메뉴 건너뛰기




Volumn 16, Issue 1, 2015, Pages

Seq-ing improved gene expression estimates from microarrays using machine learning

Author keywords

Machine learning; Microarray; RNA Seq; Statistical learning

Indexed keywords

ARTIFICIAL INTELLIGENCE; BIOASSAY; DECISION TREES; GENES; LEARNING SYSTEMS; MICROARRAYS; RNA; TISSUE;

EID: 84940886273     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/s12859-015-0712-z     Document Type: Article
Times cited : (7)

References (41)
  • 3
    • 33645326509 scopus 로고    scopus 로고
    • Comparison of Affymetrix GeneChip expression measures
    • Irizarry RA, Wu Z, Jaffee HA. Comparison of Affymetrix GeneChip expression measures. Bioinformatics. 2006; 22(7):789-794.
    • (2006) Bioinformatics , vol.22 , Issue.7 , pp. 789-794
    • Irizarry, R.A.1    Wu, Z.2    Jaffee, H.A.3
  • 4
    • 22144461265 scopus 로고    scopus 로고
    • Preferred analysis methods for Affymetrix GeneChips revealed by a wholly defined control dataset
    • Choe SE, Boutros M, Michelson AM, Church GM, Halfon MS. Preferred analysis methods for Affymetrix GeneChips revealed by a wholly defined control dataset. Genome Biology. 2005; 6(2):16.
    • (2005) Genome Biology , vol.6 , Issue.2 , pp. 16
    • Choe, S.E.1    Boutros, M.2    Michelson, A.M.3    Church, G.M.4    Halfon, M.S.5
  • 7
    • 0037590376 scopus 로고    scopus 로고
    • The limit fold change model: a practical approach for selecting differentially expressed genes from microarray data
    • Mutch DM, Berger A, Mansourian R, Rytz A, Roberts M-A. The limit fold change model: a practical approach for selecting differentially expressed genes from microarray data. BMC Bioinformatics. 2002; 3(1):17.
    • (2002) BMC Bioinformatics , vol.3 , Issue.1 , pp. 17
    • Mutch, D.M.1    Berger, A.2    Mansourian, R.3    Rytz, A.4    Roberts, M.-A.5
  • 10
    • 57749195712 scopus 로고    scopus 로고
    • RNA-Seq: a revolutionary tool for transcriptomics
    • Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics. 2009; 10(1):57-63.
    • (2009) Nature Reviews Genetics , vol.10 , Issue.1 , pp. 57-63
    • Wang, Z.1    Gerstein, M.2    Snyder, M.3
  • 13
    • 80052389765 scopus 로고    scopus 로고
    • Large scale microarray profiling and coexpression network analysis of CHO cells identifies transcriptional modules associated with growth and productivity
    • Clarke C, Doolan P, Barron N, Meleady P, O'Sullivan F, Gammell P, Melville M, Leonard M, Clynes M. Large scale microarray profiling and coexpression network analysis of CHO cells identifies transcriptional modules associated with growth and productivity. Journal of Biotechnology. 2011; 155(3):350-359.
    • (2011) Journal of Biotechnology , vol.155 , Issue.3 , pp. 350-359
    • Clarke, C.1    Doolan, P.2    Barron, N.3    Meleady, P.4    O'Sullivan, F.5    Gammell, P.6    Melville, M.7    Leonard, M.8    Clynes, M.9
  • 21
    • 0036081355 scopus 로고    scopus 로고
    • Gene Expression Omnibus: NCBI gene expression and hybridization array data repository
    • Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Research. 2002; 30(1):207-210.
    • (2002) Nucleic Acids Research , vol.30 , Issue.1 , pp. 207-210
    • Edgar, R.1    Domrachev, M.2    Lash, A.E.3
  • 22
  • 23
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • Friedamn JH. Multivariate adaptive regression splines. The Annals of Statistics. 1991; 19(1):1-141.
    • (1991) The Annals of Statistics , vol.19 , Issue.1 , pp. 1-141
    • Friedamn, J.H.1
  • 24
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Machine Learning. 2001; 45(1):5-32.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 27
    • 84863304598 scopus 로고    scopus 로고
    • R: A language and environment for statistical computing.
    • R Foundation for Statistical Computing Vienna, Austria, 2013
    • Team RC. R: A language and environment for statistical computing. ISBN 3-900051-07-0 R Foundation for Statistical Computing Vienna, Austria, 2013. (2005) http://www.r-project.org .
    • (2005)
  • 29
    • 84940850132 scopus 로고    scopus 로고
    • Exon Array Whitepaper Collection,"Exon Probeset Annotations and Transcript Cluster Groupings," rev. Sep. 27, ver. 1.0. Technical report, Affymetrix Inc. (2005).
    • Affymetrix. Exon Array Whitepaper Collection,"Exon Probeset Annotations and Transcript Cluster Groupings," rev. Sep. 27, 2005, ver. 1.0. Technical report, Affymetrix Inc. (2005). http://www.affymetrix.com/support/technical/whitepapers/exon_probeset_trans_clust_whitepaper.pdf .
    • (2005)
  • 30
    • 38549116202 scopus 로고    scopus 로고
    • X:Map: annotation and visualization of genome structure for Affymetrix exon array analysis
    • Yates T, Okoniewski MJ, Miller CJ. X:Map: annotation and visualization of genome structure for Affymetrix exon array analysis. Nucleic Acids Research. 2008; 36(suppl 1):780-786.
    • (2008) Nucleic Acids Research , vol.36 , pp. 780-786
    • Yates, T.1    Okoniewski, M.J.2    Miller, C.J.3
  • 31
    • 84882727548 scopus 로고    scopus 로고
    • CellMix: A Comprehensive Toolbox for Gene Expression Deconvolution
    • Gaujoux R, Seoighe C. CellMix: A Comprehensive Toolbox for Gene Expression Deconvolution. Bioinformatics. 2013. doi: 10.1093/bioinformatics/btt351 .
    • (2013) Bioinformatics
    • Gaujoux, R.1    Seoighe, C.2
  • 32
    • 50649089207 scopus 로고    scopus 로고
    • RNA-Seq: an assessment of technical reproducibility and comparison with gene expression arrays
    • Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. RNA-Seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Research. 2008; 18(9):1509-1517.
    • (2008) Genome Research , vol.18 , Issue.9 , pp. 1509-1517
    • Marioni, J.C.1    Mason, C.E.2    Mane, S.M.3    Stephens, M.4    Gilad, Y.5
  • 36
    • 77951153668 scopus 로고    scopus 로고
    • MMBGX: a method for estimating expression at the isoform level and detecting differential splicing using whole-transcript Affymetrix arrays
    • Turro E, Lewin A, Rose A, Dallman MJ, Richardson S. MMBGX: a method for estimating expression at the isoform level and detecting differential splicing using whole-transcript Affymetrix arrays. Nucleic Acids Research. 2010; 38(1):4-4.
    • (2010) Nucleic Acids Research , vol.38 , Issue.1 , pp. 4-4
    • Turro, E.1    Lewin, A.2    Rose, A.3    Dallman, M.J.4    Richardson, S.5
  • 38
    • 38649143214 scopus 로고    scopus 로고
    • A comparison of Affymetrix gene expression arrays
    • Robinson MD, Speed TP. A comparison of Affymetrix gene expression arrays. BMC Bioinformatics. 2007; 8(1):449.
    • (2007) BMC Bioinformatics , vol.8 , Issue.1 , pp. 449
    • Robinson, M.D.1    Speed, T.P.2
  • 40
    • 78751570979 scopus 로고    scopus 로고
    • RNA sequencing: advances, challenges and opportunities
    • Ozsolak F, Milos PM. RNA sequencing: advances, challenges and opportunities. Nature Reviews Genetics. 2010; 12(2):87-98.
    • (2010) Nature Reviews Genetics , vol.12 , Issue.2 , pp. 87-98
    • Ozsolak, F.1    Milos, P.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.