protein-coding variants
    • Limongelli I, Marini S, Bellazzi R. PaPI: pseudo amino acid composition to score human protein-coding variants. BMC Bioinforma. 2015;16:123.
    • (2015) BMC Bioinforma , vol.16 , pp. 123
    • Limongelli, I.1    Marini, S.2    Bellazzi, R.3
  • 67
    • 84931262233 scopus 로고    scopus 로고
    • Controlling false discoveries in high-dimensional situations: boosting with stability selection
    • Hofner B, Boccuto L, Göker M. Controlling false discoveries in high-dimensional situations: boosting with stability selection. BMC Bioinforma. 2015;16:144.
    • (2015) BMC Bioinforma , vol.16 , pp. 144
    • Hofner, B.1    Boccuto, L.2    Göker, M.3
  • 69
    • 84929306893 scopus 로고    scopus 로고
    • ProtDCal: A program to compute general-purpose-numerical descriptors for sequences and 3D-structures of proteins
    • Ruiz-Blanco YB, Paz W, Green J, Marrero-Ponce Y. ProtDCal: A program to compute general-purpose-numerical descriptors for sequences and 3D-structures of proteins. BMC Bioinforma. 2015;16:162.
    • (2015) BMC Bioinforma , vol.16 , pp. 162
    • Ruiz-Blanco, Y.B.1    Paz, W.2    Green, J.3    Marrero-Ponce, Y.4
  • 70
    • 84938976710 scopus 로고    scopus 로고
    • Learning-guided automatic three dimensional synapse quantification for drosophila neurons
    • Sanders J, Singh A, Sterne G, Ye B, Zhou J. Learning-guided automatic three dimensional synapse quantification for drosophila neurons. BMC Bioinforma. 2015;16:177.
    • (2015) BMC Bioinforma , vol.16 , pp. 177
    • Sanders, J.1    Singh, A.2    Sterne, G.3    Ye, B.4    Zhou, J.5
  • 72
    • 84934979868 scopus 로고    scopus 로고
    • Factors affecting the accuracy of a class prediction model in gene expression data
    • Novianti PW, Jong VL, Roes KCB, Eijkemans MJC. Factors affecting the accuracy of a class prediction model in gene expression data. BMC Bioinforma. 2015;16:199.
    • (2015) BMC Bioinforma , vol.16 , pp. 199
    • Novianti, P.W.1    Jong, V.L.2    Roes, K.C.B.3    Eijkemans, M.J.C.4
  • 73
    • 85019235741 scopus 로고    scopus 로고
    • Optimal combination of feature selection and classification via local hyperplane based learning strategy
    • Cheng X, Cai H, Zhang Y, Xu B, Su W. Optimal combination of feature selection and classification via local hyperplane based learning strategy. BMC Bioinforma. 2015;16:219.
    • (2015) BMC Bioinforma , vol.16 , pp. 219
    • Cheng, X.1    Cai, H.2    Zhang, Y.3    Xu, B.4    Su, W.5
  • 74
    • 84937675219 scopus 로고    scopus 로고
    • Knowledge transfer via classification rules using functional mapping for integrative modeling of gene expression data
    • Ogoe HA, Visweswaran S, Lu X, Gopalakrishnan V. Knowledge transfer via classification rules using functional mapping for integrative modeling of gene expression data. BMC Bioinforma. 2015;16:226.
    • (2015) BMC Bioinforma , vol.16 , pp. 226
    • Ogoe, H.A.1    Visweswaran, S.2    Lu, X.3    Gopalakrishnan, V.4
  • 77
    • 84938970333 scopus 로고    scopus 로고
    • RNA-binding residues prediction using structural features
    • Ren H, Shen Y. RNA-binding residues prediction using structural features. BMC Bioinforma. 2015;16:249.
    • (2015) BMC Bioinforma , vol.16 , pp. 249
    • Ren, H.1    Shen, Y.2
  • 79
    • 84940886273 scopus 로고    scopus 로고
    • Seq-ing improved gene expression estimates from microarrays using machine learning
    • Korir PK, Geeleher P, Seoighe C. Seq-ing improved gene expression estimates from microarrays using machine learning. BMC Bioinforma. 2015;16:286.
    • (2015) BMC Bioinforma , vol.16 , pp. 286
    • Korir, P.K.1    Geeleher, P.2    Seoighe, C.3
  • 80
    • 84941634830 scopus 로고    scopus 로고
    • mAPKL: R/ Bioconductor package for detecting gene exemplars and revealing their characteristics
    • Sakellariou A, Spyrou G. mAPKL: R/ Bioconductor package for detecting gene exemplars and revealing their characteristics. BMC Bioinforma. 2015;16:291.
    • (2015) BMC Bioinforma , vol.16 , pp. 291
    • Sakellariou, A.1    Spyrou, G.2
  • 81
    • 84941636848 scopus 로고    scopus 로고
    • A methodology for exploring biomarker-phenotype associations: application to flow cytometry data and systemic sclerosis clinical manifestations
    • Huang H, Fava A, Guhr T, Cimbro R, Rosen A, Boin F, Ellis H. A methodology for exploring biomarker-phenotype associations: application to flow cytometry data and systemic sclerosis clinical manifestations. BMC Bioinforma. 2015;16:293.
    • (2015) BMC Bioinforma , vol.16 , pp. 293
    • Huang, H.1    Fava, A.2    Guhr, T.3    Cimbro, R.4    Rosen, A.5    Boin, F.6    Ellis, H.7
  • 82
    • 84942019335 scopus 로고    scopus 로고
    • Boosting for high-dimensional two-class prediction
    • Blagus R, Lusa L. Boosting for high-dimensional two-class prediction. BMC Bioinforma. 2015;16:300.
    • (2015) BMC Bioinforma , vol.16 , pp. 300
    • Blagus, R.1    Lusa, L.2
  • 83
    • 84942510664 scopus 로고    scopus 로고
    • NetBenchmark: a bioconductor package for reproducible benchmarks of gene regulatory network inference
    • Bellot P, Olsen C, Salembier P, Oliveras-Vergés A, Meyer PE. NetBenchmark: a bioconductor package for reproducible benchmarks of gene regulatory network inference. BMC Bioinforma. 2015;16:312.
    • (2015) BMC Bioinforma , vol.16 , pp. 312
    • Bellot, P.1    Olsen, C.2    Salembier, P.3    Oliveras-Vergés, A.4    Meyer, P.E.5
  • 84
    • 84942521494 scopus 로고    scopus 로고
    • Label noise in subtype discrimination of class C G protein-coupled receptors: A systematic approach to the analysis of classification errors
    • König C, Cárdenas MI, Giraldo J, Alquézar R, Vellido A. Label noise in subtype discrimination of class C G protein-coupled receptors: A systematic approach to the analysis of classification errors. BMC Bioinforma. 2015;16:314.
    • (2015) BMC Bioinforma , vol.16 , pp. 314
    • König, C.1    Cárdenas, M.I.2    Giraldo, J.3    Alquézar, R.4    Vellido, A.5
  • 87
    • 84960388815 scopus 로고    scopus 로고
    • Proposal of supervised data analysis strategy of plasma miRNAs from hybridisation array data with an application to assess hemolysis-related deregulation
    • Landoni E, Miceli R, Callari M, Tiberio P, Appierto V, Angeloni V, Mariani L, Daidone MG. Proposal of supervised data analysis strategy of plasma miRNAs from hybridisation array data with an application to assess hemolysis-related deregulation. BMC Bioinforma. 2015;16:388.
    • (2015) BMC Bioinforma , vol.16 , pp. 388
    • Landoni, E.1    Miceli, R.2    Callari, M.3    Tiberio, P.4    Appierto, V.5    Angeloni, V.6    Mariani, L.7    Daidone, M.G.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.