-
1
-
-
84899651693
-
Classification in the presence of label noise: a survey
-
Frénay B, Verleysen M. Classification in the presence of label noise: a survey. IEEE Trans Neural Netw Learn Syst. 2014; 25(5):845-69.
-
(2014)
IEEE Trans Neural Netw Learn Syst
, vol.25
, Issue.5
, pp. 845-869
-
-
Frénay, B.1
Verleysen, M.2
-
2
-
-
80054896328
-
Computational Intelligence in biomedicine: Some contributions
-
Verleysen M, editor. Procs. of the 18th European Symposium on Artificial Neural Networks (ESANN 2010). Bruges, Belgium: d-side pub.
-
Lisboa PJG, Vellido A, Martín JD. Computational Intelligence in biomedicine: Some contributions. In: Verleysen M, editor. Procs. of the 18th European Symposium on Artificial Neural Networks (ESANN 2010). Bruges, Belgium: d-side pub.: 2010. p. 429-38.
-
(2010)
-
-
Lisboa, P.J.G.1
Vellido, A.2
Martín, J.D.3
-
3
-
-
80052422950
-
Label noise-tolerant hidden Markov models for segmentation: application to ECGs
-
Gunopulos D, et al, editors. Machine Learning and Knowledge Discovery in Databases. Heidelberg, LNCS 6911: Springer
-
Frénay B, de Lannoy G, Verleysen M. Label noise-tolerant hidden Markov models for segmentation: application to ECGs. In: Gunopulos D, et al, editors. Machine Learning and Knowledge Discovery in Databases. Heidelberg, LNCS 6911: Springer. p. 455-70.
-
-
-
Frénay, B.1
de Lannoy, G.2
Verleysen, M.3
-
4
-
-
78650818681
-
Outlier exploration and diagnostic classification of a multi-centre 1H-MRS brain tumour database
-
Vellido A, Romero E, González-Navarro FF, Belanche-Muñoz L, Julià-Sapé M, Arús C. Outlier exploration and diagnostic classification of a multi-centre 1H-MRS brain tumour database. Neurocomputing. 2009; 72(13-15):3085-97.
-
(2009)
Neurocomputing
, vol.72
, Issue.13-15
, pp. 3085-3097
-
-
Vellido, A.1
Romero, E.2
González-Navarro, F.F.3
Belanche-Muñoz, L.4
Julià-Sapé, M.5
Arús, C.6
-
5
-
-
78650608807
-
International expert panel on inflammatory breast cancer: consensus statement for standardized diagnosis and treatment
-
Dawood S, Merajver SD, Viens P, Vermeulen PB, Swain SM, Buchholz TA, et al. International expert panel on inflammatory breast cancer: consensus statement for standardized diagnosis and treatment. Ann Oncol. 2011; 22(3):515-23.
-
(2011)
Ann Oncol
, vol.22
, Issue.3
, pp. 515-523
-
-
Dawood, S.1
Merajver, S.D.2
Viens, P.3
Vermeulen, P.B.4
Swain, S.M.5
Buchholz, T.A.6
-
6
-
-
58149213932
-
Literature-curated protein interaction datasets
-
Cusick ME, Yu H, Smolyar A, Venkatesan K, Carvunis AR, Simonis N, et al. Literature-curated protein interaction datasets. Nat Methods. 2009; 6(1):39-46.
-
(2009)
Nat Methods
, vol.6
, Issue.1
, pp. 39-46
-
-
Cusick, M.E.1
Yu, H.2
Smolyar, A.3
Venkatesan, K.4
Carvunis, A.R.5
Simonis, N.6
-
7
-
-
84884286007
-
Classifying G-Protein-Coupled Receptors to the finest subtype level
-
Gao QB, Ye XF, He J. Classifying G-Protein-Coupled Receptors to the finest subtype level. Biochem Biophys Res Commun. 2013; 439(2):303-8.
-
(2013)
Biochem Biophys Res Commun
, vol.439
, Issue.2
, pp. 303-308
-
-
Gao, Q.B.1
Ye, X.F.2
He, J.3
-
8
-
-
84887999195
-
An overview of the diverse roles of G-protein coupled receptors (GPCRs) in the pathophysiology of various human diseases
-
Heng BC, Aubel D, Fussenegger M. An overview of the diverse roles of G-protein coupled receptors (GPCRs) in the pathophysiology of various human diseases. Biotechnol Adv. 2013; 31(8):1676-94.
-
(2013)
Biotechnol Adv
, vol.31
, Issue.8
, pp. 1676-1694
-
-
Heng, B.C.1
Aubel, D.2
Fussenegger, M.3
-
9
-
-
79951854466
-
Dimers and beyond: The functional puzzles of class C GPCRs
-
Kniazeff J, Prézeau L, Rondard P, Pin JP, Goudet C. Dimers and beyond: The functional puzzles of class C GPCRs. Pharmacol Ther. 2011; 130(1):9-25.
-
(2011)
Pharmacol Ther
, vol.130
, Issue.1
, pp. 9-25
-
-
Kniazeff, J.1
Prézeau, L.2
Rondard, P.3
Pin, J.P.4
Goudet, C.5
-
10
-
-
0038662595
-
Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors
-
Pin JP, Galvez T, Prezeau L. Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacol Ther. 2003; 98(3):325-54.
-
(2003)
Pharmacol Ther
, vol.98
, Issue.3
, pp. 325-354
-
-
Pin, J.P.1
Galvez, T.2
Prezeau, L.3
-
11
-
-
84906827756
-
Opportunities and Challenges in the Discovery of Allosteric Modulators of GPCRs for Treating CNS Disorders
-
Conn PJ, Lindsley CW, Meiler J, Niswender CM. Opportunities and Challenges in the Discovery of Allosteric Modulators of GPCRs for Treating CNS Disorders. Nat Rev Drug Discov. 2014; 13(9):692-708.
-
(2014)
Nat Rev Drug Discov
, vol.13
, Issue.9
, pp. 692-708
-
-
Conn, P.J.1
Lindsley, C.W.2
Meiler, J.3
Niswender, C.M.4
-
12
-
-
84891760740
-
GPCRDB: an information system for G protein-coupled receptors
-
Isberg V, Vroling B, van der Kant R, Li K, Vriend G, Gloriam D. GPCRDB: an information system for G protein-coupled receptors. Nucleic Acids Res. 2014; 42(Database issue):D422-5.
-
(2014)
Nucleic Acids Res
, vol.42
, Issue.DATABASE ISSUE
, pp. D422-D425
-
-
Isberg, V.1
Vroling, B.2
van der Kant, R.3
Li, K.4
Vriend, G.5
Gloriam, D.6
-
13
-
-
79954614494
-
Metabotropic Glutamate Receptors: From the Workbench to the Bedside
-
Nicoletti F, Bockaert J, Collingridge G, Conn P, Ferraguti F, Schoepp D, et al. Metabotropic Glutamate Receptors: From the Workbench to the Bedside. Neuropharmacol. 2011; 60:1017-41.
-
(2011)
Neuropharmacol
, vol.60
, pp. 1017-1041
-
-
Nicoletti, F.1
Bockaert, J.2
Collingridge, G.3
Conn, P.4
Ferraguti, F.5
Schoepp, D.6
-
14
-
-
84916908953
-
Metabotropic Glutamate Receptors as drug targets: what's wew?
-
Nicoletti F, Bruno V, Ngomba R, Gradini R, Battaglia G. Metabotropic Glutamate Receptors as drug targets: what's wew?Curr Opin Pharmacol. 2014; 20C:89-94.
-
(2014)
Curr Opin Pharmacol
, vol.20C
, pp. 89-94
-
-
Nicoletti, F.1
Bruno, V.2
Ngomba, R.3
Gradini, R.4
Battaglia, G.5
-
15
-
-
0034604451
-
Crystal structure of Rhodopsin: a G Protein-Coupled Receptor
-
Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, et al. Crystal structure of Rhodopsin: a G Protein-Coupled Receptor. Sci. 2000; 289:739-45.
-
(2000)
Sci
, vol.289
, pp. 739-745
-
-
Palczewski, K.1
Kumasaka, T.2
Hori, T.3
Behnke, C.A.4
Motoshima, H.5
Fox, B.A.6
-
17
-
-
84897580006
-
Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator
-
Wu H, Wang C, Gregory KJ, Han GW, Cho KP, Xia Y, et al. Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Sci. 2014; 344(6179):58-64.
-
(2014)
Sci
, vol.344
, Issue.6179
, pp. 58-64
-
-
Wu, H.1
Wang, C.2
Gregory, K.J.3
Han, G.W.4
Cho, K.P.5
Xia, Y.6
-
18
-
-
84904994581
-
Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain
-
Doré AS, Okrasa K, Patel JC, Serrano-Vega M, Bennett K, Cooke RM, et al. Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain. Nature. 2014; 551:557-62.
-
(2014)
Nature
, vol.551
, pp. 557-562
-
-
Doré, A.S.1
Okrasa, K.2
Patel, J.C.3
Serrano-Vega, M.4
Bennett, K.5
Cooke, R.M.6
-
19
-
-
78651297517
-
GPCRDB: information system for G protein-coupled receptors
-
Vroling B, Sanders M, Baakman C, Borrmann A, Verhoeven S, Klomp J, et al. GPCRDB: information system for G protein-coupled receptors. Nucleic Acids Res. 2011; 39(suppl 1):D309-D319.
-
(2011)
Nucleic Acids Res
, vol.39
, pp. D309-D319
-
-
Vroling, B.1
Sanders, M.2
Baakman, C.3
Borrmann, A.4
Verhoeven, S.5
-
20
-
-
33750736013
-
The accuracy of several multiple sequence alignment programs for proteins
-
Nuin PA, Wang Z, Tillier ER. The accuracy of several multiple sequence alignment programs for proteins. BMC Bioinforma. 2006; 7(1):471.
-
(2006)
BMC Bioinforma
, vol.7
, Issue.1
, pp. 471
-
-
Nuin, P.A.1
Wang, Z.2
Tillier, E.R.3
-
21
-
-
34147130792
-
An efficient, versatile and scalable pattern growth approach to mine frequent patterns in unaligned protein sequences
-
Ye K, Kosters WA, IJzerman AP. An efficient, versatile and scalable pattern growth approach to mine frequent patterns in unaligned protein sequences. Bioinformatics. 2007; 23(6):687-93.
-
(2007)
Bioinformatics
, vol.23
, Issue.6
, pp. 687-693
-
-
Ye, K.1
Kosters, W.A.2
IJzerman, A.P.3
-
22
-
-
84867004398
-
Using amino acid Physicochemical Distance Transformation for fast protein remote homology detection
-
Liu B, Wang X, Chen Q, Dong Q, Lan X. Using amino acid Physicochemical Distance Transformation for fast protein remote homology detection. PLoS ONE. 2012; 7(9):e46633.
-
(2012)
PLoS ONE
, vol.7
, Issue.9
, pp. e46633
-
-
Liu, B.1
Wang, X.2
Chen, Q.3
Dong, Q.4
Lan, X.5
-
23
-
-
84962013946
-
Misclassification of class C G-protein-coupled receptors as a label noise problem
-
Brugesm, Belgium:
-
König C, Vellido A, Alquézar R, Giraldo J. Misclassification of class C G-protein-coupled receptors as a label noise problem. In: Proceedings of the 22nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2014), Brugesm, Belgium: 2014. p. 695-700.
-
(2014)
Proceedings of the 22nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2014)
, pp. 695-700
-
-
König, C.1
Vellido, A.2
Alquézar, R.3
Giraldo, J.4
-
24
-
-
0035664149
-
Bioinformatic tools for DNA/protein sequence analysis, functional assignment of genes and protein classification
-
Rehm B. Bioinformatic tools for DNA/protein sequence analysis, functional assignment of genes and protein classification. Appl Microbiol Biotechnol. 2001; 57(5-6):579-92.
-
(2001)
Appl Microbiol Biotechnol
, vol.57
, Issue.5-6
, pp. 579-592
-
-
Rehm, B.1
-
25
-
-
79953093817
-
A discriminative method for family-based protein remote homology detection that combines inductive logic programming and propositional models
-
Bernardes JS, Carbone A, Zaverucha G. A discriminative method for family-based protein remote homology detection that combines inductive logic programming and propositional models. BMC Bioinforma. 2011; 12:83.
-
(2011)
BMC Bioinforma
, vol.12
, pp. 83
-
-
Bernardes, J.S.1
Carbone, A.2
Zaverucha, G.3
-
27
-
-
84899539529
-
Protein sequence classification with improved Extreme Learning Machine algorithms
-
Cao J, Xiong L. Protein sequence classification with improved Extreme Learning Machine algorithms. BioMed Res Int. 2014;2014: ID103054.
-
(2014)
BioMed Res Int. 2014
-
-
Cao, J.1
Xiong, L.2
-
28
-
-
0027215340
-
DNA and peptide sequences and chemical processes multivariately modelled by Principal Component Analysis and Partial Least-Squares projections to latent structures
-
Wold S, Jonsson J, Sjöström M, Sandberg M, Rännar S. DNA and peptide sequences and chemical processes multivariately modelled by Principal Component Analysis and Partial Least-Squares projections to latent structures. Anal Chim Acta. 1993; 277:239-53.
-
(1993)
Anal Chim Acta
, vol.277
, pp. 239-253
-
-
Wold, S.1
Jonsson, J.2
Sjöström, M.3
Sandberg, M.4
Rännar, S.5
-
29
-
-
0036130770
-
Classification of G-protein coupled receptors by alignment-independent extraction of principal chemical properties of primary amino acid sequences
-
Lapinsh M, Gutcaits A, Prusis P, Post C, Lundstedt T, Wikberg JES. Classification of G-protein coupled receptors by alignment-independent extraction of principal chemical properties of primary amino acid sequences. Protein Sci. 2002; 11(4):795-805.
-
(2002)
Protein Sci
, vol.11
, Issue.4
, pp. 795-805
-
-
Lapinsh, M.1
Gutcaits, A.2
Prusis, P.3
Post, C.4
Lundstedt, T.5
Wikberg, J.E.S.6
-
30
-
-
0032474777
-
New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids
-
Sandberg M, Eriksson L, Jonsson J, Sjöström M, Wold S. New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids. J Med Chem. 1998; 41(14):2481-91.
-
(1998)
J Med Chem
, vol.41
, Issue.14
, pp. 2481-2491
-
-
Sandberg, M.1
Eriksson, L.2
Jonsson, J.3
Sjöström, M.4
Wold, S.5
-
32
-
-
84925491224
-
The influence of alignment-free sequence representations on the semi-supervised classification of class C G protein-coupled receptors
-
Cruz-Barbosa R, Vellido A, Giraldo J. The influence of alignment-free sequence representations on the semi-supervised classification of class C G protein-coupled receptors. Med Biol Eng Comput. 2015; 53(2):137-49.
-
(2015)
Med Biol Eng Comput
, vol.53
, Issue.2
, pp. 137-149
-
-
Cruz-Barbosa, R.1
Vellido, A.2
Giraldo, J.3
-
33
-
-
40749093745
-
SVM-HUSTLE-an iterative semi-supervised machine learning approach for pairwise protein remote homology detection
-
Shah AR, Oehmen CS, Webb-Robertson BJ. SVM-HUSTLE-an iterative semi-supervised machine learning approach for pairwise protein remote homology detection. Bioinformatics. 2008; 4:783-90.
-
(2008)
Bioinformatics
, vol.4
, pp. 783-790
-
-
Shah, A.R.1
Oehmen, C.S.2
Webb-Robertson, B.J.3
-
34
-
-
0344033670
-
Efficient remote homology detection using local structure
-
Hou Y, Hsu W, Lee ML, Bystroff C. Efficient remote homology detection using local structure. Bioinformatics. 2003; 19:2294-301.
-
(2003)
Bioinformatics
, vol.19
, pp. 2294-2301
-
-
Hou, Y.1
Hsu, W.2
Lee, M.L.3
Bystroff, C.4
-
35
-
-
33845467978
-
A discriminative method for remote homology detection based on n-peptide compositions with reduced amino acid alphabets
-
Ogul H, Mumcuoglu EU. A discriminative method for remote homology detection based on n-peptide compositions with reduced amino acid alphabets. BioSystems. 2007; 87:75-81.
-
(2007)
BioSystems
, vol.87
, pp. 75-81
-
-
Ogul, H.1
Mumcuoglu, E.U.2
-
36
-
-
28044469042
-
SVM-BALSA: Remote homology detection based on Bayesian sequence alignment
-
Webb-Robertson BJ, Oehmen C, Matzke M. SVM-BALSA: Remote homology detection based on Bayesian sequence alignment. Comput Biol Chem. 2005; 29:440-3.
-
(2005)
Comput Biol Chem
, vol.29
, pp. 440-443
-
-
Webb-Robertson, B.J.1
Oehmen, C.2
Matzke, M.3
-
37
-
-
0036166451
-
Classifying G-protein coupled receptors with support vector machines
-
Karchin R, Karplus K, Haussler D. Classifying G-protein coupled receptors with support vector machines. Bioinformatics. 2002; 18(1):147-59.
-
(2002)
Bioinformatics
, vol.18
, Issue.1
, pp. 147-159
-
-
Karchin, R.1
Karplus, K.2
Haussler, D.3
-
38
-
-
0003991806
-
Statistical Learning Theory
-
New York: John Wiley & Sons
-
Vapnik VN. Statistical Learning Theory. New York: John Wiley & Sons; 1998.
-
(1998)
-
-
Vapnik, V.N.1
-
39
-
-
34249753618
-
Support vector networks
-
Cortes C, Vapnik VN. Support vector networks. Mach Learn. 1995; 20(3):273-97.
-
(1995)
Mach Learn
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.N.2
-
41
-
-
0000874557
-
Theoretical foundations of the potential function method in pattern recognition learning
-
Aizerman A, Braverman EM, Rozoner LI. Theoretical foundations of the potential function method in pattern recognition learning. Autom Remote Control. 1964; 25:821-37.
-
(1964)
Autom Remote Control
, vol.25
, pp. 821-837
-
-
Aizerman, A.1
Braverman, E.M.2
Rozoner, L.I.3
-
42
-
-
79955702502
-
LIBSVM: A library for Support Vector Machines
-
Chang C, Lin C. LIBSVM: A library for Support Vector Machines. ACM Trans Intell Syst Technol. 2011; 2(3):27.
-
(2011)
ACM Trans Intell Syst Technol
, vol.2
, Issue.3
, pp. 27
-
-
Chang, C.1
Lin, C.2
-
43
-
-
0016772212
-
Comparison of the predicted and observed secondary structure of T4 phage lysozyme
-
Matthews BW. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta Protein Struct Mol Enzymol. 1975; 405(2):442-51.
-
(1975)
Biochim Biophys Acta Protein Struct Mol Enzymol
, vol.405
, Issue.2
, pp. 442-451
-
-
Matthews, B.W.1
-
44
-
-
84856050251
-
Empirical Performance of Cross-Validation With Oracle Methods in a Genomics Context
-
Martinez J, Carroll RJ, Müller S, Sampson JN, Chatterjee N. Empirical Performance of Cross-Validation With Oracle Methods in a Genomics Context. The Am Stat. 2011; 65(4):223-8.
-
(2011)
The Am Stat
, vol.65
, Issue.4
, pp. 223-228
-
-
Martinez, J.1
Carroll, R.J.2
Müller, S.3
Sampson, J.N.4
Chatterjee, N.5
-
45
-
-
84918777103
-
Determination of prognosis in metastatic melanoma through integration of clinico-pathologic, mutation, mRNA, microRNA, and protein information
-
Jayawardana K, Schramm S, Haydu L, Thompson JF, Scolye RA, Mann G, et al. Determination of prognosis in metastatic melanoma through integration of clinico-pathologic, mutation, mRNA, microRNA, and protein information. Int J Cancer. 2015; 136(4):863-74.
-
(2015)
Int J Cancer
, vol.136
, Issue.4
, pp. 863-874
-
-
Jayawardana, K.1
Schramm, S.2
Haydu, L.3
Thompson, J.F.4
Scolye, R.A.5
Mann, G.6
-
46
-
-
67650742236
-
Treevolution: visual analysis of phylogenetic trees
-
Santamaría R, Therón R. Treevolution: visual analysis of phylogenetic trees. Bioinformatics. 2009; 25(15):1970-1.
-
(2009)
Bioinformatics
, vol.25
, Issue.15
, pp. 1970-1971
-
-
Santamaría, R.1
Therón, R.2
-
47
-
-
80054078476
-
Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega
-
Sievers F, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011; 7:539.
-
(2011)
Mol Syst Biol
, vol.7
, pp. 539
-
-
Sievers, F.1
-
48
-
-
0023084055
-
Progressive sequence alignment as a prerequisite to correct phylogenetic trees
-
Feng DF, Doolittle RF. Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J Mol Evol. 1987; 25(4):351-60.
-
(1987)
J Mol Evol
, vol.25
, Issue.4
, pp. 351-360
-
-
Feng, D.F.1
Doolittle, R.F.2
-
49
-
-
84887054637
-
SVM-based classification of class C GPCRs from alignment-free physicochemical transformations of their sequences
-
Heidelberg: Springer. Lecture Notes in Computer Science
-
König C, Cruz-Barbosa R, Alquézar R, Vellido A. SVM-based classification of class C GPCRs from alignment-free physicochemical transformations of their sequences. In: Petrosino A, Maddalena L, Pala P, editors. 2nd International Workshop on Pattern Recognition in Proteomics, Structural Biology and Bioinformatics (PR PS BB 2013). Heidelberg: Springer. Lecture Notes in Computer Science, Vol. 8158; 2013. p. 336-43.
-
(2013)
Petrosino A, Maddalena L, Pala P, editors. 2nd International Workshop on Pattern Recognition in Proteomics, Structural Biology and Bioinformatics (PR PS BB 2013
, vol.8158
, pp. 336-343
-
-
König, C.1
Cruz-Barbosa, R.2
Alquézar, R.3
Vellido, A.4
-
50
-
-
33847341188
-
Protein family classification with partial least squares
-
Opiyo SO, Moriyama EN. Protein family classification with partial least squares. J Proteome Res. 2007; 6(2):846-53.
-
(2007)
J Proteome Res
, vol.6
, Issue.2
, pp. 846-853
-
-
Opiyo, S.O.1
Moriyama, E.N.2
-
51
-
-
84898030282
-
A study of the effect of different types of noise on the precision of supervised learning techniques
-
Nettleton D, Orriols-Puig A, Fornells A. A study of the effect of different types of noise on the precision of supervised learning techniques. Artif Intell Rev. 2010; 33(4):275-306.
-
(2010)
Artif Intell Rev
, vol.33
, Issue.4
, pp. 275-306
-
-
Nettleton, D.1
Orriols-Puig, A.2
Fornells, A.3
-
52
-
-
80053403826
-
Ensemble methods in machine learning
-
Kittler J, Roli F, editors. Multiple Classifier Systems. Heidelberg: Springer. Lecture Notes in Computer Science
-
Dietterich TG. Ensemble methods in machine learning. In: Kittler J, Roli F, editors. Multiple Classifier Systems. Heidelberg: Springer. Lecture Notes in Computer Science, Vol. 1857; 2000. p. 1-15.
-
(2000)
, vol.1857
, pp. 1-15
-
-
Dietterich, T.G.1
-
54
-
-
84893677824
-
Ensemble-based noise detection: noise ranking and visual performance evaluation
-
Sluban B, Lavrac N, Gamberger D. Ensemble-based noise detection: noise ranking and visual performance evaluation. Data Min Knowl Discov. 2014; 28:265-303.
-
(2014)
Data Min Knowl Discov
, vol.28
, pp. 265-303
-
-
Sluban, B.1
Lavrac, N.2
Gamberger, D.3
-
55
-
-
33845594913
-
Class noise and supervised learning in medical domains: The effect of feature extraction
-
Washington, DC, USA: IEEE
-
Pechenizkiy M, Tsymbal A, Puuronen S, Pechenizkiy O. Class noise and supervised learning in medical domains: The effect of feature extraction. In: Proceedings of the 19th IEEE International Symposium on Computer-Based Medical Systems (CBMS). Washington, DC, USA: IEEE: 2006. p. 708-13.
-
(2006)
Proceedings of the 19th IEEE International Symposium on Computer-Based Medical Systems (CBMS)
, pp. 708-713
-
-
Pechenizkiy, M.1
Tsymbal, A.2
Puuronen, S.3
Pechenizkiy, O.4
-
56
-
-
70350650320
-
Use of classification algorithms in noise detection and elimination
-
Salamanca, Spain
-
Miranda AL, Garcia LP, Carvalho AC, Lorena AC. Use of classification algorithms in noise detection and elimination. In: Proceedings of the 4th International Conference on Hybrid Artificial Intelligent Systems (HAIS). Salamanca, Spain: 2009. p. 417-424.
-
(2009)
Proceedings of the 4th International Conference on Hybrid Artificial Intelligent Systems (HAIS)
, pp. 417-424
-
-
Miranda, A.L.1
Garcia, L.P.2
Carvalho, A.C.3
Lorena, A.C.4
-
57
-
-
77956049608
-
Advances in class noise detection
-
Lisbon, Portugal: IOS Press, Amsterdam:
-
Sluban B, Gamberger D, Lavrac N. Advances in class noise detection. In: Proceedings of the 19th European Conference on Artificial Intelligence (ECAI). Lisbon, Portugal: IOS Press, Amsterdam: 2010. p. 1105-6.
-
(2010)
Proceedings of the 19th European Conference on Artificial Intelligence (ECAI)
, pp. 1105-1106
-
-
Sluban, B.1
Gamberger, D.2
Lavrac, N.3
-
58
-
-
84884965072
-
Analyzing the presence of noise in multi-class problems: alleviating its influence with the One-vs-One decomposition
-
Sáez JA, Galar M, Luengo J, Herrera F. Analyzing the presence of noise in multi-class problems: alleviating its influence with the One-vs-One decomposition. Knowl Inf Syst. 2014; 38(1):179-206.
-
(2014)
Knowl Inf Syst
, vol.38
, Issue.1
, pp. 179-206
-
-
Sáez, J.A.1
Galar, M.2
Luengo, J.3
Herrera, F.4
-
59
-
-
65649138430
-
A systematic analysis of performance measures for classification tasks
-
Sokolova M, Lapalme G. A systematic analysis of performance measures for classification tasks. Inf Process Manag. 2009; 45(4):427-37.
-
(2009)
Inf Process Manag
, vol.45
, Issue.4
, pp. 427-437
-
-
Sokolova, M.1
Lapalme, G.2
-
60
-
-
84864668842
-
A Comparison of MCC and CEN Error Measures in Multi-Class Prediction
-
Jurman G, Riccadonna S, Furlanello C. A Comparison of MCC and CEN Error Measures in Multi-Class Prediction. PLoS ONE. 2012; 7(8):e41882.
-
(2012)
PLoS ONE
, vol.7
, Issue.8
, pp. e41882
-
-
Jurman, G.1
Riccadonna, S.2
Furlanello, C.3
|